
HAL Id: inria-00635793
https://hal.inria.fr/inria-00635793

Submitted on 25 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Problems and Challenges when Building a Manager for
Unused Objects

Mariano Martinez Peck, Marcus Denker, Stéphane Ducasse, Noury Bouraqadi,
Luc Fabresse

To cite this version:
Mariano Martinez Peck, Marcus Denker, Stéphane Ducasse, Noury Bouraqadi, Luc Fabresse. Problems
and Challenges when Building a Manager for Unused Objects. Smalltalks International Workshop,
FAST (Federación Argentina de Smalltalks), Nov 2011, Bernal, Buenos Aires, Argentina. �inria-
00635793�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49950934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00635793
https://hal.archives-ouvertes.fr


Problems and Challenges

when Building a Manager for Unused Objects

Mariano Martinez Peck1,2,∗, Noury Bouraqadi2, Marcus Denker1, Stéphane Ducasse1, Luc Fabresse2

Abstract

Large object-oriented applications may occupy hundreds of megabytes or even gigabytes of memory. During

program execution, a large graph of objects is created and constantly changed.

Most object runtimes support some kind of automatic memory management based on garbage collectors (GC)

whose idea is the automatic destruction of unreferenced objects. However, there are referenced objects which are

not used for a long period of time or that are used just once. These are not garbage-collected because they are still

reachable and might be used in the future. Due to these unused objects, applications use much more resources than

they actually need.

In this paper we present the challenges and possible approaches towards an unused object manager for Pharo. The

goal is to use less memory by swapping out the unused objects to secondary memory and only leaving in primary

memory only those objects which are needed and used. When one of the unused objects is needed, it is brought back

into primary memory.

Keywords: Object Swapping, Serialization, Proxies, Smalltalk, Object-Oriented Programming

1. Introduction

In object-oriented programming languages like

Smalltalk – and Java to a certain extent –, everything is

an object. Objects are allocated and they occupy a cer-

tain amount of memory. The execution of an application

forms a graph of interacting objects. During program

execution, a large graph of objects is built, changed and

reconfigured. Most object runtimes support some kind

of automatic memory management based on garbage

collectors (GC) [Jon96] whose idea is the automatic de-

struction of unreferenced objects. The GC collects ob-

jects that are not being referenced anymore, i.e., it works

by reachability.

✩This work was supported by Ministry of Higher Education and

Research, Nord-Pas de Calais Regional Council and FEDER through

the ’Contrat de Projets Etat Region (CPER) 2007-2013’.
∗Corresponding author

Email addresses: marianopeck@gmail.com (Mariano

Martinez Peck), noury.bouraqadi@mines-douai.fr (Noury

Bouraqadi), marcus.denker@inria.fr (Marcus Denker),

stephane.ducasse@inria.fr (Stéphane Ducasse),

luc.fabresse@mines-douai.fr (Luc Fabresse)
1RMoD Project-Team, Inria Lille–Nord Europe / Université de

Lille 1.
2Université Lille Nord de France, Ecole des Mines de Douai.

During a typical run of an application, several mil-

lions of objects are created, used and then collected

when not referenced. But a problem appears when there

are objects which are not used but cannot be garbage-

collected because they are still reachable (i.e., are ref-

erenced by other objects). Some objects are used just

once, are used only in certain situations or conditions or

are not used for a long period of time but, in all cases,

they are kept in memory. For example, memory leaks

create these kinds of unused objects [BM08]. This is a

problem because, in presence of memory leaks, appli-

cations use much more resources than what is actually

needed and might even exhaust the available memory.

Therefore unused objects lead to slower systems and

can even be the cause of severe system crashes.

One solution to ensure the spatial scalability of ap-

plications is to temporarily move objects to secondary

memory (e.g.,hard disk) to temporary release part of the

primary memory (e.g.,RAM) [Kae86]. The intention

behind this is to save primary memory or, even more, to

be able to run more applications in the same amount of

memory. The mentioned problem not only happens with

large applications or servers running many programs,

but also with systems that run in embedded devices or

in any kind of hardware with a limited amount of mem-

Preprint submitted to Smalltalks 2011 October 25, 2011



ory like robots, cellphones, etc.

In this paper we present the main challenges, prob-

lems and possible approaches towards building an Un-

used Object Manager (UOM) for Pharo. An UOM au-

tomatically manages the memory occupied by unused

objects. The goal of this system is to use less mem-

ory by detecting and moving the unused objects to sec-

ondary storage and only leaving in primary memory

those which are currently needed and used [MPBD+10].

When one of these swapped objects is then needed, it

is brought back into primary memory. To achieve this,

the system replaces the original (unused) object with a

proxy [GHVJ93]. Whenever a proxy receives a mes-

sage, it loads back the swapped object from secondary

memory [Kae86, BM08].

An UOM must be carefully designed so that: 1) it

saves as much memory as possible i.e., it does not use

more memory with proxies and other temporally re-

quired data, than the one that can be released by swap-

ping unused objects; 2) it minimizes the overhead i.e.,

should not slow down too much the computation when

detecting unused objects or when swapping them be-

tween memories.

We did several experiments by implementing some

parts of the whole UOM with Pharo [BDN+09]. We

compared alternatives to implement different parts of an

UOM.

The contributions of this paper are:

• A description of the main parts of an UOM for

Pharo: the unused object detector, object proxies,

the object serializer and the object swapper.

• An analysis of the main issues related to these dif-

ferent parts of an UOM.

• A catalog of inadequate solutions facing these is-

sues in the context of Pharo. It is important to

know that some solutions should not be used in an

UOM.

The remainder of the paper is structured as follows:

Section 2 defines and unifies the concepts and names

used throughout the paper. Section 3 decomposes

an UOM into smaller subsystems and gives a general

overview of them. The most basic issues that appear

when building an UOM are explained in Section 4. Sec-

tion 5 shows all the related problems with proxies and

its relation with memory addresses. In Section 6 we de-

scribe the problem of shared objects inside graphs and

we list some possible alternatives to solve this issue.

Section 7 shows that there are even more problems re-

lated to the whole swapping mechanism. The first steps

of Marea project are presented in Section 8. Finally, in

Section 9 related work is presented, before concluding

in Section 10.

2. Glossary

Starting from a graph of interconnected objects, an

UOM detects the unused objects and swaps to sec-

ondary memory a subgraph of these unused objects.

Figure 1 shows an example of an object graph (sur-

rounded by a rectangle) that we want to swap.

A B C 

D E F G H

Y

K

X

I LJ

Subgraph to swap

Z
external

boundary

external

internal

external

boundary

internal

boundary

Zexternal rootKshared FfacadeIinner

Figure 1: A graph to be swapped.

Through this exhaustive example we define a glos-

sary of terms used in this paper to avoid confusion:

External objects are those outside the graph to swap.

Example: X, Y and Z.

Root objects are those defined by the user or by the

UOM. Commonly, operations begin with these ob-

jects. Example: A, B and C.

Internal objects are root objects and all the objects

accessed through them. Example: A, B, C, D, E,

F, G, H, I, J, K and L.

External boundary objects are external objects that

refer to internal objects. Example: X and Y.

Shared objects are internal objects that are accessed,

not only through the roots of graph, but also from

outside the graph. Example: D, F, G, J and K.

Internal boundary objects are internal objects which

refer to shared objects. Example: A, B, C and H.

2



Facade objects are shared objects which are refer-

enced from external objects. Example D, F and

G.

Inner objects are internal objects that are only acces-

sible from the root objects. Example: E, H, I and

L.

3. Unused Object Manager Prerequisites

Figure 2 shows the different subsystems needed by

an UOM to perform its tasks. An UOM should involve

at least four different tasks: mark objects when they are

used and unmark them when they are not, select which

objects to swap, replace them with proxies, serialize

(write the object graph into a sequence of bytes) and

materialize (recreate the object graph from a sequence

of bytes) them.

The following is a general overview of such subsys-

tems.

Unused 

Object

Manager

    
Unused Objects

Detector

Object Serializer Object Swapper

Proxifier

Figure 2: UOM subsystems.

3.1. Unused Objects Detector

While building an UOM, it is important to understand

which parts of the system are used and which ones are

not. We define a used object as an object that receives a

message or that is directly used by the virtual machine

during a specific period of time.

The main challenge here is how to store the usage

status of each object. The most naive idea, adding an

instance variable to Object and storing there a boolean

leads to multiple problems: as it changes the mem-

ory layout of all objects (even those whose layout is

known by the virtual machine (i.e., classes), it is actu-

ally not possible in most languages without many VM

level changes. In addition, the requirement of an ex-

tra reference for each object leads to a huge increase in

memory.

The usage mark may be used later on in different

ways and a boolean might not be enough. For exam-

ple, if we want to compute the lowest usage frequency

object or the least recently used object which are dif-

ferent policies for selecting which objects to swap, we

need to store more information than a boolean, such as

counters or timestamps.

Besides providing a place to store the usage status, it

is necessary to modify the language or the VM so that

the flag is turned on whenever an object is used or re-

ceives a message.

The information obtained from tracing objects usage

is heuristic and it does not mean that a given component

is not used at all. It just means it was not used during

a period of time. A certain object that was considered

unused may be needed later on.

All objects must be unmarked regularly, otherwise

once one is marked as used, it is marked for ever. When

to mark or unmark objects or when to swap them, is a

decision of the UOM.

The UOM should have policies to mark and unmark

unused objects as well as to start a swapping process.

3.2. Proxy Objects

The UOM replaces the roots of the graphs being

swapped with proxies [GHVJ93]. As it is explained

later, the UOM may not only replace roots by proxies

but also other objects of the graph, e.g., shared objects.

Two constraints are attached to the proxy framework:

the first one is that, since the language can consider

some special entities as first-class objects, the mecha-

nism to track unused objects must be the same. For

example, Smalltalk considers packages, classes, meth-

ods, processors, etc., as first-class objects. Therefore,

we must swap a graph no matter what kind of objects

are inside, i.e., we need a reliable proxy implementation

that can proxify any kind of object.

The second constraint is that, if the UOM replaces

each object with a proxy, the amount of released mem-

ory varies significantly depending on the memory foot-

print of the proxies.

The UOM should use a proxy library able to handle

any kind of object. In addition the memory footprint of

proxies should be as low as possible.

3.3. Object Serializer

Serializer speed is an important aspect since it en-

ables extreme scenarios such as the one of an UOM:

saving objects to disk and loading them at the exact mo-

ment of their execution.

Two different functionalities of the serializer should

be measured independently: the serialization speed and

3



the materialization speed. In our case, the materializa-

tion speed is much more important than the serialization

speed. A graph is swapped out because it is not be-

ing used so it is not really important if the serialization

takes more time. To the contrary, when a swapped out

object is needed, it is very important to be able to load

it back as fast as possible because it is being needed at

that exact moment, i.e., there is application code that is

waiting.

The UOM should be fast at loading objects.

3.4. Object Swapper

The main responsibility of an object swapper is to ef-

ficiently swap graphs between primary and secondary

memory. It takes care of replacing objects with proxies

and serializing graphs to secondary memory. As we ex-

plain later in Section 6, detecting and correctly handling

the shared objects of a graph is a challenging task that

an object swapper should address.

The object swapper should be efficient when swap-

ping graphs

4. Basic Swapping Issues

4.1. Swapping unit

The first question that appears while implementing

an UOM is whether it should swap individual objects

or groups. In Figure 1, object A is referencing E and E

is only referenced from A. If A is unused and we want

to swap it, we replace it with a proxy. But the proxy

does not reference E. Hence, when the garbage collec-

tor runs, E is garbage collected which means that, if we

only serialized object A and not E, then we lost the ob-

ject E.

That could be solved by always keeping the outbound

references of the graph in an array. However, such im-

plementation occupies more memory and its memory

footprint will be similar to the original object saving

nothing or very little memory.

Conclusion: we do not want to just swap objects in-

dividually and create a proxy per object because, doing

so, we release nothing or very little memory.

In a basic implementation, proxies are regular ob-

jects. The only difference regarding memory footprint

between the original object and its proxy, is the amount

of instance variables they have. For large objects (ob-

jects with several instance variables or e.g.,Collection in-

stances), there can be a significant difference. But, for

smaller objects, which have zero or a few instance vari-

ables, it would be almost the same (take into account

that the proxy object may have instance variables e.g.,

to know where the swapped object was stored).

Conclusion: to be efficient, we need to group objects

and be able to replace several objects with one or a few

proxies.

A naive thought is why not to group objects in pages,

i.e., groups of a fixed number of unrelated objects. Ob-

jects that are not being used can be grouped in pages

and then swapped out all together. The problem with

this approach is that we still need a proxy for each ob-

ject of each page.

Because of all the mentioned reasons, in our experi-

ments, we swap object graphs. Why considering graphs

as the swapping unit is a good idea? First, because we

avoid the problem of objects being lost by the GC. Sec-

ond, because we can just replace the root (or roots) of

the subgraph with proxies. This way we need only one

or a few proxy instances. Depending on the solution, we

may need more proxies than those for the roots. When

we swap an object graph, we need to consider all the

objects from outside the graph that are referencing ob-

jects inside. The most clear example are the roots of the

graph. Nevertheless, it may be necessary to also create

proxies for the facade objects.

4.2. Not Everything Can Be Swapped

Instances of Array can be swapped without prob-

lems. However, one cannot swap the particular instance

specialObjectsArray because it is used by the virtual ma-

chine. The same happens with objects such as nil, true,

false, etc. This means that there are specific objects that

cannot be swapped.

Another example are classes. In Smalltalk, a class

is an instance of its metaclass. Classes are swap-

pable. In fact, a good UOM should be able to

swap out unused classes as well. However, at the

same time, there are certain classes that cannot be

swapped because they are needed by the minimal pos-

sible code execution. Examples are: ProtoObject,

Object, Array, Symbol, BlockClosure, CompiledMethod,

MethodDictionary, SmallInteger, etc.

We need a way to tag system classes and objects.

Finally, the UOM should not swap out objects that it

needs to swap in. This seems logical but the solution

still needs to take this into account. The idea is that the

system automatically swaps out subgraphs of unused

objects. It might happen that methods or classes used

by the code to swap in, were swapped out. When such

method or class is used by the swap in code, the system

will detect that those objects are on disk and need to be

swapped in. Therefore, there will be an endless loop

which can end up in a system crash.

4



The answer sounds easy: do not swap what we need

to swap in. Nonetheless, it is difficult to know which

objects are going to be needed. For example, we can

ensure that our own classes and methods (those which

implement the swap logic) are not swapped. Even more,

we can enforce not to swap the serializer’s classes either.

Still, the object serializer uses other objects, classes, and

methods which may have been swapped out. What is

important is that, for each possible runtime execution

path, different objects can be used. In conclusion, it is a

challenge to detect in advance all those objects that the

swap in code use.

The idea is to detect as much needed code to swap

in as possible, and never swap it. If the whole UOM

is covered by an exhaustive Unit Tests suite, then when

the system starts, it can run all the tests and detect all

the used objects to do so. All those objects are then

marked as “excluded” which means that they will not

be swapped out.

Notice that the results of this approach are not always

correct. For example, it may happen that we are not

testing a particular scenario so some objets needed to

swap in were not used and, consequently, swapped out.

That leads to the mentioned problem of an endless loop

which can end up in a system crash.

5. Proxies and Memory

5.1. Common Problems with Proxies

The following is a list of problems that we often find

while using proxies, and an UOM is not an exception.

Methods Not Intercepted. Proxies can be used in dif-

ferent scenarios. In an UOM, proxies must intercept

any message send and then load the swapped out graph

back in primary memory.

Another common problem when dealing with prox-

ies is the existing optimizations for certain methods. In

Pharo, as well as in other languages, there are two kinds

of optimizations that affect proxies. The first ones are

those optimizations done by the compiler. For example,

messages like ifTrue:, ifNil:, and:, to:do:, etc. are detected

by the compiler and are not compiled as a regular mes-

sage send. Instead, those methods are directly replaced

by jump bytecodes (this is known as “inlining”) which

means that those methods are never executed. If they

are not executed, they cannot be intercepted by proxies.

We would like to handle those messages the same

way than regular ones. The easiest yet naive way of

dealing with it is to modify the compiler so that it does

not inline those methods. However, disabling all opti-

mizations brings two important problems. The first one

is that the system gets significantly slower. The sec-

ond one is that if those optimizations are disabled, those

methods are executed and there can be unexpected and

random problems which are extremely difficult to find.

For instance, in Smalltalk, everything related to manag-

ing processes, threads, semaphore, etc., is implemented

in Smalltalk itself. The processes’ scheduler can only

switch processes between message sends. This means

that there are some parts in the classes like Process,

ProcessorScheduler, Semaphore, etc., that have to be

atomic, i.e., they cannot be interrupted and switched to

another process. In Pharo, there is no way to easily and

explicitly define that. As a consequence, sometimes

sending e.g., messages like whileTrue:, ifFalse:, etc, is

used as a way to avoid generating a suspension point

for the scheduler. If we disable the optimizations, such

code is not atomic anymore.

The second type of optimization is between the com-

piler and the virtual machine. There is a special list of

selectors that the compiler does not compile like a reg-

ular message send. Instead, each of those selectors is

associated with a special bytecode that the VM can then

directly interpret. Again, it means that those methods

are not executed. From an UOM point of view, the two

most important optimizations are the method == which

answers whether two variables refer to the same object

and the message class which answers the class of an

object.

Not being able to intercept messages is a problem be-

cause those messages will be directly executed by the

proxy instead of being intercepted. This leads to differ-

ent execution paths in the code. For example, given the

following code:

(anObject class = User)

ifTrue: [ self doSomething]

ifFalse: [self doSomethingDifferent]

If anObject is an instance of User and it is swapped

out, the reference anObject points to a proxy. That

means that if class is not intercepted, it will execute

self doSomethingDiffrent instead of loading back the

original graph and executing self doSomething.

With == it is a different scenario. Given the following

code:

(anObject == anotherObject)

ifTrue: [ self doSomething]

ifFalse: [self doSomethingDifferent]

If anObject is swapped out, the reference anObject

points to a proxy. Even if the proxy cannot intercept

such message, this is not a problem in an UOM. The

5



UOM replaces a target object with a proxy, i.e., all ob-

jects in the system which were referring the target, will

refer to the proxy. Since all references has been up-

dated, == continues to answer correctly. For instance, if

anotherObject was the same object as anObject, == an-

swers true since both are referencing the proxy now. If

they were not the same object, == answers false. Hence,

identity is not a problem for an UOM.

We did a benchmark to estimate the impact of remov-

ing the special bytecode for class. We run all the tests

(8003 unit tests) present in a PharoCore 1.3 - 13204 im-

age, twice: first with the class optimization and then

without it. The overhead of removing that optimization

was only about 4%, which means that it is only slightly

perceptible in general system interactions.

5.2. Mapping objects from primary memory to sec-

ondary memory

This problem is also known as pointer swizzling, and

it is the conversion of references based on name or posi-

tion (indexes) to direct pointer references. It is typically

performed during the deserialization (loading) of a relo-

catable object from disk. The reverse operation, replac-

ing pointers with position-independent symbols or po-

sitions, is sometimes referred to as unswizzling and is

performed during serialization (saving). This technique

is frequently used in object-oriented databases.

In primary memory, there are objects (proxies) that

refer to other objects in secondary memory and vice-

versa. In primary memory, the memory address is used

but, in secondary memory (e.g., hard disk), it is differ-

ent. Often, for secondary memory, relative offsets or

IDs can be used as addresses.

The UOM can store objects using different back-

ends. For example, it can use the local filesystem or

a database.

Filesystem and granularity problem. When an object is

written to disk, there can be several options regarding

where and how to write such object. For example, we

can use the same file for all graphs, a file per graph or a

file per group of graphs, etc. If we use the same file for

all objects, then proxies should use an offset inside such

file and we have to manage free spaces, compaction, etc.

This means we need to implement something similar to

a filesystem.

A simpler possibility is to write each graph in a sepa-

rate file and store such filename as an instance variable

in the proxy.

Databases as backends. Another approach is to use a

relational or object database as a backend for storing

graphs. The problem with this approach is that the

database adds functionalities that we do not particularly

need and that have performance impact, for example,

transactions support, security and validations, etc. In

addition, we need to maintain in primary memory all

the objects related to the database driver.

Some recent NoSQL databases may not provide those

functionalities avoiding that extra overhead. Databases

can be used in two scenarios: when there is more than

one client accessing the database and when there is only

one.

When there is more than one client, there are some

of these NoSQL database e.g., CouchDB or Riak that

expose their interface (API) through the network. That

means that we only need a HTTP client library. This

approach is useful when we desire a distributed UOM

where graphs are not swapped to the same host where

the system is running but instead to a particular server

which stores graphs from different systems. Notice that

sending the graph by HTTP may not be as fast as di-

rectly storing it in a local file.

If there is only one client, we can use NoSQL

databases which are more accurate for single machine,

e.g., Tokyo Tyrant. In this case, the database provides a

client library which can be written in C and easily called

from any other language.

The way to store data in these databases is usually

following the convention of key/value, i.e., at a certain

key we put certain value. A possible solution would

be to create IDs for each graph (key) and serialize the

graph into an array of bytes (value). This way it is easy

to use the client library to store a BLOB 3 representing

our object graph. The proxy can then store such ID to

search and load back the graph.

One drawback when using a database as backend

is that the solution depends on an external technol-

ogy. Therefore, the database driver is also part of what

should not be swapped out.

5.3. Making Proxies Use As Little Memory As Possible

In Smalltalk, everything is an object. An object in

the virtual machine is represented by an object header

plus slots that can contain pointers to other objects or

directly store bytes. Since proxy objects also require

memory, they must be as small as possible.

3BLOB stands for “binary large object”, a database type for storing

a collection of binary data

6



To make proxies have the minimum memory foot-

print possible without modifying the virtual machine,

in Pharo it is possible to do the following:

• Proxy class can be a “Compact Class”. This means

that, in a 32 bits system, their instances’ object

headers are only 4 bytes long instead of 8 bytes for

instances of regular classes. For instances whose

“body” part is more than 255 bytes and whose class

is compact, their header will be 8 bytes instead of

12. The first word in the header of regular objects

contains flags for the garbage collector, the header

type, format, hash, etc. The second word is used to

store a reference to the class. In compact classes,

the reference to the class is encoded in 5 bits in the

first word of the header. These 5 bits represent the

index of a class in a compact classes array. This

array is set from the image4 and it is accessed by

VM. With these 5 bits, there are 32 possible com-

pact classes. Thus, declaring the proxy classes as

compact, enables proxies to have a smaller header

and a smaller memory footprint.

• Proxies should only keep the minimal state they

need. In the case of an UOM, each proxy has to

store the necessary information to load back the

swapped out subgraph. One alternative is to simply

store a string with a file name. But when using a

filename, we have to pay the cost of the string and

its object header. If we use a number, it can be an

instance of SmallInteger which is an immediate ob-

ject in Smalltalk. Immediate objects are those that

are directly encoded in the memory address and do

not require an object header nor slots so they con-

sume less memory.

The mentioned approach is with the assumption

that we are able to get the exact place on disk from

the number value. A simple option is to serialize

each graph into a new file. Such file has a specific

number (ID) as file name which is directly stored

in the proxy.

Even if the previous ideas help from the memory

footprint point of view, there is still room for improve-

ment and we have the possibility of using immediate

objects for proxies. For example, GemStone [BOS91]

database uses this strategy. In a 32 bits VM, it is com-

plicated because it needs bits to tag the immediate ob-

jects but, at the same time, it needs a large range for

4See methods SmalltalkImage»compactClassesArray and

SmalltalkImage»recreateSpecialObjectsArray

addresses. GemStone, which is a 64 bits VM, uses 61

bits for addresses and 3 for immediate objects where it

can encode true, false, nil, characters, small floats, small

ints, etc.

One problem that appears when defining proxies as

immediate objects is where to store the reference to the

target object, the address on disk, the filename or what-

ever is needed. The ideal case is to be able to store such

information in the bits that are designated for the object

pointer. Otherwise, we end up needing again another

object for such state. Normally, as in the case of an

UOM, the memory address of a target object, an identi-

fier or an offset in a file fits in the object pointer space.

The advantage with this approach is that we do not

need extra memory (for object headers) for the proxy

instances since we can directly tag the references. For

example, in 61 bits, we have enough space to encode

the address of the original object in disk. In addition,

we do not have extra cost on having to fetch the proxy

because we have everything we need in the reference,

which means better performance. Still, notice that tag-

ging memory addresses instead of creating proxies and

replacing objects, can significantly change the mecha-

nism of a particular solution.

5.4. Special Proxies

Certain classes have instances that cannot be easily

replaced by a regular proxy. For example, in Pharo

all immediate objects (those who are directly encoded

in the memory address) like SmallInteger cannot be re-

placed by a proxy using the primitive become:. This

is because with the method become: all references

from the system to a particular instance of SmallInteger

must be updated to refer to a proxy instance. Since

SmallInteger are directly encoded in the memory ad-

dress, this task is more complicated. Each memory

address must be accessed, check that its contents is a

SmallInteger instead of a regular reference, and finally

it needs to check if the content is the same or not to the

value we are searching for.

That being said, notice that it does not make sense to

create proxies for SmallInteger instances because they

occupy less memory than what proxies do.

Some object-oriented programming languages like

Smalltalk, represent classes and methods as first-

class objects, i.e., they are not more than just in-

stances from other classes known as the Metaclass and

CompiledMethod respectively.

Imagine that one of the roots is a class or a method,

it will then be replaced by a proxy. If we then send a

message to an instance of such class (which is now the

7



proxy instance), the virtual machine crashes while try-

ing to perform the method lookup. This is because the

VM imposes specific constraints on the memory layout

of objects representing classes and methods. Hence, if

we replace them with objects that do not respect that

shape, the VM crashes or throws an error.

A good proxy toolbox must solve this problem, for

example, by creating special proxies for classes and

methods that respect the shape needed by the VM.

6. Shared Objects Inside Graphs

Detecting and correctly handling shared objects of

a graph is a challenging task that an object swapper

should address. Take the graph example of Figure 3.

If we swap such graph, object Y needs to be considered

because G will be swapped. Whether shared objects

should be swapped or not, depends on the implementa-

tion. In any case, it is necessary to handle that situa-

tion and to know which objects inside the subgraph to

swap are shared. This is important because it is really

common to have one or more shared objects inside sub-

graphs.

A B C 

D E F G H

Y

K

X

I LJ

Subgraph to swap

Z
external

boundary

external

internal

external

boundary

shared

shared

Zexternal rootKshared FfacadeIinner

Figure 3: A graph to be swapped with shared objects.

6.1. Detecting Shared Objects

As recently explained, for every object in a graph, we

need to know if it is shared or not. The problem is that

there is no easy or incremental way of detecting shared

objects because objects do not have back-pointers to the

objects that refer to them.

We have analyzed several ways to make shared ob-

jects’ detection fast. One of the key goals is to avoid a

whole memory traversal. We think it is worth to list all

the different possible alternatives because one of them

may be more adequate to implement in a specific lan-

guage.

Full Memory Scan. One way of solving the problem

of shared objects is to traverse (scan) the full object

memory, as ImageSegment does [MPBD+10]. By us-

ing garbage collection infrastructure, it identifies which

objets of the graph are inner objects and which ones are

shared objects. The steps followed by ImageSegment

are:

1. All root objects are marked.

2. A mark pass is done over all the objects in the pri-

mary memory by recursively marking those reach-

able from the roots of the system. This process will

stop at our marked roots leaving inner objects un-

marked.

3. Root objects are unmarked while inner objects are

left without being marked.

The problem is the overhead and time spent to do the

full traversal of the whole memory. This is what we

want to avoid.

Using a Reference Counting Garbage Collector. The

Pharo VM is a generation scavenging mixed with a

mark and sweep algorithm. The idea is to modify the

current GC and merge it with a reference counting GC.

In a typical reference counting GC, there is a counter

stored in the object header which represents the amount

of incoming pointers to each object. The GC takes cares

of updating this counter to reflect new objects that have

been created, removed, assigned, etc.

Taking this into account, we can traverse only the ob-

ject subgraph and count the references to each object

during that traversal. Another counter is used to store

that information. Once we finish, we can determinate

how many incoming references each object has from in-

side the subgraph.

Finally, we can compare each result with the refer-

ence counter of the GC. If it is the same, then the object

is inner object because all its incoming references are

from inside the subgraph. If it is less, then it is a shared

object.

The advantage of this mechanism is that we only need

to traverse the object subgraph. The drawbacks are that

we need to modify the GC (which means significantly

8



changing the virtual machine), pay the overhead of up-

dating the reference counters and pay the cost of the

memory in the object header to store such counters.

Adding Back-Pointers to the Virtual Machine. Modify

the virtual machine and add “back pointers”. Each ob-

ject contains not only the references to other objects, but

also references to the objects that point to it, i.e., incom-

ing references. If there are back pointers, it is easy to

know whether an object is shared or not.

The problems are the amount of memory needed to

allocate those pointers for every object and the overhead

in the VM to create, update and release such references.

First Class References. Most virtual machines have an

important part whose responsibility is managing the

memory, allocating objects, releasing, etc. In Pharo

VM, such part is called Object Memory. In addition,

the Object Memory defines the internal representation

of objects, its references, its location, its object header,

etc.

Regarding the references implementation, there are

two possibilities which are the most common: object

tables and direct pointers. With the first, there is a large

table with two entries. When an object A points to B,

it means that A points to an index in the table where

the memory address of B is located. With direct point-

ers, when A points to B, it means that A has directly the

memory address of B.

There are pros and cons for each strategy but such

discussion is out of range for this paper. We will just

mention some of them which are important for our do-

main. With an object table representation, moving an

object or swapping it by another one is really fast since

it is just updating one reference. With direct references,

swapping an object is slow because it needs to scan all

the memory do detect all the objects that are pointing to

a particular one. On the other hand, with Object Tables,

we have to pay the cost of accessing an extra indirection

and this impacts on the overall performance of the sys-

tem. With direct pointers, we do not have that problem.

Finally, Object Table uses more memory since the table

itself needs memory.

The idea is to implement first class references

[ADD+10, LGN08]. This is something similar to Object

Table but it is spread all over the memory and uses ob-

jects instead of just addresses. The idea is that an object

does not refer directly to another object, but to an inter-

mediate one that points to the target one. If there are

different objects pointing to the same object, they will

be all pointing to the same intermediate object which

points to the target object.

Having first class references enables us to implement

the following: traverse only the subgraph marking with

a special flag the intermediate objects. We mark all

intermediate objects of the subgraph without checking

whether they are shared or inner. Once we write the

subgraph into a file and we replace the roots with prox-

ies, all the intermediate objects that were pointing to

an inner object are not referenced any more and, con-

sequently, they are removed by the garbage collector.

Only those intermediate objects that were referencing to

shared objects remain alive. If the tag used was “the ob-

ject is on disk”, we can use those intermediate objects as

proxies. Ideally, we could store the filename or address

in secondary memory in those intermediate objects.

The advantage of this approach is that we do not need

to scan the whole memory. The disadvantages are the

significant changes it requires in the virtual machine

and the amount of memory used as there will be one

more object (the intermediate one) for every single ob-

ject. In addition, there could be a significant overhead

in the garbage collector.

Serialized Objects in a Weak Collection. While swap-

ping a graph, we write all objects (shared and inner) into

the file. We do not spend time checking whether each

object is shared or not. Then, as always, we replace

roots with proxies. When a GC runs, all inner objects

are removed and shared objects remain there because

they are still being referenced by external boundary ob-

jects. At loading time, i.e., when we want to swap in the

graph, if we directly load the whole file, there will be

duplicates for shared objects. This a problem because

certain objects cannot have duplicates (imagine objects

like “true”, “false”, “nil”, etc) and, furthermore, because

the references to those objects need to be updated to ref-

erence the original ones. Otherwise, the materialized

graph will not be the same as the original one.

For example, suppose that the object G of our exam-

ple is the true object, unique instance of True class. We

choose the true object because we are sure it is a shared

object but the same happens with any shared object.

The whole subgraph is written into a file but, at load-

ing time, the object Y and C cannot refer to a duplicate

instance of True. Instead, they must refer to the unique

instance, true.

To solve this problem, at serialization time, we auto-

matically create a WeakOrderedCollection that contains

references to each object of the serialized graph. Weak

collections are those which only hold weakly to its ele-

ments. This means that, whenever an object is only ref-

erenced by instances of a weak class, it will be garbage

collected.

9



This WeakOrderedCollection is directly stored in

the proxy object. After replacing the roots by prox-

ies, nobody else refers to the inner objects of the

graph meaning they are garbage collected. When

inner objects are garbage collected, there will be a

nil in the WeakOrderedCollection for each of them.

The references to shared objects remain in the

WeakOrderedCollection since they were not garbage

collected. Actually, in the future, external boundary ob-

jects can be removed or can stop referencing the ob-

jects inside the graph and, hence, shared objects can be

garbage collected as well and a nil will be placed in the

WeakOrderedCollection.

Finally, at loading time, for each object to material-

ize, we check the WeakOrderedCollection to see if it is

a nil or not. If it is not a nil, it means it was a shared

object which was not garbage collected so we take that

object instead of the one that we have materialized from

file. If it was not nil, it means it was an inner object or

a shared object that was garbage collected. In this case,

there is nothing special to do and we just take the object

we have materialized from file.

There is still a problem with this alternative and

it is related to graph intersection. Imagine we first

swap the graph of the example. There will be an

WeakOrderedCollection referencing the shared object

G. If we then serialize the graph considering object Y as

the root, there will be another WeakOrderedCollection

referencing the shared object G. Since now there are

only weak references to G, it is garbage collected. Since

during materialization, each serialized graph checks its

own WeakOrderedCollection, both graphs will materi-

alize the object G generating two copies. A possible

solution to this problem can be a kind of shared array

between all graphs.

The advantages of this option are that we do not need

to traverse the whole memory and that we can spend the

extra time at loading time instead of at writing. This is

fruitful because several swapped out graphs will never

be swapped in. The disadvantage is that we need to store

a collection with the same size of the object graph.

6.2. Handling shared objects

There are two approaches to deal with shared objects:

1) swap them and also create proxies for them; 2) detect

them but do not swap them.

Detecting and swapping shared objects. The first ap-

proach is the one that makes more sense from an unused

object manager. If there is a graph of unused objects,

we want to swap it out no matter whether its internal

objects are inner or shared. With this approach, i.e., to

detect and swap them, we need to create a proxy per

shared object since the object could be accessed from

the outside of the swapped out graph. This makes the

algorithm more complex since the original graph is split

and, during serialization, we need to serialize each sub-

graph separated. Another possibility is to serialize the

whole graph into the same file and then all proxies of the

graph, whether they are proxies for roots or for shared

objects, has a reference to such file.

Following the example of the objects Y and G, with

this approach, we create a proxy for G and we replace

it. Hence, object Y will reference the proxy. After the

graph is swapped out, if object Y sends a message to

the proxy, the proxy must search the file on disc and

materialize the graph. Once materialized, it is necessary

to replace the proxies back with the just materialized

objects. Replacing the root is easy because, once we

materialize the graph, we know which is the root. The

problem appears with shared objects. For example, how

does the proxy of G knows that he must be replaced by

object G? This means that proxies for facade objects

must also store an offset in the stream or something that

allows them to identify the object they need to replace

when they are materialized.

Detecting but not swapping shared objects. This strat-

egy is to detect which are the shared objects and do not

swap them. It looks easier but there are problems as

well. Continuing with our example, suppose that ob-

ject G is not swapped. In an object graph, all the ref-

erences between objects inside the graph are based on

memory addresses. When we serialize an object graph

into a stream, those references are transformed to in-

dexes inside the stream. During materialization, once

the objects have been recreated, the references are up-

dated to get the memory address based references back.

A problem arises when there are objects inside the

graph which refer to objects outside the graph which

are not serialized. In our example, how can we serialize

object C if G is not serialized? The first attempt is to

use the real memory address instead of using internal

indexes. Unfortunately, this does not work because the

garbage collector moves objects around. If it moves G,

at the loading time, C we will be pointing to an incorrect

place.

One alternative is having an unique ID for every ob-

ject which is what most object databases do. The prob-

lem is where to put such amount of bytes. It might be

too large to fit inside the object header. In addition,

fetching another object for the ID, may be very expen-

sive.

Another option is to have an internal table or array for

10



shared objects: when we swap out an object graph, we

create an array that will remain in primary memory (it

is not swapped). That array has references to the shared

objects. If shared objects are moved by the GC, then

the GC automatically updates such references in the ar-

ray. When the inner objects are being written into the

file, the references to shared objects are replaced by an

offset in the array (which is never changed). In our ex-

ample, suppose the object G was written in the array

at position 4. Then, when object C is serialized in the

instance variable that refers to G, we store the position

number 4.

This way, the GC can freely move objects but, when

the graph is loaded, the references from objects to

shared objects are updated and fixed. This means, it

takes its address (offset in the array) and retrieves the

current address of the object.

This solution is the one implemented by ImageSeg-

ment.

7. Even More Problems

7.1. Swapping out unused objects or swapping in used

objects

Even though both phrases sound similar, both are two

completely different approaches. The first idea, is to

have the whole Smalltalk image in memory and swap

out to disk the unused objects. Objects live in primary

memory and they are just temporally swapped out while

they are not being used. In the second idea, objects live

permanently in secondary memory and are temporally

loaded into primary memory, kept there while needed

and then deleted. The RAM is treated as a cache. This

second approach is the one behind most object database

e.g., Gemstone.

7.2. Selecting graphs to swap out

There are two possibilities to select which graphs to

swap out:

User-defined subgraphs. The user, as client of the sys-

tem, knows and defines which object subgraphs he

wants to swap out. The system receives a particular

user-defined subgraph and swaps it out to disk. It is not

up to the system to decide which subgraphs are needed

to swap out. This approach is the one behind Squeak

Etoys Projects and ImageSegment.

Automatic system-defined subgraphs. The system,

without a user decision, automatically detects sub-

graphs which are good candidates to be swapped out. A

good candidate is one that has not been used for a while

and which is composed by as much unused objects as

possible.

In our case, we focus in automatic system-defined

subgraphs of unused objects. But how we detect one

graph in particular if everything can be a subgraph in

the object memory? For each object, we can find a sub-

graph considering it as the root of the subgraph. This

means that any object can be a subgraph. Therefore,

the question is which graphs are worth to swap out. We

need to limit and define constraints to be able to select

special subgraphs.

One approach would be to have a process that at cer-

tain period randomly chooses objects that are candidates

for roots. If a candidate is an unused object, it iterates

over all its references to other objects checking whether

such objects are unused too. The idea is to define a sub-

graph of unused objects taking the randomly selected

object as root.

Once we have selected possible object graphs, we

need to analyze them and check whether they are worth

swapping or not. There must be policies that define that.

The following is a list of a possible criteria:

Percentage of unused objects. Probably this is the eas-

iest way to implement the algorithm. Yet, it may

not be the optimal. For example, if there is an ob-

ject graph of 1000 objects and 95% of the objects

are unused, it is worth swapping it. In the contrary,

if only 20% are unused, it does not make sense.

Percentage of shared objects. Similar to the case of un-

used objects, determining the percentage of shared

objects is important as well. If the solution does re-

place shared objects with proxies, it is necessary to

know the amount of shared objects because proxies

also occupy memory space. If the solution does not

swap shared objects, we need to know how many

there are because, the more there are, the less mem-

ory that can be released.

Graph size. If the size of the graph is too small, not

only we will release very little memory, but we will

also add an unnecessary overhead in the system. If

the graph is too big, the chances that an object in-

side it will be needed are bigger and we need to

remember that, when loading back the graph, we

load it back completely even if one single object

was needed. If there is a solution that provides par-

tial loading then this may not be a problem.

11



7.3. Graphs Intersections

One very common situation is graphs’ interceptions.

Imagine there is an object graph which was selected to

be swapped out. If proxies are objects too, then there

can be proxies inside the graph and such objects can

be marked as unused. Thus, those proxy objects are

swapped out together with the rest.

One problem in this scenario is that, while serializing

an object, the serializer sends messages to the object

to serialize e.g.,basicAt:. If that object is a proxy, such

messages are intercepted and, consequently, the original

graph is loaded back. This is not the expected behavior.

One option is to adapt the serializer so that, in the case

of proxies, it sends special messages that can be spe-

cially treated by the handler of the proxy. This way, the

proxy can be serialized and materialized like any other

object.

Notice that a proxy inside a graph can even be a

facade object, in which case, the object swapper re-

places it with a proxy. That means that we are creating

a proxy for a proxy. Nevertheless, this is correct since

both proxies handle different graphs.

7.4. Partial Loading

There are two scenarios where partial loading can

worth it. The first one is when dealing with shared ob-

jects. Following our example of the objects Y and G,

when swapping the graph of such example, object G is

replaced by a proxy. If then object Y sends any mes-

sage to the proxy, the whole graph is loaded back into

memory. A smarter mechanism would be to only load

back the graph considering G as the root. This is diffi-

cult to achieve because, during serialization, the whole

graph was written. Therefore, we need support from the

serializer to only materialize part of the graph.

The second scenario is in presence of large object

graphs. Imagine a serialized graph that has 1000 ob-

jets. Even when one single object is needed, the whole

graph is loaded back. For small and medium graphs it

can be good enough but not for large graphs. Ideally,

the serializer can serialize a graph but structure the data

in packages or pages. Each page has a number of ob-

jects. Then, at materialization time, we could ask the

serializer to materialize the graph but only up to certain

number of pages.

7.5. Replacing Objects By Proxies Without a Full Mem-

ory Scan

So far, we have discussed different approaches to

avoid a full memory scan while detecting shared ob-

jects. We never mentioned how we can replace objects

with proxies. The common way to do this in Smalltalk is

by using the become: message. The problem is that this

is slow because it does a full memory scan to update all

references from the system. Hence, even when avoiding

a full memory scan for detecting shared objects, we will

pay that cost for replacing objects by proxies.

There are other possibilities:

Object table. Use an Object Table memory represen-

tation in the VM. The become: method can be ex-

tremely fast since it just needs to swap two refer-

ences.

First class references. If we implement first class ref-

erences instead of direct pointers in the VM, then

with both the previous scheme and this one, the be-

come is fast since it requires just updating two ref-

erences. These alternatives have the drawback that

we need a lot of extra memory to keep the indi-

rection (the object table or the intermediate objects

of the firs class references). In addition, the over-

all performance will decrease since for each object

access there is one indirection more to fetch.

Use the same traversal for several objects. The over-

head of the method become: is the full memory

scan. Nonetheless, the same method can do a bulk

become, i.e., we can become a list of objects to a

list of proxies. The overhead of the bulk become

is almost the same as the one of just becoming one

single object.

In the previously mentioned random algorithm, we

randomly choose “N” amount of objects that will

be treated as roots. Each subgraph is analyzed to

determine if it is worth swapping or not. The idea

is that with the same memory traversal we can be-

come by proxies all those roots that we want to

swap. This way, we pay the cost of the memory

traversal but, at least, we replace several objects.

8. Laying the First Stones of Marea: an Unused Ob-

ject Manager for Pharo

We have already started to experiment building

Marea, an unused object manager for Pharo. Marea al-

ready provides the basic functionality of an UOM but

there are still several problems that need to be solved.

Marea’s swapping units are object graphs. This allows

us to swap out several objects using only one or a few

proxies.

12



8.1. Marea Subsystems

We have developed our custom Unused Objects De-

tector by modifying the Pharo VM so that we can use an

empty bit of the object header to mark objects as used.

By doing this, we do not use extra memory and it works

efficiently. We have also modified the code of the VM

that implements the message send so that it now turns

on the bit when an object receives a message or when it

is directly used by the VM. In addition, we have imple-

mented all the necessary primitives from the language

side to get the value of the bit, to mark and unmark all

objects, etc.

An object is used when it receives a message or when

it is directly used by the VM. To intercept these actions

and mark the objects, we had to modify the VM. Several

parts have been modified:

• The place where the normal method send is done,

i.e., the method lookup code.

• All the bytecoded primitives that do not go through

the normal method send.

• All the places where the VM directly access to cer-

tain objects. For example, for a method lookup,

the VM uses the receiver and, for each class in the

hierarchy chain, it uses the class and the method

dictionary until it finds a corresponding method or

not.

Marea needs a reliable proxy implementation and this

is the reason why we have developed Ghost [PBD+11],

a uniform, light-weight and stratified proxy implemen-

tation. Ghost solves the two most important constraints

of Marea: 1) it provides low memory footprint proxies;

2) it is able to proxify almost all kind of objects without

problems.

Even if Ghost provides special proxies for classes and

methods that respect the shape needed by the VM, there

are some special classes which Ghost cannot swap right

now because it has not yet developed special proxies for

them. One example are the instances of Process that

is another class to which the VM imposes certain shape.

This means that instances of Process cannot be replaced

by proxies and, consequently, we cannot swap graphs

whose root are instances of Process.

That being said, notice that swapping out classes and

methods is something desired and likely to happen. In

the contrary, swapping out Process instances is not that

common.

Ghost makes a clear difference between interceptors

and handlers. Proxies only play the role of intercep-

tors and all they do is to forward intercepted messages

to handlers. Each proxy must have an associated han-

dler. Different proxies can use different handlers and

vice versa. Handlers’ responsibility is to deal with the

method interceptions that the proxies trap.

That being said, it looks like we need two objects:

one for the proxy and one for the handler. Normally,

a proxy instance has a reference to a handler instance.

Nonetheless, this is only necessary when the user needs

one handler instance per target object which is not often

the case. In Marea, the handler is stateless and can be

shared among the different proxy instances. It can be

referenced through a class variable, a global variable, a

Singleton, etc. Therefore, apart from the low memory

footprint provided out of the box from Ghost, we can

even avoid the memory cost of a handler instance and a

reference per proxy.

For serialization, Marea uses Fuel [DPDA11], a gen-

eral purpose framework to serialize and deserialize ob-

ject graphs using a pickle format which clusters similar

objects. Fuel is highly customizable to cope with differ-

ent objects, it does not need specific VM support, it has

a clean object-oriented design and provides most of the

required features for a serializer.

8.2. Marea in a Nutshell

Right now, the input is the desired graph to swap out.

Marea performs the following steps:

1. Serialize the object graph.

2. Create a proxy instance and set the filename in its

state.

3. Replace the root of the graph with the created

proxy. Once this is done, there are no other ref-

erences to the original root object. For that reason,

the next time the Garbage Collector runs, all inner

objects of the graph are removed saving memory.

4. Now, whenever the proxy receives a message, the

file is searched on disc and the graph is material-

ized in memory.

5. Finally, the proxy is replaced by the materialized

root.

This procedure is the simplest possible, i.e., without

taking into account e.g., the problem with shared objects

as discussed in Section 6.

13



9. Related Work And Future Work

In the eighties, LOOM [Kae86] (Large Object-

Oriented Memory) implemented a kind of virtual mem-

ory for Smalltalk-80. It defined a swapping mechanism

between primary and secondary memory. The solution

was good but too complex due to the existing restric-

tions (mostly hardware) at the time. Most of the prob-

lems faced do not exist anymore with today’s technolo-

gies — mainly because of newer and better garbage

collector techniques — . For example, LOOM had to

do complex management for special objects that were

created too frequently like MethodContext but, with a

generation scavenging [Ung84], this problem is solved

by the Garbage Collector. Another example is that

LOOM was implemented in a context where the sec-

ondary memory was much slower than primary mem-

ory. This made the overall implementation much more

complex. Nowadays, secondary memory is getting

faster and faster with random access showing more and

more the same properties as RAM memory5. Finally,

LOOM implies big changes in the virtual machine.

It is possible that a program will leak memory if it

maintains references to objects that will never be used

again. Leaked objects decrease program locality and in-

crease garbage collection frequency and workload. A

growing leak will eventually exhaust memory and crash

the program. Melt [BM08] implements a tolerance ap-

proach that safely eliminates performance degradations

and crashes due to leaks of dead but reachable ob-

jects, giving sufficient disk space to hold leaking ob-

jects. Melt identifies “stale objects” that the program is

not using and swaps them out to disk. If they are then

needed, they are brought back into primary memory. Its

approach is quite similar to LOOM.

ImageSegment [MPBD+10] is an object swapping

and serializer for Squeak Smalltalk. ImageSegment

seems to be fast in certain scenarios. However, it is

necessary to explain how ImageSegment works. Basi-

cally, ImageSegment receives a user defined graph and

it needs to distinguish between shared objects and inner

objects. To do that, it has to do a full memory traversal

using the garbage collector infrastructure.

All inner objects are put into a byte array which is

finally written into the stream using a primitive imple-

mented in the virtual machine. Shared objects are not

swapped. Moreover, there is an array which remains in

primary memory that refers to them. ImageSegment is

5“Solid-state drives” (SDD) or flash disks have no mechanical de-

lays, no seeking and they have low access time and latency.

fast mostly because it is implemented in the virtual ma-

chine. The real problem is that it is difficult to control

which objects in the system are referencing to objects

inside the subgraph. For that reason, most of the times

there are several shared objects in the graph. The re-

sult is that the more shared objects there are, the less

memory that can be released.

Finally, notice that ImageSegment does not select

which graphs to swap neither manages unused objects.

In the contrary, ImageSegment’s input is directly a user-

defined object graph.

GemStone [BOS91] is a Smalltalk object server and

database which manages primary and secondary mem-

ory as well. To provide its features, it implements ob-

ject graph exporting, swapping, serializing and most of

the concepts discussed in this paper. In addition, it has

an excellent performance and is highly scalable. The

main difference between GemStone and what has been

previously discussed is that GemStone is not a tool for

exporting or swapping an object graph, but a complete

Smalltalk dialect that supports transactions, persistency

and that also acts as an object server. It is more suit-

able for middle or big systems. ImageSegment or Ref-

erenceStream, for example, are just small tools that only

allow performing specific tasks like exporting or swap-

ping a graph of objects.

Another important difference between GemStone and

the other solutions is that they use the opposite ap-

proach. In GemStone, objects live permanently in sec-

ondary memory and are temporally loaded into primary

memory and kept there while needed and then swapped

out when not needed anymore. With the others, objects

live in primary memory and they are just swapped out

when not needed and loaded back when needed.

10. Conclusion

In this paper, we looked into the problem of swapping

unused objects between primary and secondary mem-

ory in object-oriented systems. We have analyzed not

only most of the problems and challenges for building

an unused object manager, but also we have presented

our first steps in Marea project. What is important is

the fact that most of the problems and challenges are

completely general and independent of the technology.

We have demonstrated that to build a real unused ob-

ject manager, it is necessary to provide a proxy imple-

mentation that can proxy almost all kind of objects, a

fast object serializer and a way to efficiently identify

graphs of unused objects. We presented Marea, our

first experiment towards an unused object manager for

dynamic languages. Marea already provides the basic

14



functionality of an object swapper but there are still sev-

eral problems that need to be solved.

Once we are capable of detecting unused objects, re-

placing them with proxies and swapping them to sec-

ondary memory, we need to face more advanced prob-

lems. We gave a list of those problems which include

how to deal correctly with objects inside the graph that

are referenced also from objects outside, how to map ad-

dresses between primary and secondary memory, how

to avoid using more memory with the solution than the

one that can be released, how to make the possible so-

lution efficient, how to select which graphs to swap out,

etc.

For most of the problems, we proposed different al-

ternatives but none of them was good enough regard-

ing our two constraints: 1) saving as much memory as

possible i.e., do not use more memory with proxies and

other temporally required data, than the one that can

be released by swapping unused objects; 2) minimizing

the overhead i.e., the system should not slow down too

much the computation when detecting unused objects or

when swapping them between memories.

As future work, we plan to solve the mentioned prob-

lems in Marea and attempt to provide an unused ob-

ject manager for Pharo – generalizable to dynamic lan-

guages – that fulfills the requirements we presented.

References

[ADD+10] Jean-Baptiste Arnaud, Marcus Denker, Stéphane

Ducasse, Damien Pollet, Alexandre Bergel, and Math-

ieu Suen. Read-only execution for dynamic lan-

guages. In Proceedings of the 48th International

Conference Objects, Models, Components, Patterns

(TOOLS-Europe’10), Malaga, Spain, June 2010.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz,

Damien Pollet, Damien Cassou, and Marcus Denker.

Pharo by Example. Square Bracket Associates, 2009.

[BM08] Michael D. Bond and Kathryn S. McKinley. Tolerating

memory leaks. In Gail E. Harris, editor, OOPSLA: Pro-

ceedings of the 23rd Annual ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2008, October 19-

23, 2008, Nashville, TN, USA, pages 109–126. ACM,

2008.

[BOS91] Paul Butterworth, Allen Otis, and Jacob Stein. The

GemStone object database management system. Com-

mun. ACM, 34(10):64–77, 1991.

[DPDA11] Martin Dias, Mariano Martinez Peck, Stéphane

Ducasse, and Gabriela Arévalo. Clustered serializa-

tion with fuel. In Proceedings of ESUG International

Workshop on Smalltalk Technologies (IWST 2011), Ed-

inburgh, Scotland, 2011.

[GHVJ93] Erich Gamma, Richard Helm, John Vlissides, and

Ralph E. Johnson. Design patterns: Abstraction and

reuse of object-oriented design. In Oscar Nierstrasz,

editor, Proceedings ECOOP ’93, volume 707 of LNCS,

pages 406–431, Kaiserslautern, Germany, July 1993.

Springer-Verlag.

[Jon96] Richard Jones. Garbage Collection: Algorithms for Au-

tomatic Dynamic Memory Management. John Wiley

and Sons, July 1996.

[Kae86] Ted Kaehler. Virtual memory on a narrow machine

for an object-oriented language. Proceedings OOPSLA

’86, ACM SIGPLAN Notices, 21(11):87–106, Novem-

ber 1986.

[LGN08] Adrian Lienhard, Tudor Gîrba, and Oscar Nierstrasz.

Practical object-oriented back-in-time debugging. In

Proceedings of the 22nd European Conference on

Object-Oriented Programming (ECOOP’08), volume

5142 of LNCS, pages 592–615. Springer, 2008. ECOOP

distinguished paper award.

[MPBD+10] Mariano Martinez Peck, Noury Bouraqadi, Marcus

Denker, Stéphane Ducasse, and Luc Fabresse. Experi-

ments with a fast object swapper. In Smalltalks 2010,

2010.

[PBD+11] Mariano Martinez Peck, Noury Bouraqadi, Marcus

Denker, Stéphane Ducasse, and Luc Fabresse. Effi-

cient proxies in smalltalk. In Proceedings of ESUG In-

ternational Workshop on Smalltalk Technologies (IWST

2011), Edinburgh, Scotland, 2011.

[Ung84] Dave Ungar. Generation scavenging: A non-disruptive

high performance storage reclamation algorithm. ACM

SIGPLAN Notices, 19(5):157–167, 1984.

15


	Introduction
	Glossary
	Unused Object Manager Prerequisites
	Unused Objects Detector
	Proxy Objects
	Object Serializer
	Object Swapper

	Basic Swapping Issues
	Swapping unit
	Not Everything Can Be Swapped

	Proxies and Memory
	 Common Problems with Proxies 
	 Mapping objects from primary memory to secondary memory
	 Making Proxies Use As Little Memory As Possible
	Special Proxies

	Shared Objects Inside Graphs
	Detecting Shared Objects
	Handling shared objects

	Even More Problems
	Swapping out unused objects or swapping in used objects
	Selecting graphs to swap out
	Graphs Intersections
	Partial Loading
	Replacing Objects By Proxies Without a Full Memory Scan

	Laying the First Stones of Marea: an Unused Object Manager for Pharo
	Marea Subsystems
	Marea in a Nutshell

	Related Work And Future Work
	Conclusion

