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25030 Besançon, France
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Abstract— In this paper we study the error in the approx-
imate simultaneous controllability of the bilinear Schrödinger
equation. We provide estimates based on a tracking algorithm
for general bilinear quantum systems and on the study of the
finite dimensional Galerkin approximations for a particular
class of quantum systems, weakly-coupled systems. We then
present two physical examples: the perturbed quantum har-
monic oscillator and the infinite potential well.

I. INTRODUCTION

A. Logical gates

Quantum computation relies on the idea to store an infor-

mation in the state of quantum system. This state is described

by the wave function, that is, a point ψ in the Hilbert sphere

of L2(Ω,C), where Ω is a Riemannian manifold.

When submitted to an excitation by an external field (e.g.

a laser), the time evolution of the wave function is governed

by the bilinear Schrödinger equation

i
∂ψ

∂t
= −1

2
∆ψ + V (x)ψ(x, t) + u(t)W (x)ψ(x, t), (1)

where V,W : Ω → R are real functions describing respec-

tively the physical properties of the uncontrolled system and

the external field, and u : R → R is a real function of the

time representing the intensity of the latter.

When the manifold Ω is compact, the linear operator

i(∆/2 − V ) admits a set of eigenstates (φn)n∈N.A logi-

cal gate, or quantum gate, is a unitary transformation in

L2(Ω,C) for which some finite dimensional space of the

form span{φ1, φ2, . . . , φn} is stable. To build a given logical

gate Υ̂ from the system (1), one has to find a control law

u such that the propagator ΥuT at a certain time T of (1)

satisfies ΥuT (φj) = Υ̂φj for every j = 1, . . . , n.

The main difficulty with this problem is that the space

L2(Ω,C) has infinite dimension. For the sake of simplicity,

one often only considers the case where Ω is a finite union

of points (or, equivalently, L2(Ω,C) is finite dimensional).

Nevertheless, most of the usual quantum systems evolves on

non trivial manifolds Ω. This papers deals with the effective

implementation of some simple logical gates on models of

quantum oscillators on 1-dimensional manifolds.

B. Quantum control

The problem of driving the solutions of (1) to a given

target has been intensively studied in the past decades, both

in the finite and infinite dimensional case. Many advances

have been done in the infinite dimensional case, when there

is only one source and one target. The interested reader

may refer, for instance and among many other references,

to [5], [7] for the theoretical viewpoint and to [8] for

numerical aspects. In particular, it was proved in [3] that

exact controllability is impossible in general. This does not

prevent to study approximate controllability of (1), that is to

replace the condition ΥuT (φj) = Υ̂φj by ‖ΥuT (φj)−Υ̂φj‖ ≤
ε for every j = 1, . . . , n. To the best of our knowledge, there

are only very few results of simultaneous controllability in

the infinite dimensional case and the only available effective

control techniques have been described in [9] and [11].

Recently, we noticed in [10] that a certain class of bi-

linear systems are precisely approached by their Galerkin

approximations. Two important examples of these so-called

weakly-coupled systems are the quantum harmonic oscillator

and the infinite potential well. The structure of weakly-

coupled systems permits precise numerical simulations for

the construction of quantum gates.

C. Content of the paper

The theoretical background is recalled in Section II. Be-

sides a quick survey on simultaneous control techniques for

Equation (1), we give precise definitions and approximation

results for weakly-coupled systems. In Section III we apply

these results to a perturbation of the quantum harmonic

oscillator and we provide estimates for the error in the

controllability in a suitable finite dimensional approximation.

Similarly, in Section IV we study the infinite potential well.

II. GENERAL THEORETICAL RESULTS

A. Framework and notations

We reformulate the problem (1) in a more abstract frame-

work. In a separable Hilbert space H endowed with norm

‖ · ‖ and Hilbert product 〈·, ·〉, we consider the evolution

problem
dψ

dt
= (A+ uB)ψ (2)

where (A,B) satisfies Assumption 1.

Assumption 1: (A,B) is a pair of linear operators such

that

1) for every u in R, A+uB is essentially skew-adjoint;



2) A is skew-adjoint and has purely discrete spectrum

(−iλk)k∈N, associated to the Hilbert basis (φk)k∈N

of eigenvectors of A.

From Assumption 1.1, one deduces that, for every piece-

wise constant u, u : t 7→=
∑
j ujχ(tj ,tj+1)(t), with 0 =

t0 ≤ t1 ≤ . . . ≤ tN+1 and u0, . . . , uN in R, the solution

t 7→ Υut ψ0 of (2) has the form

Υut ψ0 = e(t−tj−1)(A+uj−1B)◦
◦ e(tj−1−tj−2)(A+uj−2B) ◦ · · · ◦ et0(A+u0B)ψ0,

for t ∈ [tj−1, tj).
Remark 1: With extra regularity hypotheses, it is possible

to define the propagator of (2) for a larger class of controls.

For instance, when B is bounded, for every t, Υt : u 7→ Υut
admits a unique continuous extension to L1

loc(R,R).

B. Control results

Definition 1: Let (A,B) satisfy Assumption 1. A subset

S of N2 couples two levels j, k in N, if there exists a finite

sequence
(
(s11, s

1
2), . . . , (s

q
1, s

q
2)
)

in S such that

(i) s11 = j and sq2 = k;

(ii) sj2 = sj+1
1 for every 1 ≤ j ≤ q − 1;

(iii) 〈φsj
1

, Bφsj
2

〉 6= 0 for 1 ≤ j ≤ q.

The subset S is called a connectedness chain for (A,B) if

S couples every pair of levels in N. A connectedness chain

is said to be non-resonant if for every (s1, s2) in S, |λs1 −
λs2 | 6= |λt1−λt2 | for every (t1, t2) in N

2\{(s1, s2), (s2, s1)}
such that 〈φt2 , Bφt1〉 6= 0.

Definition 2: Let (A,B) satisfy Assumption 1. The sys-

tem (A,B) is approximately simultaneously controllable if

for every Υ̂ ∈ U(H) (unitary operators acting on H),

ψ1, . . . , ψn ∈ H , and ε > 0, there exists a piecewise constant

function uε : [0, Tε] → R such that

‖Υ̂ψj −Υuε

Tε
ψj‖ < ε.

for every j = 1, . . . , n.

The following sufficient condition for approximate simul-

taneous controllability has been given in [9].

Proposition 1: Let (A,B) satisfy Assumption 1 and admit

a non-resonant chain of connectedness. Then (A,B) is

approximately simultaneously controllable.

C. Weakly-coupled systems

Definition 3: Let k be a positive number and let (A,B)
satisfy Assumption 1.1. Then (A,B) is k weakly-coupled

if for every u ∈ R, D(|A + uB|k/2) = D(|A|k/2) and

there exists a constant C such that, for every ψ in D(|A|k),
|ℜ〈|A|kψ,Blψ〉| ≤ C|〈|A|kψ, ψ〉|.

Definition 4: Let N ∈ N. We define the projection πN :
ψ ∈ H 7→∑

k≤N 〈φk, ψ〉φk. The Galerkin approximation of

(2) of order N is the system in H

ẋ = (A(N) + uB(N))x (ΣN )

where A(N) = πNAπN and B(N) = πNBπN are the

compressions of A and B (respectively).

We denote by Xu
(N)(t, s) the propagator of (ΣN ) associ-

ated with a piecewise constant functions u.

Proposition 2: Let k and s be non-negative numbers with

0 ≤ s < k. Let (A,B) satisfy Assumption 1 and be k
weakly-coupled Assume that there exist d > 0, 0 ≤ r < k
such that ‖Bψ‖ ≤ d‖ψ‖r/2 for every ψ in D(|A|r/2). Then

for every ε > 0, K ≥ 0, n ∈ N, and (ψj)1≤j≤n in

D(|A|k/2)n there exists N ∈ N such that for every piecewise

constant function u

‖u‖L1 < K =⇒ ‖Υut (ψj)−Xu
(N)(t, 0)πNψj‖s/2 < ε,

for every t ≥ 0 and j = 1, . . . , n.

III. THE PERTURBED QUANTUM HARMONIC OSCILLATOR

A. Physical model

The quantum harmonic oscillator is one of the most

studied quantum system. Schrödinger equation reads

i
∂ψ

∂t
(x, t) = −1

2

∂2ψ

∂x2
+

(
1

2
x2 − u(t)x

)
ψ(x, t) , (3)

where x ∈ Ω = R. With the notations of (2), A = −i(−∆+
x2)/2 and B = ix.

An Hilbert basis of H made of eigenvectors of A is

given by the sequence of the Hermite functions (φn)n∈N,

associated with the sequence (−iλn)n∈N of eigenvalues

where λn = n−1/2 for every n in N. In the basis (φn)n∈N,

B admits a tri-diagonal structure:

〈φj , Bφk〉 =





−i
√
k − 1 if j = k − 1

−i
√
k if j = k + 1

0 otherwise,

A chain of connectedness for this system is given by S =
{(n, n + 1) : n ∈ N}. The chain S is resonant indeed

|λn+1 − λn| = 1 for every n in N. As a matter of fact, the

system (3) is known to be non-controllable (see [14], [13]).

We consider a perturbation of this system. Consider

the inverse A−1 of the operator A. The family (φn)n∈N

is a family of eigenvectors for A−1 associated with the

eigenvalues (−i/λn)n∈N. For every η ≥ 0 we set Aη =
A + ηA−1. Since A and A−1 commute then (φn)n∈N is a

family of eigenvectors for Aη associated with the eigenvalues

(−iληn)n∈N where ληn = λn + η/λn. The set S is a non-

resonant chain of connectedness for system (Aη, B) for every

η > 0. Indeed ληn+1 − ληn = 1 − 4 η
4n2−1 and, clearly,

ληn+1 − ληn = ληm+1 − ληm if and only if n = m.

By Proposition 1 the system (Aη, B) is approximately

simultaneously controllable. Moreover by [9, Theorem 2.13]

we have also an upper bound on the L1-norm of the control

independent of the error. For instance we can steer approx-

imately the first level φ1 to the second φ2 with a control

law with L1-norm smaller than 5π/4. Another consequence

is that a quantum gate for φ1, φ2, and φ3 is approximately

reachable, that is for every ε > 0, there exists tε > 0
and a piecewise constant function uε such that ‖Υuε

tε (φj)−
φσ(j)‖ < ε where σ is the 3-cycle which exchanges 1, 2 and

3. This can be achieved with ‖uε‖L1 ≤ π/2(1 +
√
2/2).



B. Estimates

In the following, we only consider control of L1-norm

less than K = π/2(1 +
√
2/2). The particular tri-diagonal

structure of system (Aη, B) is very useful for a priori

estimates on the components of the propagator. Indeed if

‖u‖L1 ≤ K, by [10, Remark 6], we have that

|〈φn+1,Υ
u
t (φj)〉| ≤

(2K)n−2

(n− 2)!

√
(2n− 3)!

(n− 2)!
, (4)

for every n in N, n ≥ 3 and j = 1, 2, 3.

We use (4) to find estimates on the size N of the Galerkin

approximation whose existence is asserted by Proposition 2.

First, let N ≥ j and notice that

d

dt
πNΥut (φj) = (A(N) + uB

(N)
l )πNΥut (φj)

+u(t)πNB(Id− πN )Υut (φj).

Hence, by variation of constants, for every t ≥ 0,

πNΥut (φj) = Xu
(N)(t, 0)πNφj

+

∫ t

0

Xu
(N)(t, s)πNB(Id− πN )Υus (φj)u(τ)dτ. (5)

Therefore, since Xu
(N)(t, s) is unitary and for the tri-diagonal

structure of the system we have, for j = 1, 2, 3,

‖πNΥut (φj)−Xu
(N)(t, s)φj‖

≤ K‖πNB(Id− πN )Υut (φj)‖
= K|bN,N+1||〈φN+1,Υ

u
t (φj)〉|

= K
√
N |〈φN+1,Υ

u
t (φj)〉|

≤ 2N−1KN−1

(N − 2)!

√
(2N − 3)!

(N − 3)!
.

Using K = π/2(1 +
√
2/2) < 2.69, it is enough to

consider a Galerkin approximation of size N = 420 to get

‖πNΥut (φj)−Xu
(N)(t, s)φj‖ ≤ 10−4 for j = 1, 2, 3.

C. Numerical simulations

For simulations, we choose η = 1. To induce the transition

between levels 1 and 2, the control law we use is a piecewise

constant 4π periodic function, taking value 1 for 0 ≤ t <
5. 10−3 and taking value 0 for 5. 10−3 ≤ t ≤ 4π. We apply

this control for 314 periods, that is during a time of 1256π .

To induce the transition between levels 2 and 3, the control

law we use is a piecewise constant 12π/5 periodic function,

taking value 1 for 0 ≤ t < 5. 10−3 and taking value 0 for

5. 10−3 ≤ t < 12π/5. We apply this control for 222 periods.

The simulations are done on a Galerkin approximation

of size 420, which garantees ‖πNΥut (φj)−Xu
(N)(t, s)φj‖ ≤

10−4 for j = 1, 2, 3. At final time T , the resulting propagator

is such that |〈ΥuTφ1, φ3〉| > 0.998, |〈ΥuTφ2, φ1〉| > 0.999
and |〈ΥuTφ3, φ2〉| > 0.999. The time evolution of the moduli

of the first coordinates of Υut (φj) for j = 1, 2, 3 is depicted

in Figures 1, 2, and 3.

All the computations were done using the free software

NSP, see [12]. The source code for the simulation is available

at [1].The total computation time is less than 4 minutes on

a standard desktop computer.
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Fig. 1. Time evolution of the moduli of the first three coordinates of
Υ

u

t
φ1 in the case of the perturbed harmonic oscillator. First coordinate in

blue, second coordinate in green, third coordinate in red. For the sake of
readability, time scale is 1:100, total duration around 5500.
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Fig. 2. Time evolution of the moduli of the first three coordinates of Υu

t
φ2

in the case of the perturbed harmonic oscillator. First coordinate in blue,
second coordinate in green, third coordinate in red. Time scale is 1:100.

IV. PARTICLE IN A BOX

A. Physical model

We consider now the case of a particle confined in (0, π).
This model has been extensively studied by several authors

in the last few years and was the first quantum system for

which a positive controllability result has been obtained.

Beauchard proved exact controllability in some dense subsets

of L2 using Coron’s return method (see [4], [6] for a precise

statement). Nersesyan obtained approximate controllability

results using Lyapunov techniques. In the following, we

extend these controllability results to simultaneous control-

lability and provide some estimates of the L1-norm of the

controls achieving simultaneous controllability.

The Schrödinger equation writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)xψ(x, t) (6)

with boundary conditions ψ(0, t) = ψ(π, t) = 0 for every

t ∈ R.
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Fig. 3. Time evolution of the moduli of the first three coordinates of Υu

t
φ3

in the case of the perturbed harmonic oscillator. First coordinate in blue,
second coordinate in green, third coordinate in red. Time scale is 1:100.

In this case H = L2 ((0, π),C) endowed with the Hermi-

tian product 〈ψ1, ψ2〉 =
∫ π
0
ψ1(x)ψ2(x)dx. The operators

A and B are defined by Aψ = i 12
∂2ψ
∂x2 for every ψ in

D(A) = (H2 ∩H1
0 ) ((0, π),C), and Bψ = ixψ. An Hilbert

basis of H is (φk)k∈N with φk : x 7→ sin(kx)/
√
2. For

every k, Aφk = −ik2/2φk.

For every j, k in N,

bjk := 〈φj , Bφk〉 =
{
(−1)j+k 2jk

(j2−k2)2 if j − k odd

0 otherwise.

Despite numerous degenerate transitions, the system is

approximately simultaneously controllable (see [9, Section

7]).

B. Estimates

Using Proposition 2 to estimate the error done when

replacing infinite dimensional system by its Galerkin approx-

imation one finds, for ‖u‖L1 = 9π/16 (see [10, Remark 4],

with K = 9π/16, d = π, k = 1, r = 1, c1(A,B) ≤ π + 2,

ε = 10−3), that if N > 1.6 107, then

‖πNΥut φ1 −Xu
(N)(t, 0)φ1‖ ≤ 10−3.

This estimation is definitely too rough to allow easy

numerical simulations: matrix B(107) has about 5 1013 non-

zeros entries, the numerical simulations at such scale are

difficult without large computing facilities. We have to go

more into details to obtain finer estimates.

Assume that, for some N in N and η > 0, the control

u : [0, T ] → R is such that, for every t in [0, T ],

‖Xu
(N)(t, 0)π3 − π3X

u
(N)(t, 0)‖ ≤ η.

We have

π3X
u
(N)(t, s)−Xu

(N)(t, s)π3

= π3X
u
(N)(t, 0)X

u
(N)(0, s)−Xu

(N)(t, 0)X
u
(N)(0, s)π3

= Xu
(N)(t, 0)(π3X

u
(N)(0, s)−Xu

(N)(0, s)π3)

+(π3X
u
(N)(t, 0)−Xu

(N)(t, 0)π3)X
u
(N)(0, s)

so that

‖π3Xu
(N)(t, s)−Xu

(N)(t, s)π3‖ ≤ 2η. (7)

Projecting (5) on the first 3 components we have, for j =
1, 2, 3 that

‖π3Υut (φj)− π3X
u
(N)(t, 0)φj‖

≤
∫ t

0

‖π3Xu
(N)(t, s)πNB(Id− πN )Υus (φj)‖u(s)ds

≤
∫ t

0

‖Xu
(N)(t, s)π3B(Id− πN )Υus (φj)‖u(s)ds

+

∫ t

0

‖(π3Xu
(N)(t, s)−Xu

(N)(t, s)π3)‖‖B‖u(s)ds

≤
(∫ T

0

|u(t)|dt
)
(‖π3B(Id− πN )‖

+2‖B‖ sup
t

‖π3Xu
(N)(t, 0)−Xu

(N)(t, 0)π3)‖).(8)

By skew-adjointness, ‖π3B(Id−πN )‖ = ‖(Id−πN )Bπ3‖.

This last quantity tends to zero, and we are able to give

estimates of the convergence rate. Indeed,

‖(Id− πN )Bφ1‖2 ≤
∑

k>N

∣∣∣∣
2k

(k − 1)2(1 + k)2

∣∣∣∣
2

≤ 4
∑

k>N

1

(k − 1)6

≤ 1

(N − 2)5
.

Similarly,

‖(Id− πN )Bφ2‖2 ≤
√
2

(N − 3)5

‖(Id− πN )Bφ3‖2 ≤ 2

(N − 4)5
.

The procedure to induce a given transformation, up to a

given tolerance ε > 0, on the space span{φ1, φ2, φ3} is the

following:

1) Use estimates given in [9] to give an a priori upper

bound K on the L1-norm of the controls one will use.

2) From K and ε, find N such that K‖π3B(Id−πN )‖ ≤
ε/2.

3) In the finite dimensional space span{φ1, . . . , φN},

consider the bilinear system ẋ = (A(N) + uB(N))x
and find a control u achieving the desired transition

up to ε/(2K) and such that ‖u‖L1 ≤ K. This can

be done using standard averaging procedures (see for

instance [15]).

4) Use (8) to get an upper bound of the distance of the

trajectories of (ΣN ) and the actual infinite dimensional

system.

C. Numerical simulations

We illustrate the above procedure on an example. Fix

ε = 7 10−2. We would like to find u : [0, T ] → R such

that |〈φ3,ΥuTφ1〉| > 1 − ε, |〈φ1,ΥuTφ2〉| > 1 − ε and
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Fig. 4. Time evolution of the moduli of the first three coordinates of Υu

t
φ1

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.

|〈φ2,ΥuTφ3〉| > 1− ε at final time T . For this example, we

are not interested in the respective phases but the method can

easily be generalized to address this point (see Section IV-D

below).

From [9], the transition can be achieved with controls of

L1-norm smaller than 5π/4(9/8 + 25/24). Using controls

with better efficiencies (as described in [11]), we can use

controls with L1-norm smaller than 2(9/8 + 25/4) = 13/3.

Using the above estimates, one sees that if N = 20, then

K‖π3B(Id− πN )‖ ≤ 13

3

√
2

(N − 4)5/2
≤ 6 10−3.

Last, we define u by u(t) = cos(3t)/20 for 0 ≤ t ≤
72 and u(t) = cos(5t)/20 for 72 < t ≤ T = 138. We

check that
∫ T
0
|u(t)|dt ≤ 13/3. One checks numerically that

‖π3Xu
(20)(t, 0) − Xu

(20)(t, 0)π3‖ ≤ 1.3 10−3 for t ≤ 138.

From (7), we get, for every t, s ≤ T

‖π3Xu
(N)(t, s)−Xu

(N)(t, s)π3‖ ≤ 2.6 10−3.

From (8), we have, for j = 1, 2, 3,

‖π3Υut (φj)− π3X
u
(N)(t, 0)φj‖ ≤ 13

3
(6 10−3 + 8.2 10−3)

≤ 6.1 10−2.

Conclusion follows from the numerical computations

|〈φ3, Xu
(20)(T, 0)φ1〉| ≈ 0.99924

|〈φ1, Xu
(20)(T, 0)φ2〉| ≈ 0.99943

|〈φ2, Xu
(20)(T, 0)φ3〉| ≈ 0.99949.

The actual precision is likely much better than 6.1 10−2

which is known for sure. However, our estimates do not allow

a better conclusion.

The evolutions with respect to the time of the moduli of the

first coordinates of Xu
(20)φk for k = 1, 2, 3 are represented

in Figures 4, 5, and 6.

All the computations were done using the free software

NSP, see [12]. The source code for the simulation is available

at [2]. The total computation time is less than 4 minutes on

a standard desktop computer.
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Fig. 5. Time evolution of the moduli of the first three coordinates of Υu

t
φ2

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.
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Fig. 6. Time evolution of the moduli of the first three coordinates of Υu

t
φ3

in the case of the potential well. First coordinate in blue, second coordinate
in green, third coordinate in red.

D. Possible improvements

If one is interested not only in the modulus but also in the

respective phases of the final points, it is enough to replace

the functions t 7→ cos(3t)/20 and t 7→ cos(5t)/20 above by

t 7→ cos(3t+ θ1)/20 and t 7→ cos(5t+ θ2)/20 respectively,

where θ1 and θ2 are suitable phases.

In order to get better precision in the approximation (i.e.

a smaller ε), it is enough to replace the functions t 7→
cos(3t)/20 and t 7→ cos(5t)/20 above by the functions

t 7→ cos(3t)/L and t 7→ cos(5t)/L with L large enough.

The price to pay for a better precision is an increase in the

time needed for the transfer.

V. CONCLUSION AND FUTURE WORKS

We have shown how it was possible to implement a

quantum gate on two types of infinite dimensional quantum

oscillators. Our method provides rigorous estimates and

permits numerical simulations that can be run on standard

desktop computers.

A limitation of our models is that the Schrödinger equation

neglects decoherence. This approximation may be justified



for time small with respect to the relaxation time of the quan-

tum system. Future works may focus on the optimization of

the time of implementation.
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