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Multivariate numerical differentiation

Samer Riachy 14, Mamadou Mboup 24, Jean-Pierre Richard 34

Abstract

We present an innovative method for multivariate numerical differentiation

i.e. the estimation of partial derivatives of multidimensional noisy signals.

Starting from a local model of the signal consisting of a truncated Taylor ex-

pansion, we express, through adequate differential algebraic manipulations,

the desired partial derivative as a function of iterated integrals of the noisy

signal. Iterated integrals provide noise filtering. The presented method leads

to a family of estimators for each partial derivative of any order. We present

a detailed study of some structural properties given in terms of recurrence re-

lations between elements of a same family. These properties are next used to

study the performance of the estimators. We show that some differential alge-

braic manipulations corresponding to a particular family of estimators leads

implicitly to an orthogonal projection of the desired derivative in a Jacobi

1Ecole National Supérieure de l’Electronique et de ses Applications, ECS-Lab/EA-
3649, 6, avenue du Ponceau, 95014, Cergy-Pontoise, France. Questions, comments,

or corrections to this document may be directed to that email address:

Samer.Riachy@ensea.fr
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polynomial basis functions, yielding an interpretation in terms of the popular

least squares. This interpretation allows one to 1) explain the presence of a

spacial delay inherent to the estimators and 2) derive an explicit formula for

the delay. We also show how one can devise, by a proper combination of dif-

ferent elementary estimators of a given order derivative, an estimator giving

a delay of any prescribed value. The simulation results show that delay-free

estimators are sensitive to noise. Robustness with respect to noise can be

highly increased by utilizing voluntary-delayed estimators. A numerical im-

plementation scheme is given in the form of finite impulse response digital

filters. The effectiveness of our derivative estimators is attested by several

numerical simulations.

Keywords: Numerical differentiation, operational calculus, multivariable

signals, orthogonal polynomials, inverse problems, least squares, finite

impulse response filters.

1. INTRODUCTION

Partial derivatives estimation of multivariate signals is a recurrent prob-

lem in the fields of engineering and applied mathematics, as for example, in

automatic control, signal and image processing. It is known that the differ-

entiation problem, as opposed to integration, is unstable in the presence of

noisy data. It has thus the property of ill-posedness.

When the noise level is low, the most common approach is the use of fi-

nite differences techniques which present the advantage of low computational

cost and easy implementation. They are used in many problems especially in

variational methods in image processing for motion estimation [8], [22], [40],
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image reconstruction and denoising [4] [41] and image segmentation [7], [33]

etc. We may also cite other approaches more specific to a particular field.

In automatic control, for example, we mention the model based observers [6]

and the sliding modes techniques [27]. However, in many practical applica-

tions, the noise influence cannot be neglected. It becomes then necessary to

consider methods that are more robust to noise. The literature about dif-

ferentiation is vast, we recall some important approaches in the monovariate

case.

An integral operator, known as Lanczos generalized derivative, was pro-

posed in [26]. It is defined by :

Dhf(x) =
3

2h

∫ 1

−1

tf(x+ t)dt, (1)

and approximates f (1)(x) in the sense f (1)(x) = Dhf(x) + O(h2). General-

ization to higher order derivatives was proposed in [37]:

D
(n)
h f(x) =

1

hn

∫ 1

−1

ρn(t)f(x+ ht)dt, n = 1, 2, · · · (2)

The above formula approximates the nth order derivative f (n)(x) such that

f (n)(x) = D
(n)
h f(x) +O(hn). It was shown that ρn(t) is proportional to Leg-

ender polynomials of order n. Further studies can be found in [39].

Moreover, differentiation can also be cast into a least squares problem

[10], [24], [9], [3]. Robustness with respect to noisy data can be increased

by introducing a regularization term which extracts from all possible solu-

tions (approximations) those who, for example, have bounds on the function

and/or its derivative. A well known regularization is due to Tikhonov and

can be cast as follows. Find g an approximation of df

dt
such that

‖Ag − f‖2 + α‖g‖+ β‖g(1)‖2 (3)
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is minimum, where A is an appropriate operator. The regularization param-

eters α and β, if tuned properly, results in an efficient derivative estimator

although tuning is a difficult task. However, the solution cannot be computed

in real time.

This paper proposes a different approach. We assume that the struc-

tured, information bearing, component of a noisy signal admit a (multivari-

ate) convergent Taylor expansion. In order to estimate the nth order partial

derivative, we rewrite the N th (here N and n are multi-indices and N ≥ n)

order truncation of the Taylor expansion in the operational domain using a

multidimensional Laplace transform. Adequate differential algebraic opera-

tions then allow us to isolate, back in the spacial domain, the desired partial

derivative at a given point as a function of multiple iterated integration on the

noisy measured signal. Our approach is thus based on pointwise derivative

estimation.

This paper constitute an extension of [31] to multidimensional signals, it is

a continuation of [5], [35] and [34]. An interesting contribution to multivariate

numerical differentiation can be found in [16] and [25]. The matters in this

paper are inspired from techniques initiated by M. Fliess et al. in 2003 [20] in

control theory. Those techniques which are of algebraic flavor are promising

in signal processing and estimation [16], [17], [18], [28], [29], [30], [31], [34],

control [12], [13], [21] fault detection [19], and finance [14], [15].

To fix the subsequent notations and introduce the basic steps of our ap-

proach, we consider the following simple example. Let I(xxx) = I(x1, x2) be

a bidimensional signal with two independent variables x1 and x2. Its Taylor
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series expansion of order N = (1, 1) around (0, 0), denoted IN(x1, x2), writes:

IN(x1, x2) = I0(0̄) + Ix1(0̄)x1 + Ix2(0̄)x2,

where (0̄) = (0, 0), I0(0̄) = I(0, 0), Ix1(0̄) =
∂I
∂x1

(0, 0) and Ix2(0̄) =
∂I
∂x2

(0, 0).

In the operational domain one obtains:

ÎN(s1, s2) =
I0(0̄)

s1s2
+

Ix1(0̄)

s21s2
+

Ix2(0̄)

s1s
2
2

(4)

where ÎN is the operational analogue of IN . Let us isolate Ix1(0̄) by mul-

tiplying (4) by s1s2 and then differentiating once with respect to s1. The

right-hand side of (4) reduces to
−Ix1(0̄)

s21
. Applying the same operations to

the left-hand side of (4) leads to:

s2ÎN(s1, s2) + s1s2
∂ÎN (s1, s2)

∂s1
= −

Ix1(0̄)

s21
. (5)

Note that multiplying by s1 (respectively by s2) corresponds to differen-

tiation with respect to x1 (resp. x2) in the spacial domain. Differentiation

is not desirable in the presence of noise. For this reason, we multiply (5) by

1
s21s

2
2
. Back in the spacial domain, the following form is obtained:

∫ X1

0

∫ X2

0

(X1 − 2x1)IN(x1, x2)dx1dx2 = −Ix1(0̄)
X3

1

3!
X2.

Now, if we replace the noise-free Taylor series model IN(x1, x2) by the

actual noisy measurement J(x1, x2), we obtain an estimate Ĩx1(0̄) of Ix1(0̄)

Ĩx1(0̄) =
−6

X1

∫ 1

0

∫ 1

0

(1− 2x1)J(X1x1, X2x2)dx1dx2, (6)

as a function of the estimation window parameters X1 and X2 (here we have

used a change of variables to normalize the integrals over [0, 1]× [0, 1]).
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Following the terminology introduced in [31], estimators in the form of (6)

will be called algebraic partial derivative estimators. In section 2, we recall

the multi-index notation, the multivariate Laplace transform and introduce

a multivariate version of Jacobi polynomials. In section 3, we introduce the

methodology and point out that it provides:

• pointwise estimators,

• a family of estimators to any given order of derivation.

We provide in section 4 a detailed study of some structural properties of our

estimators. In section 5 we forge a link with least squares using multivariate

Jacobi polynomials with special weighing functions. This link with least

squares enables us to show the existence of a spacial delay inherent to a

particular family of estimators and provide a formula to quantify the delay.

We consider also affine combinations of estimators of a given order derivative,

the weights involved in the combination can be parameterized by a single

parameter denoted ξξξ. Depending on the choice of ξξξ, we provide:

• delay-free estimators,

• estimators reducing the mis-modeling error induced by the truncation

of the Taylor expansion,

• estimators reducing the noise influence in section 6.

Unfortunately, simulations presented in section 7 will show that delay-free es-

timators are sensitive to noises. Robustness to noises can be highly increased

by tolerating a delay through an adequate choice of ξξξ. Thus the parameter
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ξξξ can be seen as an explicit regularization parameter. Unlike, classical least

squares where a good choice of regularization parameters is difficult to ac-

complish, we provide an explicit formula for ξξξ. In section 7, a numerical

implementation scheme in the form of a finite impulse response linear filter

will be given followed by several numerical simulations. For the clarity of the

presentation, all the proofs are deferred to an appendix.

2. Preliminaries

This section recalls the multi-index notation, the multivariate Laplace

transform and introduce a multivariate version of Jacobi’s polynomials.

2.1. Multi-index notation

Let α = (α1, · · · , αr) be an r-tuple of nonnegative integers αm, m =

1 · · · , r; m, r ∈ N. We call α a multi-index. We fix some notations. The

symbol in bold xxx denotes a vector in Rr representing the spacial domain

of the multivariate signal. The Laplace (or operational domain) variable is

denoted by sss = (s1, · · · , sr), where r ∈ N stands for the dimension of the

multivariate signal. The bold symbol XXX ∈ Rr represents the length of the

integration domain. The letters α, κ, µ, l, q, N and n are multi-indices and

m ∈ N will be used as a pointer varying from 1 to r. The multi-indices α, κ,

µ, l, q, N and n affected by the subscript m as for example κm, denotes the

mth element of κ, i.e a nonnegative integer.

For multi-indices α, β ∈ Nr one defines:

1. Componentwise sum and difference: α± β = (α1 ± β1, · · ·αr ± βr).

2. Partial order α ≤ β ⇔ αm ≤ βm, ∀m ∈ {1, · · · , r}.
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3. Given xxx = (x1, · · · , xr) ∈ Rr, we have that xxxα = xα1
1 · · ·xαr

r .

4. The total degree of xxxα is given by |α| = α1 + · · ·+ αr.

5. Factorial: α! = α1! · · ·αr!

6. Binomial coefficient:



α

β



 =




α1

β1



 · · ·




αr

βr



 . (7)

7. b̄ = (b, · · · , b), b ∈ N, b̄ ∈ Nr.

8. For xxx = (x1, · · · , xr) and XXX = (X1, · · · , Xr) ∈ Rr,
∫XXX

0̄
f(xxx)dxxx =

∫ X1

0

· · ·

∫ Xr

0
︸ ︷︷ ︸

r

f(x1, · · · , xr)dx1 · · · dxr.

9. Higher-order partial derivative: ∂α = ∂α1
1 · · ·∂αr

r where ∂αm
m := ∂αm

∂x
αm
m

.

10. Denote by 1m ∈ Nr the multi-index with zeros for all elements except

the mth one i.e. 1m = (0, · · · , 0, 1, 0, · · · , 0).

11. The tensor product of 2 vectors uuu, vvv ∈ Rr is defined by: uuu ⊗ vvv =

(u1vvv, · · · , urvvv) ∈ Rr2. uuu⊗ vvv = (u1v1, · · · , u1vr, u2v1, · · · , u2vr, · · · , urvr).

2.2. Multivariate Laplace transform

Given sss = (s1, · · · , sr) ∈ Cr, xxx = (x1, · · · , xr) ∈ Dr ⊂ Rr and a multivari-

able function f(xxx) : Dr ⊂ Rr → R. We recall that the multivariate Laplace

transform is given by

L(I(xxx)) = Î(sss) =

∫

Rn+

f(xxx) exp−sss.xxxT dxxx. (8)

Note that the terminology “time domain vs frequency domain” is not ade-

quate. As it was noticed in the introduction, we use the terminology “spa-

cial (or spacio-temporal) domain vs operational domain”. The multivariate

Laplace transform satisfies:
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1. Given xxx = (x1, · · · , xr), sss = (s1, · · · , sr) and multi-index α = (α1, · · · ,

αr), we have the following:

L

(
xxxα

α!

)

=
1

sssα+1̄
(9)

2. Let xxx = (x1, · · · , xr), sss = (s1, · · · , sr), XXX = (X1, · · · , Xr), and let

α = (α1, · · · , αr), and β = (β1, · · · , βr) be two multi-indices. Given

a multivariable function I(xxx) and its corresponding Laplace transform

Î(sss) = L(I(xxx)), we have the following:

L−1 1

sssα
∂β Î(sss)

∂sssβ
=

1

(α− 1̄)!

∫ X

0̄

(XXX − xxx)α−1̄(−xxx)βI(xxx)dxxx.

2.3. Multivariate orthogonal Jacobi polynomials and least squares

This section introduce a multivariate version of Jacobi’s polynomials.

They are used to affect a least squares interpretation to a particular class of

our estimators. Given multi-indices α, β, n, p ∈ Nr and xxx = (x1, · · · , xr).

Let δnp denote a multivariate version of the Kronecker symbol i.e δnp = 1 if

(n1, · · · , nr) = (p1, · · · , pr) element-wise and δnp = 0 otherwise. A multivari-

ate version of the Jacobi polynomials on the interval [0, 1]r is given by the

partial differential equation (Rodriguez formula) which seems new:

(1̄− xxx)αxxxβP{α,β}
n (xxx) =

(−1̄)n

n!
∂n[(1̄− xxx)n+αxxxn+β]. (10)

Those polynomials constitute an orthogonal set, on the interval [0, 1]r with

respect to the weight function ω(xxx) = (1̄− xxx)αxxxβ , i.e. they satisfy:

< P{α,β}
n ,P{α,β}

p >
.
=

∫ 1̄

0̄

P{α,β}
n (xxx)ω(xxx)P{α,β}

p (xxx)dxxx = δnp, (11)

The norm induced by (11), and denoted ‖ • ‖, writes:

‖P{α,β}
n ‖2 =

∫ 1̄

0̄

P{α,β}
n (xxx)ω(xxx)P{α,β}

n (xxx)dxxx.

9



Let P
{αm,βm}
nm (xm) denote the standard, one dimensional, Jacobi polynomials,

the multivariate polynomials are obtained directly by:

P{α,β}
n (xxx) =

r∏

m=1

P {αm,βm}
nm

(xm).

The proof is straightforward upon expanding (10).

3. Partial derivatives estimation

Let us consider a noisy signal J(xxx), xxx = (x1, · · · , xr), and assume that it

is constituted of a structured part I(xxx), with an additive noise ̟(xxx):

J(xxx) = I(xxx) +̟(xxx). (12)

We assume that I(xxx) admits a convergent Taylor series expansion at the

origin:

I(xxx) =
N∑

α=0̄

∂αI(0̄)

α!
xxxα + eR =

N∑

α=0̄

Ixxxα(0̄)
xxxα

α!
+ eR, (13)

where Ixxxα(0̄) = ∂αI(0̄) are successive partial derivatives at zero and eR is the

truncation error. Let us neglect eR for a moment and write:

IN(xxx) =

N∑

α=0̄

Ixxxα(0̄)
xxxα

α!
(14)

Suppose that there exist a bounded linear operator O[•] that annihilate from

(14) the terms Ixxxα(0̄); α 6= n. We obtain thus Ixxxα(0̄) = O(IN(xxx)) and con-

sequently an estimate Ĩxxxn(0̄) of Ixxxn(0̄) by Ĩxxxn(0̄) = O[J(xxx)]. Moreover, the

derivative estimation Ĩxxxn(0̄ + x) at another point x different from 0̄ can be

given by Ĩxxxα(0̄+ x) = O[J(xxx+ x)]. If in addition the operator O[•] is integral,

it permits to filter the additive noise ̟(xxx). Eliminating the undesired terms
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(Ixxxα(0̄), α 6= n) from (13) can be done in the Laplace operational domain

through straightforward differential algebraic manipulations. For this reason,

we apply the multivariate Laplace transform (8) on (14):

ÎN(sss) =

N∑

α=0̄

Ixxxα(0̄)

sssα+1̄
, (15)

where ÎN(sss) is the operational analog of IN(xxx). By examining (15) it can

be seen that the terms Ixxxα(0̄) are divided by different powers of sss. Thus

if one can choose adequate multiplication with powers of sss and successive

higher partial differentiation with respect to sss one is able to isolate Ixxxn(0̄).

Those successive operations will be called annihilators. There exists many

annihilators corresponding to Ixxxn. In this paper we will focus on a special

class given by the following proposition:

Proposition 3.1. Let κ, µ, N, and n be multi-indices in Nr, the differential

operator

ΠN,n
κ,µ =

1

sssN+µ+1̄
∂n+κ 1

sss
∂N−nsssN+1̄ (16)

annihilate from (15) all the terms Ixxxα(0̄), α 6= n and yields to:

ΠN,n
κ,µ ÎN(sss) =

(−1)(n+κ)(n + κ)!(N − n)!

sssµ+κ+N+n+2̄
Ixxxn(0̄). (17)

Remark 3.1. If the truncation error is non zero, then equation (17) no

longer holds. Moreover, only noisy observation J(xxx) is available. Replacing

ÎN(sss) in (17) by its non truncated and noisy counterpart Ĵ(sss) then leads to

the operational estimator Ĩ(0̄; κ, µ;N) of Ixn(0̄) :

(−1)(n+κ)(n+ κ)!(N − n)!

sssµ+κ+N+n+2̄
Ĩxxxn(0̄; κ, µ;N) = ΠN,n

κ,µ Ĵ(sss), (18)
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Here, we use the notation Ĩ(0̄; κ, µ;N) to quote the dependance of the esti-

mator on the parameters κ, µ and N.

Remark 3.2. If N = n, the operational estimator is given by

(−1)(n+κ)(n+ κ)!

sssµ+κ+2n+2̄
Ĩxxxn(0̄; κ, µ;n) =

1

sssn+µ+1̄
∂n+κsssnĴ(s). (19)

and it is termed minimal because it is based on an nth order Taylor series

truncation.

Remark 3.3. To ΠN,n
κ,µ in (16), (17) correpond, in the spacial domain, an

integral operator ON,n
κ,µ (•) such that Ixxxn(0̄; κ, µ;N) = ON,n

κ,µ (IN(xxx)).

Recapitulating : By reconsidering the truncation error eR and the noise

influence ̟(xxx) together with relation (17), the partial derivative Ixxxn(0̄;κ, µ;N)

can be written as :

Ixxxn(0̄; κ, µ;N) = ON,n
κ,µ (IN(xxx)) +ON,n

κ,µ (eR) +ON,n
κ,µ (̟(xxx)). (20)

We can see here that two kind of errors may degrade the quality of the

derivative estimation. The aim of the forthcoming sections is to concentrate

on the minimization of these errors. We will see that estimators minimizing

the truncation error are not generally the best suited for filtering the noise

influence and vice-versa. Then the choice of an estimator for a particular

application obey to a compromise.

4. Structural properties and recurrence relations

First it is shown that non-minimal (N > n) algebraic estimators based

on an N th order Taylor model is an affine combination of minimal (N = n)

estimators with different κ and µ.
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Theorem 4.1. Let N, n, q, l, κ, and µ be multi-indices in Nrwith n ≤ N.

Then we have:

Ĩxxxn(0̄; κ, µ;N) =

q
∑

l=0̄

λλλlĨxxxn(0̄; κl, µl;n), λl ∈ Q (21)

where, q = N − n, κl = κ + q − l, and µl = µ + l. Moreover, if q ≤ n + κ,

then the coefficients λλλl,satisfy

q
∑

l=0̄

λλλl = 1.

Moreover, by excluding the trivial case where all the λλλl are equal to zero except

one, we have:

min
l

λλλl < 0. (22)

Now a recurrence relation is given between estimators based on N th and

(N − 1m)
th order Taylor model.

Theorem 4.2. Given multi-indices κ, µ, N and n ∈ Nr, and an integer

m ∈ [1, r]. We have:

Ĩxxxn(0̄; κ, µ;N) = amĨxxxn(0̄; κ, µ+ 1m;N − 1m) + bmĨxxxn(0̄; κ+ 1m, µ;N − 1m)

(23)

where am = Nm+κm+1
Nm−nm

, bm = 1− am and Nm > nm.

The meaning of the notation 1m is explained in subsection 2.1.

There exist another recurrence between the estimators based on (N− 1̄)th

and N th order Taylor series expansions. In order to introduce the recurrence

relation in a compact form, we state the following lemma.

13



Let L be a collection of multi-indices in Nr such that :

L = {l; |l| ≤ r and l! ≤ 1}. (24)

Define a binary relation (denoted ≺) on L such as : given l and l′ ∈ L then

l ≺ l′ iff

r∑

i=1

2r+1−il(i) <
r∑

j=1

2r+1−jl′(j), (25)

where l(i) is the ith element of l.

Lemma 4.1. The set L equipped with ≺ is a totally ordered set.

Accordingly, the elements of L can be arranged in an increasing order and

indexed such that L(1) = 0̄ and L(2r) = 1̄ where card(LLL) = 2r. On the other

hand, let um = (am, bm); m = 1, · · · , r and uuu = u1⊗· · ·⊗um⊗· · ·⊗ur ∈ Q2r .

Denote by uuu(i) the ith element of uuu. We have:

Theorem 4.3. Given multi-indices κ, µ, N and n ∈ Nr. We have:

Ĩxxxn(0̄; κ, µ;N) =

2r∑

i=1

uuu(i)Ĩxxxn(0̄; κ+ L(i), µ+ L(2r + 1− i);N − 1̄). (26)

5. Least squares interpretation and shifted estimators

Consider the subspace of L2([0, 1]) spanned by monovariate Jacobi poly-

nomials:

Hqm = span
{

P
{αm,βm}
0 (xm), · · · , P

{αm,βm}
qm

(xm)
}

,

equipped by the inner product :

< Pnm
, Ppm >

.
=

∫ 1

0

Pnm
(xm)ω(xm)Ppm(xm)dxm. (27)

14



Hqm is a reproducing kernel Hilbert space. Its reproducing kernel is given

by :

Kqm(ξm, xm) =

qm∑

i=0

P
{αm,βm}
i (ξm)P

{αm,βm}
i (xm)

‖P
{αm,βm}
i ‖2

.

Let HHHq be a tensor product of r (mono dimensional) subspaces Hqm of

L2([0, 1]) :

HHHq = Hq1 ⊗ · · · ⊗ Hqr ,

It is evident that HHHq is a reproducing kernel Hilbert space. Its reproducing

kernel is given by :

KKKq(ξξξ,xxx) = Kq1(ξ1, x1)× · · · × Kqr(ξr, xr) =

q
∑

l=0̄

P
{α,β}
l (ξξξ)P

{α,β}
l (xxx)

‖P
{α,β}
l (xxx)‖2

, (28)

where l is a multi-index and ξξξ = (ξ1, · · · , ξr) ∈ [0, 1]r.

It is now possible to define a qth order least squares approximation of a

function F (XxXxXx), where xxx ∈ [0, 1]r. It is noted Fls,q and given by :

Fls,q(XXXξξξ)
.
=

q
∑

l=0̄

〈P
{α,β}
l (xxx), F (XxXxXx)〉

||P
{α,β}
l ||2

P
{α,β}
l (ξξξ), (29)

where ξξξ ∈ [0, 1]r.

We will now show that the spacial analogue of (18) correspond to a dot

product of J(xxx) with the reproducing kernel (28). This projection leads us to

detect spacial delay inherent to minimal algebraic estimators (19). By spacial

shifting we mean that Ĩxxxn(0̄; κ, µ;n) given by (19) although designed from a

Taylor expansion around 0̄ corresponds in fact to a derivative estimation at

some point (to be determined) 0̄ + ξ′ξ′ξ′ with ξ′ξ′ξ′ = (ξ′1, · · · , ξ
′
r) different from 0̄.

Proposition 5.1. Given multi-indices κ, µ, α and n ∈ Nr. Let (∂nI)LS,1(XXXξξξ)

denote the first order least-squares polynomial approximation of nth order
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derivative on the interval [0̄,XXX ]. Then the spacial analogue of the minimal

nth order algebraic derivative estimator (19) is given by:

Ĩxxxn(0̄; κ, µ;n) = (∂nI)LS,1(XXXξ′ξ′ξ′) +̟′(xxx),

where ξ′ξ′ξ′ = (ξ′1, · · · , ξ
′
r) and

ξ′m =
κm + nm + 1

µm + κm + 2(nm + 1)
, m = 1, · · · , r (30)

are the roots of P
{κ,µ}
1̄

(ξξξ) = 0 and ̟′(xxx) is the noise contribution. (r roots

corresponding each to one of the r Jacobi polynomials : P
{κ,µ}
1̄

(xxx)).

We arrive here to a remarkable result, if in some application a combination

of partial derivatives is used as in the Laplacian estimation for example, the

delays ξm (30) has to be adjusted before one aim a high quality estimation.

We show in the following proposition that non minimal algebraic esti-

mators (18) are delay free, i.e. Ĩxxxn(0̄; κ, µ;N) correspond to the derivative

estimation at the point 0̄.

Proposition 5.2. Let κ, µ, q, N, and n be multi-indices ∈ Nr. Let

(∂nI)LS,q(XXXξξξ) be the qth order least squares approximation. Assume that

q ≤ κ + n with q = N − n. The non-minimal nth order algebraic derivative

estimator Ĩxxxn(0̄; κ, µ;N) (18) is given by:

Ĩxxxn(0̄; κ, µ;N) = ∂nILS,q(0̄) +̟′′(xxx),

where ̟′′(xxx) is the noise contribution.

We just showed that an N th order (N > n) Taylor expansion lead to

a qth (q = N − n) order least squares approximation. We also showed, in

16



equation (21), that the nth order estimator based on an N th order Taylor

model correspond to an affine combination of minimal nth order estimators

where the combination weights λλλl are rational. By taking affine combinations

where the λλλl are real numbers, it is possible to introduce a voluntary delay

ξξξd ∈ [0, 1]r. Now, if the delay correspond to one of the zeros of the (q + 1̄)th

order Jacobi polynomial, we achieve, from elementary minimal estimators, a

(q+1̄)th order least squares approximation. We reduce thus the error induced

by truncating the Taylor series expansion.

Proposition 5.3. Let κ, µ, n, q, and l be multi-indices in Nr. For any ξξξ ∈

[0, 1]r , there exists a unique set of real numbers λλλl(ξξξ), l = 0̄, · · · , q depending

on ξξξ such that

q
∑

l=0̄

λλλl(ξξξ)Ĩxxxn(0̄; κl, µl;n) = 〈KKKq(ξξξ,xxx), ∂
nI(Xxxx)〉. (31)

Moreover, these coordinates must satisfy

q
∑

l=0̄

λλλl(ξξξ) = 1. (32)

In addition, by excluding the trivial case where the λλλl are all equal to zero

except one, the following hold:

min
l

λλλl(ξξξ) < 0. (33)

Recall that the traditional approach consist in approximating the signal itself

in a set of orthogonal polynomials. Then, the derivative is estimated by

differenciating the approximating polynomial. This approach require the

estimation of several parameters. Contrarily, our approach leads directly to
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an expression of the derivative in an orthogonal polynomials set. Thus the

derivative estimation reduce to a single parameter identification. Moreover,

we note that ∂nI(XxXxXx) in equation (31) disappear upon integrating by parts

n times as indicated by the following formula:

〈KKKq(ξξξ,xxx), ∂
nI(Xxxx)〉 = 〈

∂n

∂xxxn
KKKq(ξ,xxx), I(XxXxXx)〉.

6. Minimizing the noise influence

In this section we are interested by minimizing the noise influence. In

fact our estimators can be written as linear time invariant filters with finite

impulse response. Consider the minimal estimators formula (19). It can be

written in the spacial domain as follows:

Ĩxxxn(0̄ + x; κ, µ;n) =
(−1)nγκ,µ,n

XXXn

∫ 1̄

0̄

∂n
[
(1̄− xxx)µ+nxxxκ+n

]
J(x+XxXxXx)dxxx, (34)

where γκ,µ,n = (µ+κ+2n+1)!
(µ+n)!(κ+n)!

.

Let us denote by hκ,µ(xxx) the following:

hκ,µ(xxx)
.
=

(−1)nγκ,µ,n
XXXn

[H(xxx)−H(xxx− 1̄)] ∂n
[
(1̄− xxx)µ+nxxxκ+n

]
, (35)

where H is the Heaviside function. We can write the estimators in the form

of a linear filter as follows :

Ĩxxxn(0̄ + x; κ, µ;n) =

∫ ∞̄

0̄

hκ,µ(xxx)J(x+XxXxXx)dxxx (36)

We consider in this section that the estimation hypercube of length XXX is

small such that the mis-modeling error eR is small. We suppose that the

noise is a wide-sense stationary random process. Given multi-indices κ, µ, n,
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q, and l, consider a linear combination of minimal estimators as follow :

˜̃
Ixxxn(0̄ + x; κ, µ;N) =

∫ ∞̄

0̄

q
∑

l=0̄

ιlhκl,µl
(xxx)J(x+XxXxXx)dxxx. (37)

where κl and µl are multi-indices defined earlier (in theorem 4.1) and ιl ∈ R.

Let us consider the set L′ = {l; l ≤ q}. Equipped by the order defined in

(25), (L′,≺) is a totaly ordered set. By arranging the elements of L′ in an

ascending order, we construct an index set for the r× (|q+ 1̄|) elements ιl in

(37). We can construct thus the vector ιιι = (ι0̄, · · · , ιl, · · · , ιq) ∈ Rr×|q+1̄|.

With ιιι = (ι0̄, · · · , ιq)
T ∈ Rr×(|q+1̄|), c a multi-index and xxx′ an independant

variable taking values in [0, 1]r, we can then verify that the output noise

variance is given by :

var(e) =

q
∑

l,c

ιlιc

∫ 1̄

0̄

∫ 1̄

0̄

hκl,µl
(xxx)E[̟(xxx)̟(xxx′)]hκc,µc

(xxx′)dxxxdxxx′ (38)

= ιιιTRιιι, (39)

where R is a square symmetric matrix of [r× (|q+1̄|)] lines and [r× (|q+1̄|)]

columns with entries given by :

Rl,c =

∫ 1̄

0̄

∫ 1̄

0̄

hκl,µl
(xxx)E[̟(xxx)̟(xxx′)]hκc,µc

(xxx′)dxxxdxxx′ (40)

Let zzz be a [r × (|q + 1̄|)]−dimensional vector with one in each entry. The

barycentric coordinates ιιιmin minimizing the variance are given by :

ιιιmin =
R−1zzz

zzztR−1zzz
. (41)

Finally, if ̟(xxx) is a white noise then the barycentric coordinates are given

by :

ιιιmin =
1

|q + 1̄|
zzz, (42)
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showing that the minimum output mean square error is achieved by the

centröıd of the points Ĩxxxn(x; κl, µl, n), l = 0̄, · · · , q.

Remark 6.1. Formulas similar to (42) can be computed for other types of

noises (bandlimited white, pink, brownian...). It suffices to have the auto-

correlation function.

We arrive to a remarkable conclusion : The affine combination of minimal

estimators (31) minimizing the truncation error do not in general coincide

with the combination (41) minimizing the noise variance. Nevertheless, if κ =

µ and q = 1̄, minimal estimator (which admit a least squares interpretation,

see proposition 5.1) coincide with the one minimizing the output white noise

variance.

Proposition 6.1. Consider a white noise and let hMV denote the filter min-

imizing the output noise variance by :

hMV (xxx, κ, µ, n, q) =
1

|q + 1̄|

q
∑

l=0̄

hκl,µl
(xxx) (43)

If q = 1̄ and µ = κ we have that

hMV (xxx, κ, µ, n, 1̄) = hκ,µ(xxx), ∀n. (44)

where hκ,µ(xxx) defined in (35).

It is known that classical least squares should be regularized in order to

increase their robustness to noise. The choice of the regularization terms and

the tuning of their parameters is not an easy task. We showed that the filter
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in (44) admit a least squares interpretation (proposition 5.1) and at the same

time minimize the output noise variance.

More generally, we can verify that any minimal algebraic estimator for

which abs(κ−µ) (where abs denote the absolute value) is close to the corre-

sponding minimum variance estimator for q = 1̄. This stems from the identity

:

hMV (xxx, κ, µ, n, 1̄) =
κ+ µ+ 2n+ 2̄

2(µ+ n+ 1̄)
hκ,µ(xxx) +

µ− κ

2(κ+ µ+ 2n+ 2̄)
hκ+1̄,µ(xxx).

Note finally that this result is not valid for q > 1̄, it suffices to remark that

in the monovariate case the barycentric coordinate of (45) are not identical

( 6= 1
3
):

Ixnm
m

(0;κm, µm;nm) =
1

4
Ixnm

m
(0;κm + 2, µm;nm) +

1

2
Ixnm

m
(0;κm + 1, µm + 1;nm)

+
1

4
Ixnm

m
(0;κm, µm + 2;nm). (45)

7. Numerical simulations

7.1. Implementation issues

The general form of the algebraic estimators can be written as:

Ĩxxxn(0̄; κ, µ;N) =

∫ 1̄

0̄

G(xxx)J(XxXxXx)dxxx. (46)

In order to estimate derivatives at a point different from zero, a translation

is needed as follows:

Ĩxxxn(0̄ + x; κ, µ;N) =

∫ 1̄

0̄

G(xxx)J(XxXxXx+ x)dxxx. (47)
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A discretization, with a sampling sss = (s1, · · · , sr), of the noisy signal J(x +

XxXxXx) on the hypercube [x, x+XxXxXx]r, xxx ∈ [0, 1]r, leads to a hyper-matrix Jd of

dimension 1
s1
× · · · × 1

sr
. Discretize the interval [0, 1]r with the same number

of samples and evaluate G(xxx) on the samples leads to a hyper-matrix Gd of

the same dimension 1
s1
× · · · × 1

sr
. Let Wd be a hyper-matrix constituted by

the weights of a numerical integration scheme. Let Rd be the hyper-matrix

obtained by element-wise multiplication of Gd and Wd. Thus a numerical

estimation of (47) is given by:

Ĩxxxn(0̄ + x; κ, µ;N) =
∑

Rd × Jd, (48)

where × and
∑

in (48) denote respectively element-wise multiplication and

summation. In the subsequent simulations, Simpson rule for multiple inte-

gration is used in Wd [23].

7.2. Numerical simulations

Several first and second order derivative estimators are tested using a

noisy bidimensional signal:

J(x1, x2) = sin(
1

2
x2
1 +

1

4
x2
2 + 3) cos(2x1 + 1− ex2) +̟(x1, x2). (49)

A noise level of SNR = 25 dB is considered by using the formula

SNR = 10 log10

(∑

i,j |I(x1i, x2j)|
2

∑

i,j |̟(x1i, x2j)2|

)

.

A sketch of (49) is shown in figure 1, while figure 2 show a slice of the noisy

surface were the derivatives are computed. It is given by E = {(x1, x2); x2 =

0,−1 ≤ x1 ≤ 3}. In fact, at discrete equidistant points of E the derivative
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Figure 1: 3-D plot of I(x1, x2) = sin(1
2
x2
1 +

1

4
x2
2 + 3)cos(2x1 + 1− ex2)
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Figure 2: A slice of the noisy surface at x2 = 0 and −1 < x1 < 3, 25 dB
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is estimated using a small elementary surface at the point of interest. A

sampling step of (0.005× 0.005) is used.

A comparison is made with finite differences from [1]. It is important to

note that finite differences are not evaluated on the sampling step (0.005 ×

0.005) but on the same elementary surface used to evaluate the algebraic

estimators. Using a large surface for finite differences permit to filter the

noise.

Three derivatives are evaluated Ix1, Ix2
1
and Ix1x2 . For each one four esti-

mators are compared:

1. A minimal estimator from equation (19) i.e. an estimator based on

minimal Taylor series expansion. We use κ = µ = 0̄.

2. A non minimal estimator (18) with κ = µ = 0̄ and N = n + 1̄.

3. An affine combination of minimal estimators (31) with κ = µ = 0̄ where

ξξξ is chosen to accomplish an exact estimator for polynomial signals

of degree n + 1̄. This class of estimators will be called in the sequel

voluntary delayed estimators.

4. A finite difference estimator from [1].

We used the same noise realization as well as the same elementary surface

to estimate the derivatives from the four estimators listed above. Some facts,

predicted in the theoretical part, can be seen in the simulations especially

that:

• the minimal estimators produce delayed estimations,

• the non minimal estimators do not induce a delay,
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• the voluntary delayed estimators procure a better representation of the

derivative (minimize the truncation error). Because they are exact for

polynomial signals of degree n+1̄ although based on a Taylor expansion

to the order n.

However, we can report some observations which are not studied in the

theoretical part and will be investigated in future works:

• non minimal estimators provide poor robustness with respect to noises

when compared with minimal ones,

• both minimal and non minimal estimators deform the extremas of the

derivative,

• the voluntary delayed estimators are good compromise between robust-

ness to noise and minimization of the truncation error.

The simulations are detailed below.

7.2.1. Estimation of Ix1

The minimal estimator is computed by taking n = (1, 0), N = n, µ =

(0, 0) and κ = (0, 0). The non minimal one is computed by taking n = (1, 0),

N = (2, 0), µ = (0, 0) and κ = (0, 0). The voluntary delayed estimator is

synthesized using equation (31) to calculate λλλl(ξξξ) which gives λλλ(0,0)(ξξξ) =

−2 + 5ξξξ, λλλ(1,0)(ξξξ) = 3 − 5ξξξ. The value of ξξξ is found by equating to zero

P
{κ,µ}
(1,0) (ξξξ) = 0 yielding to ξξξ = 1

2
− 1

2
√
5
.

Simulation results are shown in figure 3 a sliding surface consisting of

70×70 elements is used. Amplitude deformation induced by both the minimal

and non-minimal estimators is visible on the figure 4 where the signals (of
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figure 3) are aligned. Notice that the voluntary delayed estimator produce

better representation of the derivative.
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Figure 3: estimation of Ix1

7.2.2. Estimation of Ix2
1

The minimal estimator is computed by taking n = (2, 0), N = n, µ =

(0, 0) and κ = (0, 0). The voluntary delayed estimator is synthesized using

equation (31). The corresponding coefficients λλλl(ξ), l ∈ {(0, 0), (1, 0)}, are

given by λλλ(0,0)(ξξξ) = −3+ 7ξξξ, λλλ(1,0)(ξξξ) = 4− 7ξξξ. The value of ξξξ is the solution

of P
{κ,µ}
(2,0) (ξξξ) = 0 yielding ξξξ = 1

2
− 1

2
√
7
.

Simulation results are shown in figure 5, a sliding surface consisting of

100 × 100 elements is used. The amplitude deformation induced by the

minimal estimator can be seen on the figure 6 where the signal (of figure 5)

are aligned.
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Figure 4: Alignment of the signals shown in figure 3.
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Figure 6: Alignment of the signals depicted in figure 5

7.2.3. Estimation of Ix1x2

The minimal estimator is computed by taking n = (1, 1), N = n, µ =

(0, 0) and κ = (0, 0). The non minimal one is computed by taking n = (1, 1),

N = (2, 2), µ = (0, 0) and κ = (0, 0). The voluntary delayed estimator is syn-

thesized using equation (31) to calculate λλλl(ξ) with l ∈ {(0, 0), (0, 1), (1, 0),

(1, 1)}. We obtain λλλ(0,0)(ξξξ) = (−2+5ξ1)(−2+5ξ2), λλλ(1,0)(ξξξ) = (−2+5ξ1)(3−

5ξ2), λλλ(0,1)(ξξξ) = (3−5ξ1)(−2+5ξ2), λλλ(1,1)(ξξξ) = (3−5ξ1)(3−5ξ2). The values

of the delays ξξξ = (ξ1, ξ2) are given by the solutions of P
{κ,µ}
(1,0) (ξξξ) = 0 and

P
{κ,µ}
(0,1) (ξξξ) = 0. Due to the symmetry of the cross derivative Ix1x2 the delays

are equal ξ1 = ξ2 = 1
2
− 1

2
√
5
. This is not the case if one wants to estimate

Ix2
1x2

for example, the delays ξ1 and ξ2 are different for this case.

Simulation results are shown in figure 7, a sliding surface consisting of

100 × 100 elements is used. The curves in the figure 7 are aligned and

displayed in figure 8.
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7.2.4. Minimum variance vs minimum eR estimators

The same non minimal voluntary delayed estimator of Ix2
1
(q = (1, 0),

λ(0,0)(ξξξ) = −3 + 7ξξξ, λ(1,0)(ξξξ) = 4 − 7ξξξ, ξξξ = 1
2
− 1

2
√
7
) is compared with one

minimizing the noise variance i.e. ιl =
1
2
(which coincide with the minimal

estimator, n = (2, 0), N = n, µ = (0, 0), κ = (0, 0)). A sliding surface whose

size (60 × 60 samples) is smaller than the one used previously (100 × 100)

in the estimation of Ix2
1
is used for the computations. Recall that reducing

the sliding surface reduces the truncation error and accentuate the noise

influence. Simulation results are shown in figure 9. They clearly show that

the minimum variance estimator produce a smoother estimation.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

10

12

 

 

formal derivative
voluntary shifted estimator
minimum variance estimator

formal

minimum

Figure 9: minimum variance and non minimal voluntary delayed estimators of Ix2

1

7.2.5. Signal with varying frequency

Finally, another slice of the signal is considered at x1 = 2 and −1 < x2 <

3. The particularity of this slice is that its (pseudo) frequency increases with
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x2. The slice is shown in figure 10.
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Figure 10: A slice of the noisy surface at x1 = 2 and −1 < x2 < 3, 25 dB

The estimation of Ix1x2 is shown in 11. Note that the result of the minimal

estimator (n = (1, 1), N = n, µ = (0, 0) and κ = (0, 0)) degrades when the

frequency increase. If one decreases the sliding surface size, better results are

obtained with the minimal estimator at higher frequencies but degrades at

low frequencies. On the contrary, very good estimations are obtained at both

high and low frequencies with the voluntary shifted estimator (λλλ(0,0)(ξξξ) =

(−2+5ξ1)(−2+5ξ2), λλλ(1,0)(ξξξ) = (−2+5ξ1)(3−5ξ2), λλλ(0,1)(ξξξ) = (3−5ξ1)(−2+

5ξ2), λλλ(1,1)(ξξξ) = (3 − 5ξ1)(3 − 5ξ2)). The results of both estimators can be

better seen on the figure 12 where the curves of figure 11 are aligned by

adjusting the delays.
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8. CONCLUSION

In this paper, we presented a partial derivatives estimation method for

multidimensional signals. On a small interval the signal is represented by a

truncated Taylor expansion. Then the application of multivariate Laplace

transform together with adequate algebraic manipulations enabled us to ex-

press the desired partial derivative of any order as a function of iterated

integrals of the noisy signal. Several recurrence relations and structural

properties were provided. An interpretation of the estimators as least square

minimization is also done by expressing the estimators in an orthogonal basis

constituted by Jacobi polynomials. This projection enabled us not only to

show a spacial shifting inherent to a specific class of estimators but also to

synthesize a new class of estimators minimizing the truncation remainder of

the Taylor local model. We provided also another class of estimators mini-

mizing the noise influence. Finally we provided a numerical implementation

scheme in the form a finite impulse digital filters. Our estimators are very

performant in practical applications especially in image and video processing,

our first results in edge detection in images and motion detection in image

sequences are conclusive. They will be published in future papers.

9. proofs

proof 9.1 (of proposition 3.1). Multiply (15) by sN+1̄ to obtain

sN+1̄Î(s) =
N∑

α=0̄

sN−αIxxxα(0̄).

For α > n, we have N − n > N − α. Consequently, ∂N−nsN−α = 0 and

∂N−nsN−n = (N − n)!. This means that ∂N−nsN−α annihilates all the coeffi-
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cients of Ixxxα(0̄) with α > n in the Taylor expansion (15). To isolate Ixxxn(0̄),

it remains to annihilate the terms with α < n. It can be verified that applying

∂n 1
s
does the job. By further (partial) differentiating κ times followed by a

multiplication by 1
sssN+µ+1̄ we have the relation (17).

proof 9.2 (of theorem 4.1). Set p = κ+ n and write (16) in the form

ΠN,n
κ,µ =

1

sssN+µ+1̄
∂p1

sss
∂qsssq+1̄sn.

It can be rewritten in the form

ΠN,n
κ,µ =

1

s
N1+µ1+1

1

∂p1

∂s
p1

1

1

s1

∂q1

∂s
q1
1

s
q1+1

1 sn1

1 × · · · ×
1

s
Nm+µm+1
m

∂pm

∂s
pm

m

1

sm

∂qm

∂s
qm
m

sqm+1
m snm

m

× · · · ×
1

s
Nr+µr+1
r

∂pr

∂s
pr

r

1

sr

∂qr

∂s
qr
r

sqr+1
r snr

r

Let Wm = 1

s
Nm+µm+1
m

∂pm

∂s
pm
m

1
sm

∂qm

∂s
qm
m

sqm+1
m snm

m and following the lines of [31], we

start first by evaluating ∂qm

∂s
qm
m

(sqm+1
m snm

m ) then we evaluate

∂pm

∂s
pm
m

[
1
sm

∂qm

∂s
qm
m

(sqm+1
m snm

m )
]

:

Wm =

qm∑

i=0

min(pm,qm−i)
∑

j=0




qm

i








pm

j



×

×
(qm + 1)!

(qm + 1− i)(qm − i− j)!

1

s
µm+nm+1+i+j
m

∂pm+qm−i−jsnm

m . (50)

Let lm = i+ j, the above expression yields

Wm =

qm∑

i=0

min(pm+i,qm)
∑

lm=i




qm

i








pm

lm − i



×

×
(qm + 1)!

(qm + 1− i)(qm − lm)!

1

s
µm+nm+1+lm
m

∂pm+qm−lmsnm

m .

34



By permuting the sums, one gets

Wm =

qm∑

lm=0

lm∑

i=max(0,lm−pm)




qm

i








pm

lm − i



×

×
(qm + 1)!

(qm + 1− i)(qm − lm)!

1

s
µm+nm+1+lm
m

∂pm+qm−lmsnm

m .

Now let λ
′m
lm

(where the subscript lm and the superscript m are integers) be

given by :

λ
′m
lm

=
lm∑

i=max(0,lm−pm)




qm

i








pm

lm − i




(qm + 1)!

(qm + 1− i)(qm − lm)!
.

Then Wm is given by :

Wm =

qm∑

lm=0

λ
′m
lm

1

s
µm+nm+1+lm
m

∂pm+qm−lmsnm

m .

Let λm
lm

= (−1)qm−lm (nm+κm+qm−lm)!
pm!qm!

λ
′m
lm

and note that λm
lm

are rational

numbers. By using Vandermonde identity, we obtain for qm ≤ pm

λm
lm

= (−1)qm−lm




pm + qm − lm

pm





lm∑

i=0




pm

lm − i








qm + 1

i



(51)

= (−1)qm−lm




pm + qm − lm

pm








pm + qm + 1

lm



 .

Finally define C(qm) =
∑qm

lm=0 λ
m
lm
, and using the identity




a+ 1

b



 =
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a

b



 +




a

b− 1



 we have the following recurrence relation (see [31])

C(qm + 1) = C(qm) +

qm+1
∑

lm=0

(−1)lm




pm + lm

lm








pm + qm + 1

pm + lm





= C(qm) +




pm + qm + 1

pm





qm+1
∑

lm=0

(−1)lm




qm + 1

lm



 = C(qm).

If qm = 1 we have that C(1) = 1, and by using the above relation we have

C(qm) =
∑qm

lm=0 λ
m
lm

= 1, ∀qm.

Back to ΠN,n
κ,µ , it can now be rewritten as:

ΠN,n
κ,µ =

r∏

m=0

Wm =

r∏

m=0

qm∑

lm=0

λ
′m
lm

1

s
µm+nm+1+lm
m

∂pm+qm−lmsnm

m

Now let u1 = (λ
′1
0 · · · , λ

′1
l1
, · · · , λ

′1
q1
), · · · , um = (λ

′2
0 · · · , λ

′2
lm
, · · · , λ

′2
qm
), · · · ,

ur = (λ
′r
0 · · · , λ

′r
lr
, · · · , λ

′r
qr
), and λ′ = u1 ⊗ · · · ⊗ um ⊗ · · · ⊗ ur (all elements

belong to Q).

On the other hand, let L′ = {l; l ≤ q} be a collection of multi-indices.

Define on L′ the order relation ≺ by:

l ≺ l′ iff

r∑

i=1

2r+1−il(i) <

r∑

j=1

2r+1−jl′(j).

It is clear that the set L′ equipped with ≺is a totaly ordered set. Its ele-

ments can be thus arranged in an ascending order. Since dim(λλλ′) = card(L′),

the set L′ can be used as an index set for λλλ′ i.e λλλ′
l is the lth element of λλλ′.

Thus ΠN,n
κ,µ can be written as :

ΠN,n
κ,µ =

q
∑

l=0̄

λλλ′
l

1

sssµ+n+l+1̄
∂p+q−lsssn.
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Using (17), we have λλλl = (−1)q−l (n+κ+q−l)!
p!q!

λλλ′
l.

Consider now the following sum

q1∑

l1=0

λ1
l1
× · · · ×

qm∑

lm=0

λm
lm

× · · · ×

qr∑

lr=0

λr
lr
=

q∑

l=0̄

λλλl

which from the monovariate case [31] we have that
∑qm

lm=0 λ
m
lm

= 1 thus :

q
∑

l=0̄

λλλl = 1.

Finally, based on the monovariate case [31], it is straightforward to see

that:

min
l

λλλl < 0. (52)

proof 9.3 (of theorem 4.2). Set q = N − n and ν = N + µ+ 1̄, equation

(17) can be rewritten as :

(−1)n+κ(n+ κ)!q!

sµ+κ+N+n+2̄
Ixxxn(0̄; κ, µ;N) =

1

sν
∂n+κ1

s
∂qsN+1̄Î(sss).

It can be written in the spacial domain as

(−1)n+κ(n+ κ)!q!XXXµ+κ+N+n+1̄

(µ + κ+N + n+ 1̄)!
Ixxxn (0̄;κ, µ;N) =

∫ 1̄

0̄
(−1)n+κ (1̄ − xxx)ν−1̄

(ν − 1̄)!
xxxn+κ

∫ xxx

0̄
(−1)qξq∂N+1̄I(XXXξ)dξdxxx (53)

=

∫ 1̄

0̄

{

(−1)n+κ−(nm+κm)1m (−1)nm+κm
(1̄ − xxx)ν−1̄−(νm−1)1m

(ν − 1̄− (νm − 1)1m)!

(1 − xm)νm−1

(νm − 1)!
xxxn+κ−(nm+κm)1mxnm+κm

m

∫ xxx

0̄
(−1)q−qm1m(−1)qm ξq−qm1mξqmm ∂N+1̄I(XXXξ)dξ

}

dxxx

=

∫ 1̄−1m

0̄

{

(−1)n+κ−(nm+κm)1m
(1̄− xxx)ν−1̄−(νm−1)1m

(ν − 1̄− (νm − 1)1m)!
xxxn+κ−(nm+κm)1m

∫ xxx−xm

0̄

[

(−1)q−qm1mξq−qm1m

∫ 1

0

(

(−1)nm+κm
(1 − xm)νm−1

(νm − 1)!
xnm+κm

m

∫ xm

0
(−1)qm ξqmm ∂N+1̄I(XXXξ)dξm

)

dxm

]

dξ

dξm

}

dxxx

dxm

.
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with dξ

dξm
= dξ1 × · · · × dξm−1 × dξm+1 × · · · × dξm and dxxx

dxm
= dx1 × · · · ×

dxm−1×dxm+1×· · ·×dxm. (Note that the first 2 integrals in the above relation

are with multi-indices while the 2 others are classical integrals).

Let

Ω =

∫ 1

0

(−1)nm+κm
(1− xm)

νm−1

(νm − 1)!
xnm+κm

m

∫ xm

0

(−1)qmξqmm ∂N+1̄I(XXXξ)dξmdxm.

(54)
By integrating by parts with respect to the second integral in (54) we have

Ω1 =

∫ 1

0
(−1)nm+κm

(1 − xm)νm−1

(νm − 1)!
xnm+κm

m

∫ xm

0
(−1)qm+1qmξqm−1

m ∂(N+1̄−1m)I(XXXξ)dξmdxm

+

∫ 1

0
(−1)Nm+κm

(1 − xm)νm−1

(νm − 1)!
xNm+κm

m ∂(N+1̄−1m)I(XXXxxx)dxm

Now, integrate by parts with respect to the first integral in (54):

Ω2 =
−1

nm + κm + 1

{
∫ 1

0
(−1)nm+κm+1xnm+κm+1

m

(1− xm)νm−2

(νm − 2)!

∫ xm

0
(−1)qm ξqmm ∂N+1̄I(XXXξ)

dξmdxm −
∫ 1

0
(−1)N+κm+1xN+κm+1

m

(1− xm)νm−1

(νm − 1)!
∂N+1̄I(XXXxxx)dxm

}

=
−1

nm + κm + 1
(A−B)

where A (resp. B) represent the first (resp. the second) term in parenthesis.
Integrating by parts A and B lead to A1 and B1 respectively which are given
by:

A1 =

∫ 1

0
(−1)Nm+κm+1xNm+κm+1

m

(1− xm)νm−2

(νm − 2)!
∂(N+1̄−1m)I(XXXxxx)dxm

−
∫ 1

0
(−1)N+κm+1xNm+κm+1

m

(1− xm)νm−2

(νm − 2)!

∫ xm

0
qmξqm−1

m ∂(N+1̄−1m)I(XXXξ)dξmdxm

and

B1 =

∫ 1

0
(−1)Nm+κm+1[(Nm + κm + 1)xNm+κm

m

(1− xm)νm−1

(νm − 1)!
+ xNm+κm+1

m

(1 − xm)νm−2

(νm − 2)!
]

∂(N+1̄−1i)I(XXXxxx)dxm.

Then Ω2 will have the form:

Ω2 =
−1

nm + κm + 1
(A1 −B1).
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Recall that Ω = Ω1 = Ω2 then it is possible to write:

Ω = amΩ1 + (1− am)Ω2. (55)

Finally plugging (55) in (53) and arranging terms lead to the formula (23).

proof 9.4 (of lemma 4.1). Antisymmetry, transitivity and totality can be

easily shown.

proof 9.5 (of theorem 4.3). The proof is straightforward upon applying

successively (23) for m = 1, · · · , r.

proof 9.6 (of proposition 5.1). Recall the first order least squares approx-

imation as defined in (29). Note that the minimal relation (19) can be written

in the spacial domain as follows :

Ĩxxxn(0̄; κ, µ;n) =
(µ+ κ+ 2n)!(−1̄)n+κ

(n+ κ)!XXXn

∫ 1̄

0̄

(1̄− xxx)µ+nxxxκ+n∂nJ(XxXxXx)dxxx. (56)

which correspond to a projection of Ĩxxxn(0̄, κ, µ;n) on P
{κ,µ}
0̄

(ξξξ) = 1. This is

equivalent to say that equation (56) is also satisfied on the zeroes of P
{κ,µ}
1̄ (ξξξ)

given by (30). Note that the partial derivative ∂n in formula (56) disappear

upon integrating n-times by parts.

proof 9.7 (of theorem 5.2). Recall first the mono variable case for r = 1,

(i.e. xxx = x1, XXX = X1, N = N1, κ = κ1, µ = µ1, n = n1) equation (17) gives:

(−1)(n1+κ1)(n1 + κ1)!(N1 − n1)!

s
µ1+κ1+N1+n1+2
1

Ixn1
1

=
1

s
N1+µ1+1
1

dn1+κ1

dsn1+κ1
1

1

s1

dN1−n1

dsN1−n1
1

sN1+1
1 Î(s1).
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Back in the spacial domain this equation gives:

Ixn1
1
(0;κ1, µ1;N1) =

(−1)n1+κ1(µ1 + κ1 +N1 + n1 + 1)!

(N1 − n1)!(n1 + κ1)!X
µ1+κ1+N1+n1+1
1

∫ X1

0
Υ1(x1)I(x1)dx1

(57)

with

Υ1(x1) =

N1−n1∑

i=0




N1 − n1

i




(N1 + 1)!

(n1 + i+ 1)!

N1+κ1∑

j=0




n1 + κ1

j




(n1 + 1)!

(1 + j − κ1)!
×

×
(X1 − x1)

ν1+κ1−j−2(−x1)
i+j

(µ1 + κ1 − j − 2)!
.

By integrating by parts n1 times equation (57) one obtain:

Ixn1
1
(0, κ1, µ1;N1) =

∫ X1

0

Ω1(x1)
dn1I(x1)

dxn1
1

dx1

with

Ω1(x1) =

∫ X1

0

· · ·

∫ X1

0
︸ ︷︷ ︸

n1

(−1)n1+κ1(µ1 + κ1 +N1 + n1 + 1)!

(N1 − n1)!(n1 + κ1)!X
µ1+κ1+N1+n1+1
1

Υ1(x1)dx1.

Let q1 = N1 − n1. It was shown in [31] that

Ω1(x1) = Kq1(0, x1) =

q1∑

i=0

P
{κ1,µ1}
i (0)P

{κ1,µ1}
i (x1)

‖P
{κ1,µ1}
i ‖2

. (58)

On the other hand take equation (16), (17) and rewrite it as :

(−1)(n1+κ1)(n1 + κ1)!(N1 − n1)!

sssµ1+κ1+N1+n1+2
Ixxxn (0̄, κ, µ;N) =

1

s
N1+µ1+1
1

∂n1+κ1
1

s1
∂N1−n1s

N1+1
1 × · · ·

× 1

s
Nm+µm+1
m

∂nm+κm
1

sm
∂Nm−nmsNm+1

m · · · Î(sss).

Going back to the spacial domain one obtain :

Ixxxn(0̄) =

∫ XXX

0̄

r∏

m=1

(Ωm(xm)) ∂
nI(xxx)dxxx.
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By using formula (28) and (58) we deduce that :

r∏

m=1

(Ωm(xm)) = KKKq(0̄,xxx). (59)

The formula (59) show that the non minimal estimator of order q can be

expressed as an orthogonal projection in a multivariate Jacobi basis of order

q given by :

Ixxxn(0̄; κ, µ;N) =

q
∑

l=0̄

〈P
{κ,µ}
l (xxx), ∂(n)I(XxXxXx)〉

‖P
{κ,µ}
l ‖2

P
{κ,µ}
l (0̄) (60)

proof 9.8 (of proposition 5.3). Recall first the multivariate Bernstein poly-

nomials of degree q (where q and i are multi-indices in Nr) on the interval

[0, 1]r given by

Bq
i (xxx) =




q

i



 (1̄− xxx)q−ixxxi

=




q1

i1



 (1− x1)
q1−i1xi1

1 × · · · ×




qr

ir



 (1− xr)
qr−irxir

r

=

r∏

m=1

B
qm
im

(xm), (61)

where B
qm
im

(xm) are the monovariate Bernstein polynomials. Note from [36]

and references therein that it is possible to write each monovariate Jacobi

polynomial of degree l1 where l1 ≤ q1 in the Bernstein basis to the order q1

using the following formula:

P
{κ1,µ1}
l1

(x1) =

q1∑

i1=0

Nl1,i1B
q1
i1
(x1)
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where

Nl1,i1 =
1




q1

i1





min(i1,l1)∑

j=max(0,i1+l1−q1)

(−1)l1−j




q1 − l1

i1 − j








l1 + κ1

j








l1 + µ1

l1 − j





Accordingly, in the multivariate case, we have:

P
{κ,µ}
l (xxx) =

q
∑

i=0

Ml,iB
q
i (xxx),

where Ml,i is a constant depending on Nlm,im , m ∈ [0, r].

Furthermore, let us consider the minimal algebraic estimator formula

(19), it can be written in the time domain as follows

Ixxxn(0̄; κ, µ;n) =
(µ+ κ+ 2n + 1)!

(µ+ n)!(κ + n)!

∫ 1̄

0̄

(1̄− xxx)µ+nxxxκ+n∂nI(XxXxXx)dxxx (62)

Note that the differentiation (∂nI(XxXxXx)) under the integral sign is only formal,

it disappear upon intgrating by parts n times. Consider now the sum:

q∑

l=0̄

λλλlIxxxn(0̄; κl, µl;n), (63)

where the λλλl ∈ R, l ∈ [0̄, q] are to be determined and κl = κ + q − l and

µl = µ+ l multi-indices in Nr.

Let γκ,µ,n = (µ+κ+2n+1)!
(µ+n)!(κ+n)!

the above sum can be written in the form

q
∑

l=0̄

λλλlIxxxn(0̄; κl, µl;n) =

∫ 1̄

0̄

D(xxx)(1̄− xxx)µ+nxxxκ+n ∂nI(XxXxXx)dxxx (64)

with D(xxx) given by:

D(xxx) =

q
∑

l=0̄

λλλlγκl,µl,nxxx
q−l(1̄− xxx)l. (65)
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On the other hand, recall the multivariate reproducing kernel property

(28) we can write

KKKq(ξξξ,xxx) =

q
∑

l=0̄

P
{κ,µ}
l (ξξξ)P

{κ,µ}
l (xxx)

‖P
{κ,µ}
l (xxx)‖2

=

q
∑

l=0̄

χl(ξξξ)P
{κ,µ}
l (xxx) (66)

Next express the Jacobi polynomials in the above relation in a qth order Bern-

stein polynomials, we obtain:

KKKq(ξ,xxx) =

q∑

l=0̄

χl(ξξξ)

q∑

i=0̄

Ml,iB
q
i (xxx). (67)

Finally by equating

KKKq(ξ,xxx) = D(xxx) (68)

One can see that for any ξξξ = (ξ1, · · · , ξr) ∈ [0, 1]r, there exist a unique set

of λλλl noted from now on λλλl(ξξξ) satisfying relation (68). This set of λλλl(ξξξ) is

determined upon identifying corresponding powers of xxxq−l(1̄ − xxx)l, and this

set is unique because λλλl(ξξξ) appear linearly in D(xxx) in (68). From the mono

variable case [31] it is easy to see that

q
∑

l=0̄

λλλl(ξξξ) = 1. (69)

proof 9.9 (of proposition 6.1). In fact we can verify the following rela-

tion :

Ĩxxxn(0̄; κ, µ;n) =
2r∑

i=1

1

2r
Ĩxxxn(0̄; κ+ L(i), µ+ L(2r + 1− i);n),

where L is given by (24).
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différentielle de transitoires bruités”, C.R. Acad. Sci. Paris Ser. I,

vol.339, pp. 821-826, 2004.

[18] M. Fliess, C. Join, M. Mboup and H. Sira-Ramirez, “Analyse et rep-

resentation de signaux transitoires: application à la compression, au
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