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Some remarks on vehicle following control
systems with delays

Woihida Aggounglrinel-Constantin Moraresé¢ilviu-lulian Niculesci

Abstract

In this paper, we consider the problem of vehicle followirogn€
trol with delay. To solve the problem of traffic congestionemf the
solutions to be considered consists in organizing the ¢raffo pla-
toons that is groups of vehicles including a leader and a number of
followers "tightly” spaced, all moving in a longitudinalrdiction. Ex-
cepting the stability of individual cars, the problem of mlance of
slinky type effects will be explicitly discussed. Suffictezonditions
on the set of control parameters to avoid such a phenomerbewi
explicitly derived in a frequency-domain setting.

1 INTRODUCTION

Traffic congestion(irregular flow of traffic) became an important problem
in the last decade mainly to the exponential increasing etrtéinsportation
around medium- and large-size cities. One of the ideas o $wVing this
problem was the use of automatic control to replace humarmdrand their
low-predictable reaction with respect to traffic problenfss an example,
human drivers have reaction time betwde®5 — 1.25 sec of around0m

or more att0kms/hour (see, for instance, Sipahi and Niculescu [2007&fo
complete description of human drivers reactions, and éurtftomments on
existing traffic flow models).
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A way to solve this problem is to organize the traffic iplatoons con-
sisting in groups of vehicles including a leader and a nunabdollowers
in a longitudinal direction. In this case, the controllereafch vehicle of a
platoon would use the sensor information to try to reach gezd and ac-
celeration of the preceding vehicle. Another problem todresalered is the
so-calledslinky-type effec{see, e.g. Burnharat al. [1974], loannou and
Chien [1993], Shiekholslam and Desoer [1993] and the rata® therein).
This is a phenomenon of amplification of the spacing errot&/éen subse-
guent vehicles as vehicle index increases.

In Huang and Ren [1998], a control scheme to solve this nobijctive
control problem was proposed. Knownagonomous intelligent cruise con-
trol, the controller in this scheme has access only to the relatate infor-
mation of the preceding vehicle. This study is made undeafiseimptions
that the leading vehicle performs a maneuver in finite tinfergereaching
a steady state, and that prior to a maneuver, all the vehiotese at the
same steady speed. The stability analysis of the systenosediloop was
performed by using a Lyapunov-Razumikhin approach leatbrapnserva-
tive conditions. The slinky-effect type phenomenon waswulised and some
sufficient conditions to avoid slinky effects have been psaul, but without
any explicit attempt in computing the whole set of contiidlgparameters
guaranteeing the requested property. To the best of thersu#tmowledge,
such a problem has not received a definitive answer.

The aim of this paper is to give better answers to the problemtioned
above - construction of explicit control laws guaranteesigultaneously
individual stability and the avoidance of the slinky-tydéeet phenomenon.
We use a frequency-domain method to give necessary andianiffimon-
ditions for the individual stability analysis by computitize explicit delay
bounds guaranteeing asymptotic stability. Next, we shaligitly compute
bounds on the controller's gains ensuring the avoidanckeo$linky effects.

The remaining paper is organized as follows: In Section € pttoblem
formulation is presented. In Section 3, we state and prover@in results
concerning the stability of the system and the slinky efagiidance con-
ditions. In section 4, an illustrative example is present&ahally, some
concluding remarks end the paper.
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2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

The general schema of a platoonrof/ehicles is represented below, where
x;(t) is the position of theth vehicle with respect to some reference point
O and H; is the minimum separation distance allowable between thre-co
sponding vehicles.

. Lead car
Av.+H, ¢,

direction of travel

Figure 1: Platoon configuration

The goal is to maintain a distanée; + H; between vehiclé and: — 1,
where) is a prescribed headway constant apnthe corresponding velocity

(see Huang and Ren [1998]). The spacing efydwetween the vehiclesand
(i — 1) is defined as :

52(75) = wi_l(t) — l‘l(t) — ()\’Uz + Hl)

in the case of system (1).
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2.1 Modd of vehicle dynamics

For each vehicle of the platoon, the model is of the form:
0i(t) = 7i(t) 1)

wherex;(t), v;(t) and~;(t) represent respectively the position, the speed
and the acceleration of thi#éh vehicle. Herey is the vehicle’s engine time-
constant,;n is the vehicle masg[7, is the load torque on the engine speed,
gear ratio, grade change etc., and it is assumed to be ctnstais the
total (corresponding) delay (including fueling and tramrgpetc.) for theith
vehicle (see Huang and Ren [1997] for more details).

2.2 Control law

In Huang and Ren [1998], the proposed control law is given by:
wi(t) = K0 (t) + k,0:(t) + T, (2)

wherek’ and k!, are design constants. If one applies the control law (2) to
the system (1), we shall obtain the following third orderagetquation:

a3 d?

ﬁél(t) = —Z@&@) — k85i(td_2 TZ')

_ Gy &S 3)
(kv—l-)\ks)dt&(t i) )\kvdtzél(t i)

+ksbi—1(t — 1) + ky—0i—1(t — Ti—1),

dt

wherek, andk, are derived fromk, and k] by an appropriate re-scaling.
For the sake of simplicity, the corresponding computatiargsomitted (see
Huang and Ren [1997] and Huang and Ren [1998]).

2.3 Frequency domain formulation

2.3.1 Individual stability

A basic control requirement for the overall system is thexgsptic stability
of the ith vehicle if the preceding, the — 1)th, is at steady-state (i.e. the
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spacing errors verifyd;,_; = 6;_, = 0). In this case, the system is described
by:

a3 d?
ﬁéi(t) = _gﬁéi(t) - kséi(td_z Ti) @)
= (ko o Ns) =83t = 7) = Ay =503t = 73).

Taking the Laplace transform, under zero initial condiomve obtain a
third-order transcendental equation of the form

Li(s,71) 2 83+ as® 4 [Meys? + (ky + Mks)s + kgle™™®
= Q(s)+ P(s)e*" =0. (5)
Assumption1 (a) P(0) #0
(b) The polynomials(s) and@(s) do not have common zeros

If Assumption 1.(a) is violated, then O is a zerolf s, 7;) for anyr; € Ry
Therefore, the system is never asymptotically stable. déiagption 1.(b) is
not satisfied,P(s) andQ(s) have a common factar(s) # constant. Sim-
plifying by ¢(s) we get a system described by (5) which satisfies assumption
1.(b).
The individual vehicle stability is guaranteed if and orfiy’ihas all its
roots in the left half complex plane. This depends on theydslagnituder;.
Then the problem of stability can be formulated as a reseafrplram-
etersa, A, ks andk, such that this condition is ensured.

2.3.2 Avoiding dinky effect

The second part of the multi-objective problem previousdfirted consist
in controlling the slinky effect. The goal is to find sufficteconditions to
guarantee that we avoid such a phenomenon. Considering/$teas (3)
and applying the Laplace transform, one gets

2 5.()/6: _ (ks + sky)e ™2
G(s) = 0i(s)/di-1(s) = (ks + (ko + Nes)s + )\kUSQ)e_TiS + as2 + 53

(6)

One has nalinky-type effedi:
0i(7
Uw) |y 7)

G(jw)| = \7&_1(].20)

for anyw > 0 (see loannou and Chien [1993], Shiekholslam and Desoer
[1993], Swaroopet al.[1994]). Then the problem turns out in finding the set
of parametersk,, k,,) and the delays; such that the stability of the system
(4) is guaranteed and the condition (7) is satisfied.
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3 MAINRESULTS

3.1 Delay stability margin

Before proceeding further, we consider the case withowydérhe closed-
loop system free of delay is asymptotically stable when tigrmiall’; (s, 0)
is Hurwitz. Sincex, kg, k, € R4, the third-order polynomial:

§3 4 (@ + Mky)s? + (ky + Mks)s + ks = 0 (8)
is Hurwitz if and only if:
(o + M) (ky + k) > ks, 9)
which is equivalent to
M2 4 (@ + N2Eg)ky + (X — 1)kg > 0. (10)

Note that a sufficient condition for (10) is:
1—al
A2
Denote now by the set of crossing frequencies, that is the set of reals

w > 0, such thatt-jw is a solution of the characteristic equation (5). Then
the following statement holds.

ky >

Proposition 1 Consider the characteristic equation (5) associated to the
system (4). Then:

(a) the crossing frequency s@tis not empty

(b) the system is asymptotically stable for all delays (0, 7*) wherer*
is defined by:

™ = wmelg {Tk(w) | 7(w) >0, k € Z}, (11)
where

() = = (2 + D+ 2QUw)) — £(P(juw)

Proof. (a) Straightforward. Assume by contradiction that the glétalependent
stability holds. As discussed in Niculescu [2001], a nemgssondition for
delay-independent stability is the Hurwitz stability @f and this is not the
case.
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(b) Since the system free of delay is asymptotically stahkeconclusion
of (a) leads to the existence of a delay margin such that the system is
asymptotically stable for all delays € [0, 7*). Furthermore at = 7* the
system becomes unstable if and only if the characteristiatan (5) has at
least one root = jw on the imaginary axis. In other words if there exists
w € () a crossing frequency. Since

P(jw)
Q(jw)

one can derive the delay values corresponding to each egofssiqguencyw
as:

= —e7IwT (12)

1 . .
7h(w) = = ((2k + )7 + £(Q(jw)) = £(P(jw)) (13)
Obviously7* is the smallest positive value that satisfies the previdasioa.

[ ]

The condition(a) above simply says that the corresponding system can-
not be delay-independent asymptotically stable, and thdition (b) above
gives an explicit expression of the delay margin

3.2 Stability analysisin controller parameter space (k,, k)

In the sequel, we study the behavior of the system for a fixéaydaluer.
More precisely, for a givem = 7* we search the crossing frequencieand
the correspondingrossing pointsn the parameter spacg,, k) defined by
the control law such tha® (jw, ky, ks, 7°) + P(jw, ky, ks, 75)€777" = 0.

According to the continuity of zeros with respect to the gglarame-
ters, the number of roots in the right-half plane (RHP) caange only when
some zeros appear and cross the imaginary axis. Thus, itusah& con-
sider thefrequency crossing sét consisting of all real positivey such that
there exist at least a pd(ik,, k) for which

H(jw, ko, ks, 7) £ Q(jw) + P(jw)e™“T = 0. (14)
Remark 1 Using the conjugate of a complex number we get
H(jw,ky, ks, 7) =0 H(—jw, ky, ks, 7) = 0.

Therefore, it is natural to consider only positive frequiesc that isQ2 C
(0, 00).

Considering that the sé€t and the parameterg, \ are known we can easily
derive all the crossing points in the parameter sgaceks ).
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Proposition 2 For a givenT > 0 andw € ) the corresponding crossing
point (k,, ks) is given by:

w?(1 — aX) cos wr + w(a + Aw?) sinwr

ky = 15

1+ Aw? (15)

b — w?(Aw? 4+ @) cos wr + w3(aX — 1) sinwr (16)
1+ Aw?

Proof. Using the decomposition of the equation (14) into real aragimary
part, straightforward computation lead us to

ky, + Mks = w(wcoswT + asinwr), a7
ks — Mepw? = w?(acoswr — wsinwr) (18)
and further we can derive the result stated above. O

To illustrate our purpose, let us consider the case whete5, A = 1 and
7 = 0.5, then for eaclw € Q2 the corresponding crossing poirtts,, k) are
represented in the following figure.

800

600 -

400

200

-400 -

-600

-800 L L L L
-30 -20 -10 0 10 20 30

Figure 2: Crossing points

Remark 2 Forall w € Qwe haveP(jw) # 0. Indeed, itis easy to see that if
w € Q, then there exists at least one péit,, k) such thatd (jw, k, T, 7) =

0. Therefore, assuming that(jw) = 0 we get alsoQ(jw) = 0 which
contradicts assumption 1.(b).

Since we are interested to find the crossing pofhts k) such thatk, and
k arefinite the frequency crossing sgtis characterized by the following:
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Proposition 3 The frequency crossing s@t consists of a finite number of
intervals of finite length.

Proof. It is obvious from the equations (15) and (16) that the cdietro
parameters:, and k; approach infinity whens — oo. Thus, in order to
have finite values fok, andk,; we have to impose an upper limit for the
variation ofw. On the other hand, consideri§y C (0, M], it is clear that
the inequalitiese, > 0 andk, > 0 are simultaneously satisfied ferinto a
finite number of intervals included ifd, M.

O

N
Let us suppose th&l = U Q. Then (15) and (16) define a continuous

curve. Using the notationés %ntroduced in the previous pady and the
technique developed in Get al. [2005a] and Morarescat al. [2007], we
can easily derive the crossing direction correspondingitdurve.

More exactly, let us denotg, the curve defined above and consider the
following decompositions into real and imaginary parts:

 OH (s, kv, ks,
Ro+jl, = JOHGFwksT)
s Os s
1 H kvak87
Rl _|_j[1 — _M ,
s Ok, s=jw
10H (s, ky, ks,
Ry + 41 — ——(S’ 7)
s Oks s=juw

Then, sinceH (s, k,, ks, T) is an analytic function ok, k, and k,, the im-
plicit function theorem indicates that the tangentfptan be expressed as

dk,
dw _ 1 < RiIy — Rol4 > (19)
dks RiI; — RoI; \ Roly — Roly )7
dw
provided that
RiI, — RoI; # 0. (20)

It follows that7, is smooth everywhere except possibly at the points where
either (20) is not satisfied, or when

dk, dks
dv  dw
From the above discussions, we can conclude with the fatigwi

(21)
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Proposition 4 The curve7, is smooth everywhere except possibly at the
point corresponding t& = jw such thats = jw is a multiple solution
of (14).

Proof. If (21) is satisfied then staightforward computations sh@athat
Ry = Iy = 0. In other wordss = jw is a multiple solution of (14).
On the other hand,

RiIy — Roly = —w(1 4+ Mw?) < 0, Yw > 0.

[ ]

The next paragraph focuses on the characterization of tssiag direc-
tion corresponding to each of the curves defined by (15) a6y (&ee, for
instance, Morarescu [2006] or Morarescu and Nicules©@T2 for similar
results for different problems).

We will call the direction of the curve that corresponds tor@asingw
the positive direction We will also call the region on the left hand side as
we head in the positive direction of the cutbe region on the left

Proposition 5 Assumev € Qy, k,, ks satisfy (15) and (16) respectively, and
w is a simple solution of (14) an#l (ju', ky, ks, 7) # 0, Vo' > 0, ' # w
(i.e. (ky, ks) is not an intersection point of two curves or different sausi
of a single curve).

Then a pair of solutions of (14) cross the imaginary axis te tight,
throughs = +jw if RiIo, — ReI; > 0. The crossing is to the left if the
inequality is reversed.

Remark 3 In the proof of Proposition 4 we have shown tiiatl, — R 14 is
always negative. Thus, a system described by (14) may haestinam one
stability region in controller parameter spac¢e,, k) if one of the following
two items are satisfied:

e it has one or more crossing curves with some turning poirits ¢li-
rection of7, in controller parameter space changes).

e it has at least two different crossing curves with oppositeation in
(kv, ks) - space.
3.3 Avoiding dlinky effects

Now, we treat the second part of the multi-objective problerder consid-
eration. This correspond to the characterization of thalitimms guarantee-
ing that we avoid slinky-effects. We consider the system &)plying the
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Laplace transform one obtains:

3i(s) (ks + sky)e™ 718
= = . (22
G(s) 8i—1(s) (ks + (ky + Mks)s + Mkyps?)e 75 + as? + s3 (22)

There is no slinky effect if :

|G(jw)| <1, VYw>0 (23)
This condition can be rewritten as:
A(w, 1) (w) = w?B(w, ;) >0 (24)
with
Bw,)(w) = w*—2X\kysin(wr)w3+

(A2k2 + a? + 2(aXk, — ky, — Mks)cos(wT;))w?+
2(ks — aky, + Mky))sin(wr;)w + +A2k2 — 2akgcos(wT;)
(25)
which should be satisfied for all € IR.
The objective is to define conditions on the parameters ottméroller, in
order to satisfy this constraint.
Consider first the casg = 0. Then, we have:

B(w,0) = w4 [(Aky + @) — 2(ky + Mks) | w?

(26)
+ A2k2 - 20k,
A necessary condition for the positivity &f(w, 0) is
NE2 — 20k, > 0, (27)
which implies that:
2a
ks € (F,—FOO) (28)
Under this condition, the positivity aB(w, 0) is guaranteed if:
[(Aky + @)% = 2(ky + Mes)]? < 4022 — 2ak,). (29)
which leads to:
Cok 1 — 22 < (A )2 — 2k + M)
S Azk,’s — v v S
(30)

2
< -
21{:3)\1 /1 Nk,
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In order to complete this analysis, we want to characteheeset of param-
etersk, guaranteeing the previous inequality under the const(asjt
If we consider first the right part of (30), which is equivaléo

2ay

MEZ 420 — Dk, + a? — 205 (1 + /1 — ) <0
we can remark that if
20 2a)\ —1
kz’s > max{v, 27/\3} (31)

then there exists at least one positive valesuch that the right part of (30)
is satisfied. Moreovek,, should satisfy:

1—a\—+VA 1—aX+VA
max{0, Tl} <k, < Tl (32)
where
Ay =1—2aX+2)k(1+ 1—2—0‘)
1 S >\2ks .
The left inequality in (30) can be rewritten as:
272 2 2a
NkD 4 2(Ma — Dky + o — 2Xks(1 — 1_>\2—k) >0
This leads to the following condition o, :
1—01/\—\/A2 1—Oé>\+\/A2
ky€(—o0, 32 | U 2 400). (33)
where
Ag=1— 200 + 20k, (1— /1 - =)
2 s )\st

is assumed to be positive. Ay < 0, then the left part of (30) will be satisfied
for all positive k,,. Finally, using the conditions (32) and (33) function of
the sign ofA,, it follows that k&, must be chosen in the intersection of the
intervals defined by (32) and (33).

Now we analyze the sign dB(w, ;) whenr; > 0. We consider again
the expression given in (24) @& (w, 7;).
For the terms involvingos(wT;), we have:

—2akscos(wt;) > —2aks

and
2(aXky — ky — Aks)cos(wT;) > —2|arky, — ky — Aks).
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Concerning the terms involvingin(wr;), sincesin(wr;) < w; forw > 0
then:
—2)\kvsin(wn)w3 > —\k,rwt > —2\k, 7 w?
and
2(ks — a(ky + Mks))sin(wr;)w
> —2lks — alky, + k)| w2
> —2lks — alky + M) 7w

Therefore,

B(w, ;) > (1 — 2Xk,m*)w* + [N2k2 + o2
—2|aXk, — ky — Mes| —27%|ks — ok + Mk )[Jw?
+A2k2 — 2ak,

> (1 = 20k, )W + [(Mky — )% — 2k, — 2)ks

—27%ks —27*au(ky + Mkg)w? + N2k2 — 20k, >0.
Let us set :

C(w, ) = (1 = 2Xk, ™)w* + [Nk, — @)% — 2k,

—2X\ks — 27%ks — 27%au(ky + k) w2+ N2 k2 20k

We suppose that :
1 —2X\k, 7 > 0. (34)

Then the positivity ofC' (w, 7*) is ensured if (28) is satisfied and if we have:

[(Mky — )2 — 2k, — 2X\ks — 277k
(35)
—27%a(ky + M) 2 < 4(1 — 20k, 7%) (A2K2 — 2aks).

This leads to the condition:

2c
— - — * <
2ks)\\/(1 /\st)(l 20k )

(Mey — )2 — 2k, — 20ks—27* (kgta(ky + My )) (36)

2c
< e _ *
< 2ksA\/(1 Azks)(l 20k, T™)
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Now, we search to define the set of parametgrsvhich satisfy these in-
equalities.
If we consider the right part of (36)vhich can be rewritten as:

A2E2 —2(1 4+ aX + at)k, + a? —27%(ks + a)ky)

o (37)
*
— - —)(1- <
2Xks (1 + \/(1 Azks)(l 2M\k, 7)) <0,
with &, under the square root.
. N 2c
Sincel — 2k, 7 < 1 andl — /\2—]% < 1then
N2 —2(1 4+ aX + at)k, + a® —27%(ks + a)ks)
— 2k (1 + \/(1 =20 k)
S )\2ks v
(38)
< NE2-2(1 4 a) + at)k,+a? =27 (ks + a)k,)
SN (14 (1 20k ) (1 — 22)
A2k
Thus, if we can find, such that:
N2 — 2(1 4 X + bat* — 27 \2ky) K,
(39)

4
ra? — 2r%(1 + aNks — d\ks + 70‘ <0

then the right part of (36), would be satisfied.
A necessary condition to guarantee this previous condisido have:

2
Ay = (1+ar+507% =20\, )

4
—X2(a? =204 (1+ Ny — My + ) (0)

>0

and then under this condition, we chodseas follows :

VAN AN
a 1, Y <k <a1—|—)\2 1, ‘ (41)

max{0, 2 < ky <
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wherea; = 1 + a) + bar* — 27" \k,.
We can remark that (40) can be rewritten as:
AT NE2 + 202 (20 — 77(1 + 10a7* + a))) ks
+(1 + 5a7%)? + 20\ [fat™ — 1] > 0

Note that this last inequality leads to the following coraditon k:

ks € (— 00, &1] U (€2, +00) (42)
where
A2(2X — 75(1 + 1007 + aX)) — /A1~
a= 47 \4
and
c A2(2X — 7(1 4 10a7™ + aX)) 4+ 1/ Aq -+
2= .

4+ \4
Ap =M (2X — 7*(1 4 10at* + oz/\))z— 477 M (1 + 5ar*)? + 20 (5ar* — 1)]

which is supposed to be positive. If it is not the case, therctndition (40)
is verified for allkg > 0.
We consider now the left part of (36)hich can be rewritten as :

0<A2E2 —2(1 + aX + a7*)ky+a?—27* (ks + alky)

- (43)
&7 *
—2Mkg (1 — \/(1 — )\Z—ks)(l — 20k, 7).
Proceeding as above, we have:
N2E2 —2(1 + aX + at)k, + a? — 27*(ks + a)k;)
oM (1 — (1 — 20k (1 — =)
A2k
(44)

<A%k2 —2(1 + aX + at)k, + a?—27* (ks + a)ky)

—2k, (1 — \/(1 - )\22—22)(1 — 27k, 7))
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If there existsk, such that:

0 < A2k2 —2(1 4 a)\+ ar*

2a
+2T*/\2]€s(1 - )\2—]{78))]% (45)

2ay

a? = 207 (ko aky) = 22k (1= (1= 550)

then the left part of (36), will be verified.
This inequality can be simplified as :

0 < A2k2 — 2(1 4 aX — 3at* + 27° N2k, )k,

(46)
4
+a? — 27(1 + a\)k, — Ta
This is satisfied for alk, such that :
1+ a) —3ar* + 27" 2k, — /Ag
kv c (_ 0, « QT T 2, ]
22
(47)
L+ aX —3ar* + 27" N2ks + /Dg 1+
Ul N2 ,—i—oo).
where
2
Ag 1+ = (1 +a\ —3at* + 27'*)\2l<:s>
(48)

4o
\2( 2 9% I
A (a 27%(1 + a\)ks 3 )
is supposed to be positive.
If this quantity is negative, then the inequality (45) andcbysequence (43),

would be satisfied for aft, > 0.
The positivity of A, -« can be rewritten as:

AT ME2 4+ 602741 + o — 207k,

+(1 = 3a7*)? + 6\ (1 — ar*) >0
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which leads to the condition dty, given by:

b e (_ . 3N (2am* — 1 — ) — ,/AW]

YN
(49)
3N T (207" — 1 — @) + 4/ Ag 1+
Ul i +00).
if A -~ defined by :
Ao = NP1 4 o — 2a7%)2
(50)

—AXNT[(1 = 3a7%)? + 6aA(1 — ar)]

is positive.

It is clear that if A, .+ is negative, then the positivity ok, -« would be
satisfied for allk, > 0.

Now the hypothesis of negativity @k, -, which would imply that the left
part of (36) is satisfied for alt, positive, turns out to write that :

AT ANE2 + 602741 + o — 207k,

+(1 = 3a7*)? + 6a\(1 — ar*) <0

which is satisfied for

SN2 T (20 — 1 —a) — y/Ag
} < ks

AN

max{0,
(51)
3N T (207" — 1 —a) + y/Ag

<
- ANATF

whereA, ,« is assumed to be positive.

In conclusion, the determination of the parameigrandk, guarantee-
ing that (36) is satisfied, can be summarized for the right @f(36), by the
choice ofk, in the interval defined by (41) under the necessary conditiah
Ay .+ is positive. And for the left part of (36), we can choose &py> 0 or
k, in the interval defined by (47), according to the sigmof .

We can note that\; .~ andA, -~ are function ofk,. Their sign are condi-
tioned by the sign of\; ;- andA, ..
In the following section, we illustrate our results with seexamples.
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4 Simulation results

We consider a platoon of 4 following vehicles. We suppose ithitially
these vehicles travel at the the steady-state velocityyof 20m/s. The
following figure correspond to the velocity and acceleratpyofile of the
lead vehicle.

Figure 3: Velocity profile of the lead vehicle

a0

I I
5 o 5 10 15 20 25 30

Figure 4. Acceleration profile of the lead vehicle

We assume that the safety distance is characterized-byi and H; =
2m with & = 5. We choose the controller parametéts= 19 andk, =
0.12. Then by Proposition 1, we obtain tlogtimal delay margirequal to
7 = 0.215. The system (4) is then asymptotically stable for all delays
7 < 0.215.

We arrive to the same conclusion by using the Matlab packagg-D
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BIFTOOL (bifurcation analysis of delay differential egioais), (see Engel-
borghset al. [2001], Engelborgh®t al. [2002]) to represent the rightmost
roots of the characteristic equation. Indeed, if we chobsdimit value of

the delayr = 0.215 then we can observe that rightmost roots of the charac-
teristic equation are on the imaginary axis. When we choaslay larger,

the system is unstable since there exists roots in the rajhplane.

4 . . . . . .
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 o
oy

Figure 5: Rightmost roots of the characteristic equationrfe- 0.215

L L L L L ,
-1.4 -1.2 -1 -0.8 -0.4 -0.2 0.2

-0.6
oo

Figure 6: Rightmost roots of the characteristic equation-fe- 0.25

Now, if we consider the second part of the multi-objectivelppem, we
can remark that the conditions to avoid slinky-effect We atso note that
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in order to have no slinky effects we just have to restrict ttwund tor =
0.0504.

Then, if we choose a delay = 0.2, we can observe the phenomenon of
slinky effect. This is what we can observe in the followingufigs.

15

14

13-

12

11

10

Spacing (m)

Time (s)

35

30 -

25 -

20

Velocity (mfs)

15

10

Time (s)

If we choose a delay = 0.05, then we can remark that there is no slinky
effect.

Thus, in order to guarantee the individual stability of wids of the
platoon and to avoid the slinky effect phenomenon, it sufficechoose the
delayr < min(0.215,0.0504) = 0.0504.

5 CONCLUSIONS

In this paper, we have considered the problem of vehicleiolig con-
trol system. For a given controller structure, we have dgped conditions
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Acceleration (m!sz)
°

10 15 20
Time (s)

Figure 8: Control responses of 4 following vehicles withdiaelay 0.05 s

guaranteeing the individual stability of each vehicle af ilatoon, and the
derived conditions depend on the size of the delay. Moresweconsidered
the problem of slinky-effect phenomenon, and we proposéfitint con-
ditions to avoid it. We have given an explicit charactei@atof some sets
of controller parameters which solve the problem.
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