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Abstract

This Proceeding presents the method that allows us to get the Gyro-Kinetic Approximation of the

Dynamical System satisfied by the trajectory of a particle submitted to a Strong Magnetic Field. The

goal of the method is to build a change of coordinates in order to make the dynamic of two components of

the trajectory to disappear. This change of coordinates is based on a Darboux mathematical Algorithm

and on a Lie Transform

1 Introduction

Scientific framework - At the end of the 70’, Littlejohn [11, 12, 13] shed new
light on what is called the Guiding Center Approximation. His approach was based
on mathematical theories - Hamiltonian Mechanics, Differential Geometry, Symplectic
Geometry - in order to clarify what has been done for years in the domain (see Kruskal
[10], Gardner [4], Northrop [14], Northrop & Rome [15]). His papers claim that it has
been for him an enormous effort to reach this goal, since he had to incorporate into a
physical affordable theory high level mathematics. Sure, this theory is a nice success.
It has been being widely used by physicists to deduce related models (Finite Larmor
Radius Approximation, Drift Kinetic Model, Quasi-Neutral Gyro-kinetic Model, etc.,
see for instance Koseleff [9], Brizard [1], Dubin et al. [2], Frieman & Chen [3], Hahm
[7], Hahm, Lee & Brizard [8], Parra & Catto [16, 17, 18]) making up the Gyro-Kinetic
Approximation Theory, which is the basis of all kinetic codes used to simulate Plasma
Turbulence emergence and evolution in Tokamak (see for instance Grandgirard et al.
[5, 6]).

The incorporation of mathematical concepts into a physical theory has been done so
nicely that the resulting Gyro-Kinetic Approximation Theory is now very difficult for
mathematicians.
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This talk (and proceeding) is the first step into the rewriting of the Gyro-Kinetic
Approximation Theory into a mathematically affordable theory. It is only a summa-
rize, to understand, with a mathematical slant, several aspects of what is done in the
references just cited.

Charge particles submitted to Strong Magnetic Field - The context of
the Gyro-kinetic Approximation is Tokamak Physics. An artist vision of Iter, which
is a Tokamak, is given in Figure 1. The vessel of a Tokamak is the interior of a torus
with a vertical axis of symmetry. Along the torus, electromagnets can generate a large
magnetic field.

Figure 1: Artist vision of Iter.

We begin by considering a charged particle within the vessel of a Tokamak in service. In
Usual Coordinates (x,v) = (x1, x2, x3, v1, v2, v3), where x stands for the position vari-
able and v for the velocity variable, the position and the velocity at time t (X(t;x,v, s),
V(t;x,v, s)) of the particle which is in x with velocity v at time s is the solution to

∂X

∂t
= V, (1)

∂V

∂t
=

q

m
(E(X) +V ×B(X)). (2)

This dynamical system means nothing but that time derivative of the position is the
velocity and that time derivative of the velocity, which is the acceleration, in linked with
Lorentz force by Newton’s law. In this dynamical system magnetic field B is composed
of a strong applied piece, of a strong self induced piece and of a self induced pertur-
bations. The strong applied piece is generated by the electromagnets and wind around
the axis of symmetry of the tokamak. Charged particles winding, with a relatively
large velocity, around the axis of symmetry within the vessel generate the indispensable
vertical component of the large magnetic field. This is what is called here the strong
self induced piece. The part of the self induced magnetic field which is not vertical is
called here the self induced perturbations and is, from now, forgotten. Electric field E

is induced by the particles of the vessel.
Without loss of generality, we can consider that E is the opposite of the gradient of

an electric potential, and B the curl of vector potential, i.e.:

E = −∇Φ, B = ∇×A. (3)

Helicoidal trajectories - Larmor Radius - It is well known that the trajec-
tory of a charged particle submitted to a magnetic field is a helix. The helix axis is
the magnetic field direction and its radius, which is called in the context of Tokamak
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Plasma the Larmor Radius, equals the norm of the projection of the velocity on the
plan orthogonal to the magnetic field divided by the particle’s mass time the norm of
the magnetic field. As illustrated in left picture of Figure 2, because of the mass ratio

Figure 2: Left: Helicoidal trajectories of ions and electrons submitted to a magnetic field.
(Source: S. Jardin’s Lectures at Cemracs’10). Right: Screen effect and Debye Length in a
plasma.

between ions and electrons, the order of magnitude of electron Larmor Radius is much
smaller than that of ions. In Tokamak, those order of magnitude are ∼ 5 · 10−4m for
electrons and ∼ 10−2m for ions. Those two lengths are two important scales of Tokamak
Plasma Physics.

To simplify the purpose, from now we will forget the scale of electron Larmor Radius
and only take ions under consideration.

Debye Length - We now explain an important phenomenon of Plasma Physics
which is the Screen Effect, with its related length which is the Debye Length.

It is well known that a charged particle generates around it an electric potential
which depends on the inverse of the distance to it, say ∼ 1/r. Since this function is
the Green Kernel of the opposite to the Laplace operator, when following the Mean
Field routine to deduce the model taking under consideration interactions of many
particles, it is gotten that the electric field that fills the space is the solution to −∆Φ =
Cst Charge Density. Because, of the long range of ∼ (1/r)-potential, the regularization
properties of minus Laplacian are such that space variations of the electric potential (and
consequently of the electric field) occure at a large scale.

Now, if the density of particles is relatively large, as it happens in Plasma, and
if we consider a test particle (which is drawn in blue in right picture of Figure 2),
the other particles (in the picture, orange particles are positively charged and green
particles negatively charged) which are beyond a given length λ, which is the Debye
Length (the black circle in the picture is censed being of radius λ), may be gathered
into subsets (the two grey ellipses in the picture are such subsets) which are such that
the resulting action of pairs of those subsets on the test particle is negligible. This has
the following consequence: it can be considered that the potential ∼ 1/r generated by
a particle may be approximated by a ∼ e−r/λ/r potential. Then, following the Mean
Field routine with this new assumption leads an electric field that fills the space which
is the solution to −DΦ = Cst Charge Density. Operator −D is the pseudo-differential
operator which Green Kernel is e−r/λ/r whose regularization properties are much less
than that of minus Laplacian. Then the regularity of the electric field is not as high as
we could think before this formal analysis. In particular the electric field can be prone
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to variations over lengths ranging from several Debye Lengths to several hundreds of
Debye Lengths. Those variations are maybe not extremely large, but as no principle
fends them off, they are stable.

What Ions see - In a very simplified slant, Electric field in a plasma is a bed with
variations which are not so large but not negligible, and, more than anything, stable
at scales ranging from several Debye Lengths to several hundreds of Debye Lengths. In
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Figure 3: Symbolic picture of oscillating trajectory of ion in a electric field with variations
with typical size comparable with trajectory oscillation.

Figure 3 we symbolically represent this bed as a charcoal grey surface. (It is symbolic
because a surface is drawn while, in real world, Electric Field fills a 3D space.) This
surface shows variations at two scales which are cenced to be about 100 times the Debye
Lengths and 1.000 times the Debye Lengths. Those variations are not of large amplitude
but are stable. Now, ion motion, symbolically represented in red in the figure, shows
an oscillation of amplitude which is about 100 times the Debye Length (ion Larmor
Radius ∼ 10−2m, Debye Length : ∼ 10−4m). Hence, because of the stability of bed
variations, its resulting effect can be important on ion trajectory after several periods
of oscillation. To take into account this resulting effect, the concept of gyro-average was
introduced.

Dimensionless Dynamical System - Here, we do not present the scaling rou-
tine, we only mention that two small parameters may be introduced. The first one
is

ε ∼
Ion Larmor Radius

Tokamak size
∼

10−2m

10m
∼ 10−3 (4)

The second one is η the Debye Length linked variations of the Electric Field and Po-
tential. It is defined as

η ∼
Characteristic scale of variations of the Electric Field

Tokamak size
. (5)
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If we follow a scaling routine, we will get that the dimensionless Electric Potential and
Field write

Φ(x) = Φ0(x) + ηΦ1(
x

η
) and E(x) = E0(x) +E1(

x

η
), (6)

with

E(x) = −(∇Φ)(x), (7)

and that the dimensionless Magnetic Field write

B(x)

ε
= (∇×

A

ε
)(x). (8)

Then, the dimensionless trajectory, is solution to the following dynamical system:

∂X

∂t
= V (9)

∂V

∂t
= E0(X) +E1(

X

η
) +V ×

B(X)

ε
. (10)

We guess that anybody agree with the fact that this system is a good model to describe
motion of charged particle within Tokamak.

Gyro-kinetic Model - Yet, there is the Gyro-Kinetic Model. It claims that a

trajectory (r,ψ,ϕ,W‖, J,Γ) in a coordinates system (r, ψ, ϕ, w‖, j, γ) we will discuss
on later on, is solution to:

∂r
∂t

= (EDr +MCDr),
∂ψ
∂t

=
W‖

q(r)R
+
EDψ +MCDψ

r
,

∂ϕ
∂t

=
W‖

R
,

∂W‖

∂t
= (E0 + 〈E1〉)‖ −

J

ε
∇‖|B|+

W‖

|B|
ED · (∇|B|),

(11)

where

Ψ

Figure 4: Position coordinates in use in a Tokamak. (Source: V. Grandgirard’s Lectures at

Cemracs’10).

R = R0 + r cos(ψ), ED = ε
B× (E0 + 〈E1〉)

|B|2
, MCD = ε

B× (∇|B|)

|B|3
(W 2

‖ + J
|B|

ε
),

(12)
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and

∇‖ =
1

R

( ∂

∂ϕ
+

1

q(r)

∂

∂ψ

)
. (13)

We now explain how to read equations (11) - (13). A Tokamak is the interior of a
torus with a vertical symmetry axis. (A Tokamak and its associated position coordinate
system (r, ψ, ϕ) is given in Figure 4.) Hence, it is thought as a small disc carried by
a large circle of radius R0. Then, for a given point of the Tokamak, r is (almost) its
distance from the center of the small disk, ψ is (almost) the angle that the point makes
in the small disk and ϕ is (almost) the angle that it makes on the large circle.
In what concerns the velocity variable system (w‖, j, γ), if a moving point is in (r, ψ, ϕ),
the w‖-component of its velocity stands (almost) for the projection of its velocity on the
direction the Magnetic Field has in (r, ψ, ϕ) (which is not far from being tangent to the
large circle but which has a small component tangent to the small circle), j is (almost)
half the square of the norm of its velocity on the plan orthogonal to the Magnetic Field
direction, and γ is (almost) the angle that this projection makes in this plan.

Above, precision "almost" is essential, and constitutes the core of the Gyro-Kinetic
Approximation which consists, as we will see, in building infinitesimal changes of coor-
dinates to set out a dynamical system shaped like (11).

We now comment system (11), forgetting that the variables are only almost what
they are supposed to be. The first equation in (11) says that the r-component of a
particle trajectory varies with a velocity which is the projection on the direction of the
vector joining the center of the small disk and the point of the Electric Drift velocity ED
and the Magnetic Curvature Drift velocity MCD, both defined in (12). The Electric
Drift velocity ED involves the cross product of the Magnetic Field and what is called
the gyro-average of the Electric Field, which is indicated by symbol 〈 〉. The Magnetic
Curvature Drift velocity MCD involves the cross product of the Magnetic Field with
the gradient of the Magnetic Field norm.
In the second equation of (11), q(r) is called the quality factor. Essentially, it is the
number of revolutions in the small disk a particle makes while making one revolution
along the large circle. Then, term W‖/(q(r)R), where R is defined in (12), generates
the winding of the particle trajectory in the small disk (this is illustrated by the red
curves drawn on the left of the figure). The second term of the second equation of (11)
is linked with the action of the Electric Drift velocity and Magnetic Curvature Drift
velocity.
The third equation involves the contribution W‖/R of the w‖-component of the particle
velocity to the variation of the ϕ-component of the particle position.
The last equation describes the variation of w‖-component of the particle velocity. It
involves, among other terms, the projection of the gyro-average of the Electric Field on
the direction of the Magnetic Field and the variation of the Magnetic Field norm in the
direction of the Magnetic Field, materialized by operator ∇‖ defined by (13).

In system (11), their is neither equation for J (the j-component of the particle
velocity) nor for Γ (the γ-component of the particle velocity). This may be considered

as a strange fact. The reason why this happens is that the dynamics of r,ψ,ϕ,W‖,
the r-, ψ-, ϕ-, w‖-components of the particle trajectory and velocity do not depend on
the γ-component of the particle velocity and that the its j-component is invariant. This
is summarized as:

∂J

∂t
= 0,

∂Γ

∂t
= Does not matter. (14)
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What we explain and what we do not explain - In this document we give
the key ideas that bring the deduction of the Gyro-Kinetic Dynamical System (12) from
the original one (9) - (10).

Among thing that we do not tackle, there is the question of the specific position
coordinates (r, ψ, ϕ). We will remain with a generic position coordinate system. We
will not talk about Gyro-average either. The question of the coupling of Gyro-Kinetic
Approximation with computation of Electric and Magnetic Fields, using Quasi-Neutral
Poisson Equation or Maxwell Equation is also not addressed here.

To end this paragraph we mention that the method only works in case when η is
larger than ε, or in other words, when η = ε1−κ for κ > 0. This is a important limitation
in the theory.

2 Methode summarize

Key result - The method allowing us to go from system (9) - (10) to a system of
the kind of (11), i.e. to make disappear two equations, has nothing to do with magic.
It is based on the following result:

Theorem 2.1. If, in a given coordinate system r = (r1, r2, r3, r4, r5, r6), a Hamiltonian
Dynamical System writes:

∂R

∂t
= P(R)∇rH(R), P(R) =




M
0
:
0

0
:
0

0 · · · 0 0 1
0 · · · 0 −1 0


 , (15)

(for a trajectory R = (R1, R2, R3, R4, R5, R6)
T )) with a Hamiltonian Function that does

not depend on the last variable, i.e.

∂H

∂r6
= 0, (16)

Then, submatrix M does not depend on the two last variables, i.e.

∂M

∂r5
= 0 and

∂M

∂r6
= 0, (17)

and consequently, time-evolution of the four first components R1, R2, R3, R4 is indepen-
dent of the last component R6; and, the penultimate component R5 of the trajectory in
not time-evolving, i.e.

∂R5

∂t
= 0. (18)

The proof of property (17) is relatively straightforward by a calculation. Equation
(18) is a direct consequence of (16) that yields a sixth component of ∇rH(R) with worth
0 and consequently, because of the form of P(R) a fifth line of Dynmical System (15)
which is exactly (18).

Essentially, the Gyro-Kinetic version of Dynamical System (9) - (10) exhibit es-
sentially a property like (18) and the property that the four first components of the
trajectory are independent of the last component.

As a matter of fact, building the Gyro-Kinetic Approximation consists in building a
change of coordinates that bring a system of coordinates in which P(R) has the same
form as in (15) and in which (16) is true.
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Usual Coordinates
(x,v)

∂X

∂t
= V

∂V

∂t
= E0(X)+E1(

X

η
)+V×

B(X)

ε

Canonical Coordinates
(q,p)

H̆ε
η = H̆ε

η (q,p):

∂Q

∂t
= ∇pH̆

ε

η

∂P

∂t
= −∇qH̆

ε

η

21: Hamiltonian?

Cylindrical Coordinates
(x, v‖, v⊥, θ)3

Darboux Almost
Canonical Coordinates

(y, u‖, k, θ)

4: Darboux Method

Lie Coordinates
(z, w‖, j, γ)

5: Lie Method

Usual Coordinates
(x,v)

Hε
η(x,v),P

ε
η (x,v) s.t:




∂X

∂t

∂V

∂t


 = Pε

η ∇x,vH
ε

η

Canonical Coordinates
(q,p)

H̆ε
η(q,p), P̆

ε
η (q,p)=S

s.t:


∂Q

∂t

∂P

∂t


 = S∇q,pH̆

ε

η

21: Hamiltonian?

Cylindrical Coordinates
(x, v‖, v⊥, θ)

H̃ε
η(x, v‖, v⊥, θ), P̃ε

η (x, v‖, v⊥, θ)
3

Darboux Almost
Canonical Coordinates

(y, u‖, k, θ)
H

ε

η(y, u‖, k, θ),P
ε

η (y, u‖, k, θ)

4: Darboux Method

Lie Coordinates
(z, w‖, j, γ)

Ĥε
η(z, w‖, j), P̂

ε
η (z, w‖, j, γ)

= P
ε

η (z, w‖, j, γ)

5: Lie Method

Figure 5: The method is made of 5 steps. 1: Check that the Dynamical System (9)- (10) is
well Hamiltonian. 2: Write the system using Hamiltonian Function and Poisson Matrix. 3:
Write the system in a cylindrical in velocity coordinate system using the formula giving how
the Poisson Matrix and the Hamiltonian Function is transformed by change of coordinates.
4: Make another change of coordinates in order to have the Poisson Matrix form allowing
the application of the Key Result (Theorem 2.1). 5: Make a last change of coordinates,
leaving the Poisson Matrix form unchanged and leading to a Hamiltonian independent of
the last variable.
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Panorama - As illustrated in Figure 5, the method to build the desired change of
coordinates is made of 5 steps. The first one consists in checking that the Dynamical
System (9) - (10) is well Hamiltonian. This is symbolized by arrow 1 in the top picture
of the Figure. Once this is done, we can go back into the Usual Coordinate System but
knowing that the system writes as in the square which is in the top-left of the bottom
picture, i.e. involving a Poisson Matrix Pεη and the gradient ∇x,vH

ε
η of a Hamiltonian

Function. It may be written in that form in any Coordinate System, and formula give
how to transform the Hamiltonian Function and the Poisson Matrix while changing
of Coordinates. The goal of the third step is to introduce a Cylindrical in Velocity
Coordinate system which is known has being close to the Gyro-Kinetic Coordinate
System. Writing the system in this coordinate system uses the formula giving how the
Poisson Matrix and the Hamiltonian Function are transformed by change of coordinates.
(At this level, it would be also possible to make a position change of coordinates fitting
Tokamak geometry.) In the fourth step, we make another change of coordinates in order
to have the Poisson Matrix form allowing the application of the Key Result (Theorem
2.1). In the fifth step, we make a last change of coordinates, leaving the Poisson Matrix
form unchanged and leading to a Hamiltonian independent of the last variable.

3 Hamiltonian System

We make here the first step: we check that Dynamical System (9) - (10) is Hamiltonian.
Essentially, this means nothing but that there exists a coordinate system in which it
writes:

∂Q

∂t
= ∇pH̆

ε
η , (19)

∂P

∂t
= −∇qH̆

ε
η , (20)

or



∂Q

∂t

∂P

∂t


 = S∇q,pH̆

ε
η , with S =

(
0 I3

−I3 0

)
, (21)

where H̆ε
η is a function.

The Canonical Coordinates - If we use (7) and (8) in (9) - (10), we get that in
the Usual Coordinates (x,v) = (x1, x2, x3, v1, v2, v3), trajectory : (X(t;x,v, s),V(t;x,v, s))
is solution to

∂X

∂t
= V, (22)

∂V

∂t
= −∇

[
Φ0(X) + ηΦ1(

X

η
)
]
+V ×

∇×A(X)

ε
. (23)

We recall that (X,V) = (X1, X2, X3, V1, V2, V3).

We will show, in the next paragraph, that in coordinate system (q,p) = (q1, q2, q3, p1, p2, p3)
defined by

q = x, p = v +
A(x)

ε
, (24)
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with reverse transformation given by

x = q, v = p−
A(q)

ε
, (25)

the trajectory (Q(t;q,p, s),P(t;q,p, s)) ((Q,P) = (Q1, Q2, Q3, P1, P2, P3)) which is
given by

Q = X, P = V +
A(X)

ε
, X = Q, V = P−

A(Q)

ε
, (26)

is solution of a Dynamical System of the form (19) - (20) or (21), with

H̆ε
η (q,p) =

1

2

∣∣∣p−
A(q)

ε

∣∣∣
2

+Φ0(q) + ηΦ1(
q

η
). (27)

Those (q,p) coordinates will be called Canonical Coordinates.

Check of Canonical nature of Canonical Coordinates - Making calcula-
tions suggested by (19) - (20) with H̆ε

η given by (27) gives

∂Q

∂t
= ∇pH̆

ε
η (Q,P) = P−

A(Q)

ε
, (28)

∂P

∂t
= −∇qH̆

ε
η (Q,P) =

(∇A(Q))T

ε

(
P−

A(Q)

ε

)
−∇

[
Φ0(Q) + ηΦ1(

Q

η
)
]
, (29)

which applying the following formula

(∇A)T (p−A) = (∇A)(p−A) + (p−A)× (∇×A), (30)

yields

∂Q

∂t
= P−

A(Q)

ε
, (31)

∂P

∂t
−

(∇A(Q))

ε

(
P−

A(Q)

ε

)
=
(
P−

A(Q)

ε

)
×

∇×A(Q)

ε
−∇

[
Φ0(Q) + ηΦ1(

Q

η
)
]
.

(32)

Now,using (26) we get

∂X

∂t
= V, (33)

∂P

∂t
−

(∇A(Q))

ε

(∂Q
∂t

)
=
∂
[
P−

A(Q)

ε

]

∂t
=

∂V

∂t
=
(
P−

A(Q)

ε

)
×

∇×A(Q)

ε
−∇

[
Φ0(Q) + ηΦ1(

Q

η
)
]

(34)

= V ×
∇×A(X)

ε
−∇

[
Φ0(X) + ηΦ1(

X

η
)
]
.

which is (22) - (23), and then proving the equivalence between the two systems and
leads to the conclusion that the Dynamical System we take interest in is Hamiltonian.
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As by-products : Poisson Matrix, Poisson Bracket, Change of Coordi-
nates Formula - To end the first step we now list some properties we can moreover
deduce from the fact that Dynamical System (9) - (10) is Hamiltonian.

In any coordinate system r = (r1, r2, r3, r4, r5, r6), the Dynamical System writes:

∂R

∂t
= P(R)∇rH(R), (35)

for a Poisson Matrix P, which is antisymmetric, and a Hamiltonian Function H.

We can consider the Poisson Bracket which is defined for two regular functions f
and g : R6 → R by

{f, g}(r) = (∇rf(r)) · (P(r)(∇rg(r))). (36)

If one of the two function is vector-valued, i.e. if for instance f : R6 → R
6 and g : R6 →

R, then it is defined, for any component i = 1, . . . , 6, by

({f , g}(r))i = (∇rfi(r)) · (P(r)(∇rg(r))). (37)

Then, if we introduce the Coordinate Function I, defined by I(r) = r, then (35) reads
also:

∂R

∂t
= {I, H}(R). (38)

Remark 3.1. In papers of physicists, formula (38) is generally read
∂r

∂t
= {r, H}.

In another coordinate system r̃ = (r̃1, r̃2, r̃3, r̃4, r̃5, r̃6) which is tied with the first one
by change-of-coordinates formula r̃ = ρ(r) and r = ρ̃(r̃) = ρ−1(r̃), the system writes

∂R̃

∂t
= P̃(R̃)∇̃rH̃(R̃), (39)

where R̃ = ρ(R), with Hamiltonian Function and Poisson Matrix given by

H̃(r̃) = H(ρ̃(r̃)) and (P̃(r̃))ij =
{
ρi,ρj

}
(ρ̃(r̃)). (40)

Remark 3.2. From (27) and applying (40), in Usual Coordinates, Hamiltonian Func-
tion expression is

Hε
η(x,v) =

1

2

∣∣v
∣∣2 +Φ0(x) + ηΦ1(

x

η
), (41)

leading to

∇x,vH
ε
η =

(
∇
[
Φ0(x) + ηΦ1(

x
η )
]

v

)
, (42)

and Poisson Matrix expression is

Pεη (x,v) =

(
0 I3

−I3
(∇A(x))T−(∇A(x))

ε

)
. (43)
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This can be easily checked calculating

Pεη (x,v)∇x,vH
ε
η =




v

−∇
[
Φ0(x) + ηΦ1(

x

η
)
]
+

(∇A(x))T − (∇A(x))

ε
v


 , (44)

using (29),and comparing with (22) - (23).
Expression (41) is consistent with (40), let us check that it is the same for (43). To

do this, let us write the change of coordinates in the following way: (x,v) = υ(q,p)

and (q,p) = π(x,v). Then, for instance: υ5(q,p) = p2 −
A2(q)
ε , υ6(q,p) = p3 −

A3(q)
ε

and

∇υ5(q,p) =




1
ε
∂A2

∂q1
(q)

1
ε
∂A2

∂q2
(q)

1
ε
∂A2

∂q3
(q)

0
1
0




, S =

(
0 I3

−I3 0

)
, ∇υ6(q,p) =




1
ε
∂A3

∂q1
(q)

1
ε
∂A3

∂q2
(q)

1
ε
∂A3

∂q3
(q)

0
0
1




. (45)

Hence, since {υ5,υ6} = (∇υ5) · (S∇υ6), expression of (Pεη )56, obtained applying (40),
is

{υ5,υ6}(π(x,v)) =
1

ε

(∂A3

∂q2
(x)−

∂A2

∂q3
(x)
)
, (46)

which is also the expression of (Pεη )56 obtained applying (43). (This may of course be
led for the other entries of the matrix also.)

4 Cylindrical Coordinates

Cylindrical Coordinates in velocity - We now turn to the second step which
consists in setting the expression of Dynamical System (22) - (23) (or (9) - (10) or (19),
(20), (27)) in a Cylindrical in velocity Coordinate System (x, v‖, v⊥, θ) which is such
that

B 

v 

⊥

 v 

v 

θ 

   

Figure 6: Helicoidal trajectory and Cylindrical Coordinates for the velocity variable.
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v‖ = v ·
B

|B|
, v⊥ =

∣∣∣v −
(
v ·

B

|B|

) B

|B|

∣∣∣, θ s.t. v −
(
v ·

B

|B|

) B

|B|
= v⊥(cos θ, sin θ).

(47)

This means, as shown in Figure 6 where a helicoidal trajectory induced by a Magnetic
Field pointing upward, that v‖ is the projection of the velocity on the direction of the
Magnetic Field, v⊥ is the norm of the projection of the velocity on the plan orthogonal
to the Magnetic Field and θ is the angle that this projection makes in this plan.

Hamiltonian Function and Poisson Matrix in Cylindrical Coordinates -
Applying formula (41), we get the expression of the Hamiltonian Function in this

System:

H̃ε
η(x, v‖, v⊥, θ) =

1

2

(
v2‖ + v2⊥

)
+Φ0(x) + ηΦ1(

x

η
). (48)

We can also get the expression of the Poisson Matrix, which is heavy, applying formula
(41).

Here, we give its expression in the case when

B(x) =



b(x)
0
0


 , b > 0, (49)

only. It is:

P̃εη (x, v‖, v⊥, θ) =




0 0 0 b(x)
ε 0 0

0 0 0 0 − sin(θ) − cos(θ)
v⊥

0 0 0 0 − cos(θ) sin(θ)
v⊥

− b(x)
ε 0 0 0 $$ $

0 sin(θ) cos(θ) −$$ 0 − b(x)
εv⊥

0 cos(θ)
v⊥

− sin(θ)
v⊥

−$ b(x)
εv⊥

0




, (50)

where

$ =
v‖

ε
(
∂b

∂x2
(x) +

∂b

∂x3
(x)) and $$ =

v‖

εv⊥
(sin(θ)

∂b

∂x2
(x) +

1 + sin2(θ)

cos(θ)

∂b

∂x3
(x)).

(51)

In more general cases, we do not give the Poisson Matrix expression. Yet we mention
a very important fact which is that

(P̃εη (x, v‖, v⊥, θ))56 = (P̃εη (x, v‖, v⊥, θ))v⊥θ =
|B(x)|

εv⊥
> 0, (52)

is always true. This is Important for the Darboux Method which will be reached in a
few lines. We will denote:

|B(x)|

εv⊥
= ω(x, v⊥). (53)
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5 Darboux Algorithm

Darboux Algorithm Target - The third step is the application of a mathematical
algorithm, so called the Darboux Algorithm, to build a Coordinate System (y, u‖, k, θ)
in which the Poisson Matrix has the required form, given by (15), to apply the Key
Result. In fact, in order to manage the small parameter ε, we will build the Coordinate
System (y, u‖, k, θ) in order to get P

ε

η with the following form:




M
0
:
0

0
:
0

0 · · · 0 0 1
ε

0 · · · 0 − 1
ε 0


 . (54)

We introduce the following notations to manage change-of-coordinates mappings: (y, u‖,

k, θ) = Υ(x, v‖, v⊥, θ) and (x, v‖, v⊥, θ) = ξ(y, u‖, k, θ), (ξ = Υ−1).
An important and constitutive fact in the Darboux Algorithm is that the θ-variable is
left unchanged.

Now, Since

(P
ε

η (y, v‖, k, θ))ij = {Υi,Υj}(ξ(y, v‖, k, θ)), {Υi,Υj} = (∇Υi) · (P̃
ε(∇Υj)), (55)

the bottom-right of form given in (54), results from:

{Υ6,Υ5} = −
1

ε
. (56)

Remark 5.1. If we write Υ6 = Υθ and Υ5 = Υk, (56) may be also read {Υθ,Υk} = − 1
ε .

In articles of physicists, this last equation reads {θ, k} = − 1
ε .

In the same way, the fact that the two last lines (or columns) contain only zeros
results from:

{Υ1,Υ5} = 0, {Υ1,Υ6} = 0,

{Υ2,Υ5} = 0, {Υ2,Υ6} = 0,

{Υ3,Υ5} = 0, {Υ3,Υ6} = 0,

{Υ4,Υ5} = 0, {Υ4,Υ6} = 0.

(57)

Remark 5.2. Using the same conventions as in Remark 5.1, (57) may also read

{Υy1 ,Υk} = 0, or {y1, k} = 0, {Υy1 ,Υθ} = 0, or {y1, θ} = 0,

{Υy2 ,Υk} = 0, or {y2, k} = 0, {Υy2 ,Υθ} = 0, or {y2, θ} = 0,

{Υy3 ,Υk} = 0, or {y3, k} = 0, {Υy3 ,Υθ} = 0, or {y3, θ} = 0,

{Υy4 ,Υk} = 0, or
{
v‖, k

}
= 0,

{
Υv‖ ,Υθ

}
= 0, or

{
v‖, θ

}
= 0.

(58)

Equations (56) and (57) are hyperbolic PDEs that need to be solve to get change-
of-coordinates mapping Υ.

First equation processing - Since (and this is a consequence of the fact that the
θ-variable is left unchanged in the sought change-of-coordinates)

∇Υ6(= ∇Υθ) = (0, 0, 0, 0, 0, 1)T , (59)
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we deduce {Υ6,Υ5} = (∇Υ6) · (P̃
ε(∇Υ5)) is the last component of (P̃ε(∇Υ5)). Hence,

equation (57) reads

F1
∂Υ5

∂x1
+ F2

∂Υ5

∂x2
+ F3

∂Υ5

∂x3
+ F‖

∂Υ5

∂v‖
+ ω

∂Υ5

∂v⊥
= −

1

ε
, (60)

where Fn and ω are functions of (x, v‖, v⊥, θ). Function ω is given by (53) and is positive.
Solving (60) will give Υ5(x, v‖, v⊥, θ) which is the expression of component k of the
Darboux Coordinates in terms of the Cylindrical in Velocity Coordinates (x, v‖, v⊥, θ).

To solve this equation we will use the Method of Characteristics.

Method of Characteristics - Dividing by ω, which is possible since ω is positive,
(60) gives

∂Υ5

∂v⊥
+ ε

v⊥F1

|B|

∂Υ5

∂x1
+ ε

v⊥F2

|B|

∂Υ5

∂x2
+ ε

v⊥F3

|B|

∂Υ5

∂x3
+ ε

v⊥F‖

|B|

∂Υ5

∂v‖
=
v⊥
|B|

. (61)

In order to get a solution to this equation, we need to add a boundary (or initial)
condition in a point where the involved vector field (εv⊥/|B|)(F1, F2, F3, F‖) does not
vanish. Hence we set

Υ5|v⊥=ν = 0 for a small ν > 0. (62)

We consider the following characteristics (X ,V‖) = (X1,X2,X3,V‖):

X1(v⊥;x, v‖, u⊥) such that
∂X1

∂v⊥
= ε

v⊥F1(X1,X2,X3,V‖, v⊥, θ)

|B|(X1,X2,X3)
, X1(u⊥)=x1,

X2(v⊥;x, v‖, u⊥) such that
∂X2

∂v⊥
= ε

v⊥F2(X1,X2,X3,V‖, v⊥, θ)

|B|(X1,X2,X3)
, X2(u⊥)=x2,

X3(v⊥;x, v‖, u⊥) such that
∂X3

∂v⊥
= ε

v⊥F3(X1,X2,X3,V‖, v⊥, θ)

|B|(X1,X2,X3)
, X3(u⊥)=x3,

V‖(v⊥;x, v‖, u⊥) such that
∂V‖

∂v⊥
= ε

v⊥F‖(X1,X2,X3,V‖, v⊥, θ)

|B(X1,X2,X3)
, V‖(u⊥)=v‖,

(63)

and the solution to (61) - (62) is given by

Υ5(x, v‖, v⊥, θ) = Υ5(X (ν;x, v‖, v⊥),V‖(ν;x, v‖, v⊥), ν, θ)+

∫ v⊥

ν

s

|B(X (s;x, v‖, v⊥))|
ds

=

∫ v⊥

ν

s

|B(X (s;x, v‖, v⊥))|
ds. (64)

(The last equality is gotten because of (62).)
Rewriting system (63) in the following compact form,

∂

(
X

V‖

)

∂v⊥
= εF(X 1,V‖, v⊥, θ),

(
X

V‖

)
(u⊥) =

(
x

v‖

)
, (65)

with F = (v⊥/|B|)(F1, F2, F3, F‖) and applying the formula that gives the expansion of
the solution of a dynamical system in terms of its parameter, we get that
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(
X

V‖

)
=

(
X

V‖

)
(v⊥;x, v‖, u⊥), (66)

writes

(
X

V‖

)
=

(
x

v‖

)
+
v⊥
1!
εF(x, v‖, v⊥, θ) +

v2⊥
2!

LεF(εF)(x1, v‖, v⊥, θ)

+
v3⊥
3!

L2
εF(εF)(x1, v‖, v⊥, θ) + . . .

=

(
x

v‖

)
+
εv⊥
1!

F(x, v‖, v⊥, θ) +
ε2v2⊥
2!

LF(F)(x1, v‖, v⊥, θ)

+
ε3v3⊥
3!

L2
F(F)(x1, v‖, v⊥, θ) + . . . (67)

where LF(F) is the the Lie Derivative of vector field F in the direction of vector field
F, L2

F(F) = LF(LF(F)) and L3
F(F) = LF(L

2
F(F)), and so on.

Rewriting this expansion, we get

X = x+ εv⊥X
1 + ε2v2⊥X

2 + ε3v3⊥X
3 + . . . (68)

V‖ = v‖ + εv⊥V
1
‖ + ε2v2⊥V

2
‖ + ε3v3⊥V

3
‖ + . . . (69)

with
(
X

1

V1
‖

)
= F(x, v‖, v⊥, θ),

(
X

2

V2
‖

)
=

1

2!
LF(F)(x, v‖, v⊥, θ),

(
X

3

V3
‖

)
=

1

3!
L2
F(F)(x, v‖, v⊥, θ), . . .

(70)

Now, injecting (69) in expression (64) on Υ5, we get:

Υ5(x, v‖, v⊥, θ) =

∫ v⊥

ν

s

|B(X (s;x, v‖, v⊥))|
ds =

∫ v⊥

ν

s

|B(x)|
ds+ ε

∫ v⊥

ν

s2 T 1(
1

|B(x)|
)X 1ds+

ε2
∫ v⊥

ν

s3
(
T 2(

1

|B(x)|
)X 1 + T 1(

1

|B(x)|
)X 2

)
ds+ . . .

=
(v⊥ − ν)2

2|B(x)|
+ ε

∫ v⊥

ν

s2 T 1(
1

|B(x)|
)X 1ds+

ε2
∫ v⊥

ν

s3
(
T 2(

1

|B(x)|
)X 1 + T 1(

1

|B(x)|
)X 2

)
ds+ . . . , (71)

where T i(1/|B(x)|) is the ith coefficient of the Taylor expansion of 1/|B(x)|.

Formula (71) gives the expression of Υ5, i.e. the expression of new variable k in
terms of Cynlindrical Coordinates (x, v‖, v⊥, θ), as an expansion in ε.

Remark 5.3. In (71), it is possible to choose ν as small as we want. Hence, the first
term of the expansion is essentially the Magnetic Moment v⊥/|B(x)|.
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On other equations and on Poisson Matrix in Darboux Coordinates
Equation (56) was processed and gave expression of k. Equations (57) can be processed
using similar Methods of Characteristics. A special attention needs to be given to the
fact that Υ1, . . .Υ4 are solutions of a PDE involving Υ5 and of another one involving
Υ6 that need to be tackled together. They will give y and u‖ as expansions in ε. Once
this done, we will have

Υ = Υ0 + εΥ1 + ε2Υ2 + ε3Υ3 + . . . , (72)

or, in other words, the expression of (y, u‖, k) in terms of (x, v‖, v⊥, θ) and as an ex-
pansion in ε.

The other terms of the new Poisson matrix P
ε

η (y, u‖, k, θ) are given computing:

(P̂εη )12 = {Υ1,Υ2}(={Υy1 ,Υy2}={y1, y2}), (P̂
ε
η )13 = {Υ1,Υ3}(={Υy1 ,Υy3}={y1, y3}),

. . . .

Hamiltonian Function in Darboux Coordinates - We now have to com-
pute the Hamiltonian Function in the Darboux Coordinates. For this, we build from
expansion (72) of Υ, an asymptotic expansion of ξ = Υ−1:

ξ = ξ0 + εξ1 + ε2ξ2 + ε3ξ3 + . . . . (73)

Then, we use the expression of the Hamiltonian Function in Cylindrical in Velocity
Coordinates:

H̃ε
η(x, v‖, v⊥, θ) =

1

2

(
v2‖ + v2⊥

)
+Φ0(x) + ηΦ1(

x

η
), (74)

and the following formula, which is gotten from (40),

H
ε

η(y, u‖, k, θ) = H̃ε
η(ξ(y, u‖, k, θ)) = H̃ε

η(ξ0 + εξ1 + ε2ξ2 + ε3ξ3 + . . . ) =

H̃ε
η(ξ0) + εT 1(H̃ε

η)(ξ0) · ξ1 + · · · =

u2‖

2
+ |B(y)|k +Φ0(y) + ηΦ1(

y

η
) + εH1,η(y, u‖, k, θ) + ε2H2,η(y, u‖, k, θ) + . . . . (75)

Notice that for this expansion to be valid, it is necessary to have the property we men-
tion on page 7: η = ε1−κ for κ > 0.

In expression (75), there is an important fact for the setting out of the to come Lie
Transform based Method: the first term is independent of θ.

6 Lie Transform based Method

Lie Transform based Method Target - As a result of the Darboux Algorithm,
we obtained a Poisson Matrix P

ε

η (y, u‖, k, θ) with the required form to apply the Key
Result (Theorem 2.1), but the resulting Hamiltonian Function

H
ε

η(y, u‖, k, θ) = H0,η(y, u‖, k) + εH1,η(y, u‖, k, θ) + ε2H2,η(y, u‖, k, θ) + . . . , (76)

depends on θ. And we need to make this dependency to vanish.
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Let us notice two important facts, which are in fact linked: The first term in the
asymptotic expansion (75) does not depend on θ and the Hamiltonian Function ex-
pressed in the Cylindrical in Velocity Coordinates does not depend on θ. The conse-
quence of those facts is that it is certainly possible to make the last variable to vanish
using a mapping parametrized by ε and close to identity for small ε.
Moreover, we need to build this sought mapping in such a way that it does not change
the Poisson Matrix expression. This means that, as viewed as functions, P

ε

η and P̂εη
must be the same, i.e.:

P̂εη (z, w‖, j, γ) = P
ε

η (z, w‖, j, γ) or P
ε

η (y, u‖, k, θ) = P̂εη (y, u‖, k, θ), (77)

for any z, w‖, j, γ or y, u‖, k, θ. Yet, among changes of variables, the symplectic ones do
not change the Poisson Matrix expression. And among symplectic changes of variables,
are the flows of Hamiltonian Vector Fields, which are moreover close to identity for
small values of their parameter.

Hence, the Lie Transform based Method consists in building a change of variables,
parametrized by ε, reading

(y, u‖, k, θ) 7→ (z, w‖, j, γ) = ζ(ε;y, u‖, k, θ), (78)

with

ζ(ε;y, u‖, k, θ) = (y, u‖, k, θ) + εζ1(y, u‖, k, θ),+ε
2ζ2(y, u‖, k, θ) + . . . , (79)

which is the flow of parameter ε of a Hamiltonian Vector Fields.

The way to do - Looking for ζ as the flow of a Hamiltonian Vector Field means
looking for a Hamiltonian Function:

G(ε;y, u‖, k, θ) = G0(y, u‖, k, θ) + εG1(y, u‖, k, θ) + ε2G2(y, u‖, k, θ) + . . . , (80)

such that ζ(ε;y, u‖, k, θ) is solution to:

∂ζ

∂ε
= P

ε

η∇G, ζ(ε = 0;y, u‖, k, θ) = (y, u‖, k, θ). (81)

Hence the target becomes to find functions G0, G1, G2, . . . , such that:

Ĥε
η(z, w‖, j) = H

ε

η(λ(z, w‖, j, γ)) where λ = ζ−1. (82)

A result - We will use the following theorem

Theorem 6.1. For any two Hamiltonian Functions:

H
ε

η(y, u‖, k, θ) = H0,η(y, u‖, k) + εH1,η(y, u‖, k, θ) + ε2H2,η(y, u‖, k, θ) + . . . , (83)

and

Ĥε
η(z, w‖, j) = Ĥ0,η(z, w‖, j) + εĤ1,η(z, w‖, j) + ε2Ĥ2,η(z, w‖, j) + . . . , (84)

expressed in two different variable systems (y, u‖, k, θ and z, w‖, j, γ) , with the property
that

Ĥ0,η(z, w‖, j) = H0,η(z, w‖, j), (85)

18



There exists a Hamitonian Function writing

G(ε;y, u‖, k, θ) = G0(y, u‖, k, θ) + εG1(y, u‖, k, θ) + ε2G2(y, u‖, k, θ) + . . . , (86)

such that the solution ζ of the Hamiltonian Dynamical System associated with G and
with parameter ε, i.e. solution to:

∂ζ

∂ε
= P

ε

η∇G, ζ(ε = 0; z, w‖, j, γ) = (y, u‖, k, θ), (87)

is such that

Ĥε
η(z, w‖, j) = H

ε

η(λ(z, w‖, j, γ)) where λ = ζ−1. (88)

Moreover, the Hamiltonian Function g(ε; z, w‖, j, γ) such that λ is solution to

∂λ

∂ε
= P

ε

η∇g, λ(ε = 0;y, u‖, k, θ) = (z, w‖, j, γ), (89)

writes

g(ε; z, w‖, j, γ) = g0(z, w‖, j, γ) + εg1(z, w‖, j, γ) + ε2g2(z, w‖, j, γ) + . . . , (90)

where g0, g1, g2, . . . are given by

{
g0, H0,η

}
= O0(H0,η),

{
g1, H0,η

}
= O1(H0,η, H1,η, Ĥ1,η, g0),

{
g2, H0,η

}
= O2(H0,η, H1,η, Ĥ1,η, H2,η, Ĥ2,η, g0, g1), . . . . (91)

for differential operators O0, O1, O2, . . . defined by recursive formula.

Remark 6.1. Despite we do not explicitly write the dependency of λ, g0, g1, g2, . . . ,
λ and G0, G1, G2, . . . with respect η to all those functions do depend on η. Here again,
to be able to write the expansions with respect to ε, it is necessary to have the property
mentioned on page 7: η = ε1−κ for κ > 0.

The Lie Transform based Method - As in the case of the Darboux Algorithm,
we do not do the computations that give ζ and λ. We only give the steps that allows
us to get them. The Lie Transform based Method may be summarized as:

1. Fix : Ĥ1,η(z, w‖, j), Ĥ2,η(z, w‖, j), . . . .
They can be fixed, a priory, with no restriction. Nevertheless those functions are
involved in the PDEs of (91). Hence, they need to be chosen in a way that leads
to PDEs which are as simple as possible to solve.

2. Solve PDE in (91) to get g0, g1, g2 recursively.
They are quite complex but we can solve them using the Method of Characteristics.

3. Get ζ solving (87).
It is gotten as an expansion in ε.

4. Compute expression of the Lie Variables: (z, w‖, j, γ) = ζ(y, u‖, k, θ)

5. Since Ĥ1,η, Ĥ2,η, . . . were fixed in the begining of the process, it is not necessary to

compute λ to get: Ĥε
η(z, w‖, j) = H

ε

η(λ(z, w‖, j, γ)). Nonetheless, λ may be gotten
as an expansion in ε by inverting expansion of ζ.
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7 Brief conclusion

At the end of the day, in the Lie Coordinates System, the trajectory (Z,W‖, J,Γ) of a
charged particle is solution to a Dynamical System which has the following form:

∂Γ

∂t
= Something complicated, (92)

∂J

∂t
= 0, (93)

∂

(
Z

W‖

)

∂t
= Something independent of Γ. (94)

This form is essentially the same as the one of (11).

As a conclusion, we just say that the method which is summarized here is the one
that allows us to get (11) or any other Gyro-Kinetic Approximation Model.

Insisting one more time, the important facts in system (92) - (94) is that the evolution
of the components Z and W‖ of the trajectory and of its γ-component Γ are uncoupled
and that component J does not evolve and then becomes a parameter. Hence, even if
the γ-component Γ is not computed, it does not preclude the computation of J , Z and
W‖ solving a collection, parametrized by J , of four-dimensional Dynamical Systems.
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