
1

Fig. 1. An illustration of the two-to-one transformation.

APPENDIX A
MAPPING PROOFS

A.1 Two-to-one Index Transformation

Let us consider a 2D abstraction in which the elements of
the neighborhood are disposed in a zero-based indexing
2D representation. This repartition is performed in a
similar way as a lower triangular matrix. Let n be the size

of the solution representation and let m = n×(n−1)
2 be the

size of its neighborhood. Let i and j be the indexes of two
elements to be exchanged in a permutation. A candidate
neighbor is then identified by both i and j indexes in
the 2D abstraction. Let f(i, j) be the corresponding index
in the 1D neighborhood fitnesses structure. Fig. 1 is an
example illustrating this abstraction.

In this example, n = 6,m = 15 and the neighbor
identified by the coordinates (i = 2 , j = 3) is mapped
to the corresponding 1D array element f(i, j) = 9.

The neighbor represented by the (i, j) coordinates is
known and its corresponding index f(i, j) on the 1D
structure has to be calculated. If the 1D array size was
n ∗ n, the 2D abstraction would be similar to a matrix
and thus the mapping would be:

f(i, j) = i× (n− 1) + (j − 1)

Since the 1D array size is m = n×(n−1)
2 , in the 2D

abstraction, elements above the diagonal preceding the
neighbor do not have to be considered (illustrated in
Fig. 1 by a triangle). The corresponding two-to-one
transformation is therefore:

f(i, j) = i× (n− 1) + (j − 1)− i× (i+ 1)

2
(1)

A.2 One-to-two Index Transformation

Let us consider the 2D abstraction previously presented.
If the element corresponding to f(i, j) in the 2D abstrac-
tion has a given i abscissa, then let k be the distance plus
one between the i+1 and n− 2 abscissas. If k is known,
the value of i can be deduced:

i = n− 2− b
√
8X + 1− 1

2
c (2)

Fig. 2. An illustration of the one-to-two transformation.

Let X be the number of elements following f(i, j) in
the neighborhood index-based array numbering:

X = m− f(i, j)− 1 (3)

Since this number can be also represented in the 2D
abstraction, the main idea is to maximize the distance k
such as:

k × (k + 1)

2
≤ X (4)

Fig. 2 gives an illustration of this idea (represented by
a triangle).

Resolving (4) yields the greatest distance k:

k = b
√
8X + 1− 1

2
c (5)

A value of i can then be calculated according to (2).
Finally, by using (1), j can be given by:

j = f(i, j)− i× (n− 1) +
i× (i+ 1)

2
+ 1 (6)

A.3 3-exchange Neighborhood

An instance of a large neighborhood is a neighborhood
built by exchanging three values. Variants of this neigh-
borhood such as 3-opt have been used for permutation
problems [1].

For an array of size n, the size of this neighborhood

is n×(n−1)×(n−2)
6 . A mapping here between a neighbor

and a GPU thread is also particularly challenging. One-
to-three and three-to-one index transformations must be
handled efficiently.

The mapping for this neighborhood is a generalization
of the 2-Hamming distance neighborhood with a third
index (see A.4 and A.5). The complexity of the mappings
is logarithmic in practice i.e. it depends on the numerical
Newton-Raphson method (solving cubic equation).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49948289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

A.4 One-to-three Index Transformation

f(x, y, z) is a given index of the 1D neighborhood fit-
nesses structure and the objective is to find the three
indexes x, y and z. Let n be the size of the solution
representation and m = n×(n−1)×(n−2)

6 be the size of the
neighborhood. The main idea is to find in which plan
(coordinate z) corresponds the given element f(x, y, z)
in the 3D abstraction. If this corresponding plan is
found, then the rest is similar to the one-to-two index
transformation. Figure 3 illustrates an example of the 3D
abstraction.

In this representation, since each plan is a 2D abstrac-
tion, the number of elements in each plan is the number
of combinations C2

k where k ∈ {2, 3, . . . , n−1} according
to each plan. For a specific neighbor, if a value of k is
found, then the value of the corresponding plan z is:

z = n− k − 1 (7)

For a given index f(x, y, z) belonging to the plan k in
the 3D abstraction, the number of elements contained in
the next plans is C2

k (also equal to k×(k−1)×(k−2)
6 ).

Let Y be the number of elements following f(x, y, z)
in both the 1D neighborhood fitnesses structure and the
3D abstraction:

Y = m− f(x, y, z)

Then the main idea is to minimize k such as:

k × (k − 1)× (k − 2)

6
>= Y (8)

By reordering (8), in order to find a value of k, the
next step is to solve the following equation:

k31 − k1 − 6Y = 0 (9)

Cardano’s method in theory allows to solve cubic
equation. Nevertheless, in the case of finite discrete ma-
chine, this method can lose precision especially for big
integers. As a consequence, a simple Newton-Raphson
method for finding an approximate value of k1 is enough
for our problem. Indeed, this iterative process follows a
set guideline to approximate one root, considering the
function, its derivative, an initial arbitrary k1-value and
a certain precision (see Algorithm 1).

Algorithm 1 Newton-Raphson method for solving k31−k1−6Y = 0.

1: k1 ← initial value;
2: repeat
3: term ← (k1 ∗ k1 ∗ k1− k1− 6 ∗ Y ) / (3 ∗ k1 ∗ k1− 1);
4: k1 ← k1 − term;
5: until |term / k1| > precision

Finally, since the minimization of k in (8) is expected,
the value of k is:

k = dk1e

Then a value of z can be deduced with (7). At this
step, the plan corresponding to the element f(x, y, z) is

known. The next steps for finding x and y are identically
the same as the one-to-two index transformation with a
change of variables.

First, the number of elements preceding f(x, y, z) in
the neighborhood index-based array numbering is ex-
actly:

nbElementsBefore = m− (k + 1)× k × (k − 1)

6

Second, the number of elements contained in the same
plan z as f(x, y, z) is:

nbElements =
k × (k − 1)

2

Finally the index of the last element of the plan z is:

lastElement = nbElementsBefore+ nbElements− 1

As a result, the one-to-two index transformation is
applied with a change of variables:

f(i, j) = f(x, y, z)− nbElementsBefore

n′ = n− (z + 1)

X = lastElement− f(x, y, z)

After performing this transformation, a value of x and
y can be deduced:

x = i+ (z + 1)

y = j + (z + 1)

A.5 Three-to-one index transformation

x, y and z are known and its corresponding index
f(x, y, z) have to be found. According to the 3D abstrac-
tion, since a value of z is known, k can be calculated:

k = n− 1− z

Then the number of elements preceding f(x, y, z) in
the neighborhood index-based array numbering can be
also deduced.

If each plan size was (n−2)∗(n−2), each 2D abstraction
would be similar to a matrix and the IN × IN → IN
mapping would be:

f1(x, y, z) = z×(n−2)×(n−2)+(x−1)×(n−2)+(y−2)
(10)

Since each 2D abstraction looks like a triangular ma-
trix, some elements must not be considered. The advan-
tage of the 3D abstraction is that these elements can be
found by geometric construction (see Fig. 4).

First, given a plan z, the number of elements in the
previous plans to not consider is:

n1 = z × (n− 2)× (n− 2)− nbElementsBefore

Second, the number of elements on the left side to not
consider in the plan z is:

n2 = z × (n− 2)



3

Fig. 3. An illustration of the one-to-three transformation.

Fig. 4. IN× IN× IN→ IN mapping.



4

Fig. 5. An example of coalescing transformation for local
structures.

Third, the number of elements on the upper side to
not consider in the plan z is:

n3 = (y − z)× (n− k − 1)

Fourth, the number of elements on the upper triangle
above f(x, y, z) to not consider is:

n4 =
(y − z)× (y − z − 1)

2

Finally a value of f(x, y, z) can be deduced:

f(x, y, z) = f1(x, y, z)− n1− n2− n3− n4 (11)

APPENDIX B
MEMORY MANAGEMENT OF LOCAL SEARCH
METAHEURISTICS ON GPU
B.1 Coalescing Transformation

For additional local structures which are particular to a
given thread, memory coalescing on global memory can
be performed. Fig. 5 exhibits an example of a coalescing
transformation for local structures. As illustrated in the
top of the figure, a natural wrong approach to arrange
the elements is to align the different structures one
after the other. Thereby, each thread can access to the
elements of its own structure with a natural pattern
baseAddress × id + offset. For instance, in the figure,
each thread access to the second element of its structure
with baseAddress = 3 and offset = 2.

Even if this way of organizing the elements on global
memory is natural, it is clearly not efficient. Indeed,
to get a better global memory performance, memory
accesses must constitute a contiguous range of addresses
to be coalesced. This is done in the bottom of the figure.
In the second approach, the elements of the structures

are dispatched such that thread accesses will be coa-
lesced into a single memory transaction. In the figure,
for instance, accessing to the second element is done
by using the pattern baseAddress2 × offset + id. This
transformation mechanism is well-adapted for the case
where each neighbor uses a large private structure which
cannot be stored in local private memory. An experimen-
tal comparison of the two approaches is conducted in
Section C.3.

B.2 Shared memory

Even if the shared memory has been widely investigated
to reduce non-coalesced accesses in regular applications
(e.g. [2], [3]), its use may not be well-adapted for the
parallel iteration-level model. Due to the limited capacity
of each multiprocessor (varying from 16KB to 48KB),
data inputs such as matrices cannot be completely stored
on shared memory. Thus, the use of shared memory
must be considered as a user-managed cache. This im-
plies an explicit effort of code transformation: one has
to identify common sub-structures which are likely to
be concurrently accessed by threads of a same block in
accordance with the SIMD execution model. Unfortu-
nately, such common accesses are not always predictable
in evaluation functions since most of access patterns to
data inputs differ from a neighbor to another (especially
for permutation-based problems). A specific code trans-
formation and its associated performance results for the
shared memory are described in Section C.1.

APPENDIX C
EXPERIMENTS

C.1 Application to the Quadratic Assignment Prob-
lem

The following transformation intends to show how to
take advantage of the shared memory in the case of
the QAP. The ∆ calculation (slight variation) of the
evaluation function for a neighbor (i,j) is given by:

∆ = (aii − ajj)× (bπ(j)π(j) − bπ(i)π(i)) (12)

+ (aii − ajj)× (bπ(j)π(i) − bπ(i)π(j))

∆ = ∆+

n∑

k=0
k 6=i
k 6=j

(aki − akj)× (bπ(k)π(j) − bπ(k)π(i)) (13)

+ (aik − ajk)× (bπ(j)π(k) − bπ(i)π(k))

A depth look at (13) indicates that a and b sub-matrices
involving the variable k might be concurrently accessed
in parallel. Therefore, the idea is to associate such sub-
structures with the shared memory as a user-managed
cache. The equation (13) can be transformed into another
one:



5

∆ = ∆+

n∑

k=0
k 6=i
k 6=j

ra←row(a,k)
rb←row(b,π(k))
ca←col(a,k)

cb←col(b,π(k))

(rai − raj)× (rbπ(j) − rbπ(i))(14)

+ (cai − caj)× (caπ(j) − cbπ(i))

Rows and columns are copied on shared memory at
the beginning of each loop iteration via a synchroniza-
tion mechanism. In this manner, accesses to these struc-
tures are performed through this memory in (14). There-
fore, sub-matrices can benefit from the shared memory
since it is a low-latency memory in which non-coalescing
accesses are reduced. However, this transformation is
problem-dependent and it might not be applied to some
evaluation functions.

Table 17 reports the obtained results for an implemen-
tation based on shared memory. In a general manner,
the shared memory version (GPUSh) obtains better per-
formance results than the basic GPU version without
memory optimization. The acceleration factors in com-
parison with a single-core on CPU diversify between
×0.7 and ×16.1 for GPUSh against ×0.5 and ×15.7S for
the standard version.

Nevertheless, such an improvement does not occur in
regards with the texture version. Indeed, for the two
first configurations, the shared memory version is clearly
outperformed by the texture one. This is certainly due
to the extra cost of data copies from global memory
to shared memory (thus extra non-coalesced accesses)
including local synchronizations for each loop iteration.
In the third configuration, the gap is less important since
global memory is easier to access due to the relaxation
of the coalescing rules.

A conclusion from this experiment indicates that the
use of shared memory gives an additional performance
improvement. However, on the one hand, an effort of
code rewriting has to be provided. Furthermore, it is not
clear that such a transformation is always feasible. On
the other hand, performance results for the QAP indicate
that this version is dominated by the texture one espe-
cially for low-graphic cards configurations. Therefore, it
seems that the stand-alone use of shared memory is not
well-adapted for the parallel iteration-level.

C.2 Application to the Permuted Perceptron Prob-
lem

As previously said, the definition of the neighborhood
is a major step in the performance of the algorithm.
Indeed, theoretical and experimental studies have shown
that the increase of the neighborhood size may improve
the quality of the obtained solutions [4]. Nevertheless,
as it is generally CPU time-consuming, this mechanism
is not often fully exploited in practice. To deal with such

an issue, only the use of massive parallelism allows to
design methods based on large neighborhood structures.
The next experiment intends to point out an instance of
such a very large neighborhood for a Hamming distance
of three for the PPP. Experimental results are reported
in Table 2. In a general way, for the same instance, the
obtained acceleration factors are much more important
than for the previous neighborhoods. For example, for
the texture version, the obtained speed-ups already vary
from ×3.2 to ×45.8 just for the first four PPP instances.

The conclusion from this experiment indicates that
GPUs are efficient to deal with very large neighborhoods.
Indeed, such a neighborhood for the PPP was unprac-
tical in terms of single CPU computational resources.
Hence, implementing this algorithm on the GPU allows
to exploit this data-parallelism. Even if the CPU execu-
tion was too much time consuming from larger instances
than m = 201 and n = 217, we are convinced that
GPU computing could be exploited for designing large
algorithms to improve the quality of solutions.

C.3 Coalescing accesses to global memory
The evaluation function of a neighbor for the PPP re-
quires the calculation of a structure called histogram.
Since this structure is particular to a neighbor, the local
memory is managed to store the histogram. However,
for large instances (from m = 401 and n = 417), the
amount of local memory may be not enough to store this
structure and the program will fail at compilation time.
As a consequence, in that case, the histogram must be
stored on global memory.

As previously said, coalescing on global memory is a
must to obtain the global best performance. In Section
B.1, two different access patterns have been described to
deal with large local structures on global memory. Even
if the first one is natural, this associated performance
might be limited because of non-coalesced memory ac-
cesses. That is the reason why, the second pattern has
been used for the previous experiments. To confirm
this point, a next experiment consists in comparing
the performance results obtained by the two different
approaches (Table 29).

In comparison with the second approach, the obtained
performance results are drastically reduced. Indeed, for
the standard GPU version, the speed-up obtained from
the first approach varies between ×4.6 and ×7.0. It is
about five times less than the second approach. The same
phenomenon occurs for the texture version (accelerations
from ×6.3 to ×7.9) whilst the speed-up for the second
approach alternates from ×28.8 and ×44.1. A conclusion
of this experiment indicates that memory coalescing
applied on local structures is a must to obtain the best
performance.

C.4 Application to the Weierstrass Continuous
Function

As previously seen, the obtained accelerations factors on
GPU vary accordingly to the instance size of the contin-



6

TABLE 1
Measures in terms of efficiency of a shared memory version. The quadratic assignment problem using a

pair-wise-exchange neighborhood is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
GPU GPUTex GPUSh GPU GPUTex GPUSh

tai30a 4.2×0.5 1.3×1.8 3.1×0.7 2.3×0.8 1.0×1.9 2.1×0.9

tai35a 6.5×0.5 1.6×2.1 5.0×0.7 2.9×0.9 1.2×2.3 2.8×1.0

tai40a 9.7×0.5 1.8×2.6 5.5×0.9 3.7×1.1 1.5×2.9 3.5×1.2

tai50a 16×0.6 3.0×3.2 8.9×1.1 5.7×1.4 1.8×4.6 5.0×1.7

tai60a 28×0.6 4.9×3.4 13×1.3 8.4×1.6 2.0×7.1 6.1×2.3

tai80a 63×0.7 10×4.2 41×1.5 19×1.9 4.5×8.1 9.6×3.7

tai100a 139×0.8 19×5.6 67×1.6 33×2.3 8.7×8.8 15.6×4.8

Instance

Intel Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050

240 GPU cores 448 GPU cores
GPU GPUTex GPUSh GPU GPUTex GPUSh

tai30a 1.1×1.4 0.8×2.0 1.0×1.7 0.5×2.2 0.4×2.8 0.5×2.4

tai35a 1.2×1.9 0.9×2.6 1.1×2.2 0.6×2.4 0.5×3.8 0.6×2.7

tai40a 1.3×2.7 1.1×3.3 1.2×3.0 0.7×3.2 0.5×4.4 0.6×3.8

tai50a 1.7×4.1 1.3×5.3 1.5×4.7 0.8×5.4 0.6×7.2 0.7×6.1

tai60a 2.0×5.6 1.6×7.3 1.7×6.5 1.1×8.4 0.9×10.2 1.0×9.1

tai80a 3.2×9.1 2.8×10.8 2.9×10.3 1.9×12.4 1.7×13.5 1.8×12.7

tai100a 5.5×10.9 3.7×16.5 4.1×14.6 3.1×15.7 2.6×18.6 3.0×16.1

TABLE 2
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of three (binary representation).

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 742×0.7 167×3.2 11.1×28.1 10.6×29.4 9.8×28.4 9.2×30.2 8.1×34.3 7.9×35.1

81-81 1023×0.8 242×3.3 16×29.5 15×31.4 13.3×31.2 12.9×32.2 11.2×37.0 10.8×38.4

101-117 3329×0.9 883×3.6 57×32.1 55×33.3 50×35.6 47×37.9 43×41.4 41×43.4

201-217 70325×1.1 15471×5.1 650×39.5 615×41.8 510×43.9 488×45.8 411×54.5 398×56.3

TABLE 3
Measures of the benefits of using coalescing accesses to the global memory on the GTX 280. The permuted

perceptron problem using a neighborhood based on a Hamming distance of two is considered.

Instance CPU
Non-coalesced accesses Coalesced accesses

GPU GPUTex GPU GPUTex

401-417 403 88×4.6 64×6.3 20×20.1 14×28.8

601-617 2049 328×6.2 249×8.2 67×30.5 51×40.1

801-817 5410 801×6.8 665×8.1 154×35.3 128×42.3

1001-1017 11075 1577×7.0 1361×8.1 292×37.9 252×43.9

1301-1317 25016 3582×7.0 3180×7.9 651×38.5 568×44.1

uous Weierstrass function. Another experiment consists
in seeing the impact of varying the neighborhood size
in terms of performance. Table 4 reports the produced
results for different neighborhood sizes with the dimen-
sion fixed to 2. The experiments were not carried out for
more than 100000 neighbors since these executions are
unpractical on CPU.

Whatever the used configuration, one can clearly see
that the acceleration factors grow accordingly with the
neighborhood size. These speed-ups alternate from ×3.7
to ×232.4 according to the different configurations. For
smaller neighborhoods (e.g. 100, 500 and 1000), since
one neighbor is at least associated with one thread, the

number of neighbors is not enough to cover the mem-
ory access latencies. This can explain this performance
degradation especially for advanced cards in which the
number of available multiprocessors is more important.

C.4.1 Quality of the solutions
Regarding the quality of the obtained solutions, the final
results for CPU and GPU versions are different. Indeed,
according to [5], GPU floating-point computations used
in the Weierstrass function such as sin, sqrt or pow intro-
duce a unit of least precision error. An analysis of the ac-
curacy of the solutions is detailed in Table 38 for the third
configuration. The average and the standard deviation



7

TABLE 4
Measures in terms of efficiency for the Weierstrass function using single precision. The problem of dimension 2 is

considered for different neighborhood sizes.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU

100 179 17×10.5 57 11×5.2 41 11×3.7 38 6.4×5.9

500 482 22×21.9 287 15×19.1 203 12×16.9 194 6.9×28.1

1000 1152 31×37.1 576 16×36.0 407 13×31.3 399 7.3×54.7

5000 5317 137×38.1 2874 32×89.8 2034 20×101.7 2018 12×168.1

10000 10298 247×41.7 5752 52×110.6 4088 32×127.8 4051 18×215.1

20000 21330 428×49.8 11488 101×113.7 8508 65×130.9 8490 38×223.4

50000 53402 1060×50.3 28718 244×117.7 20364 148×137.6 20291 89×227.6

100000 104439 2124×51.6 58857 493×119.4 40700 292×139.4 40213 173×232.4

are reported for the number of iterations representing
the algorithm divergence and convergence. The maximal
error of the fitnesses produced on GPU has been calcu-
lated in comparison with the CPU version during the
first iteration of the algorithm. This information explains
why the different versions take a different execution path
during the first iterations (divergence). Indeed, since
10000 neighbors are considered with a small radius, the
algorithm is quite sensitive to such a precision error. The
use of double precision allows to obtain a better accuracy
leading to delay this divergence. However, the algorithm
still takes rapidly a divergent branch. In addition to
this, the performance is drastically reduced by a factor
of four (speed-ups varying from ×31.8 to ×39.6) when
using the double precision. Regarding the convergence
of the different versions for a pre-determined threshold,
it clearly differs from a version to another. Statistical
tests cannot conclude if the distribution of the averages
is different i.e. if a version is better than another.

Regarding the final results, even if they are different,
the produced solutions for GPU versions are valid from
an optimization point of view. Indeed, a look at the final
solution vector does not exhibit any incoherent values.
Furthermore, after re-calculating on CPU the best fitness
found on GPU, the precision error generally varies from
10−3 to 10−5. Therefore, regarding optimization prob-
lems, such a precision error does not seem to be a critical
issue.

C.5 Thread Control

The thread control prevents the application from crash-
ing and may enhance the LSM performance rather than
a parameters tuning made at compile time. The next
experiment intends to highlight the benefits of applying
thread control in terms of performance optimization. The
considered problem is the PPP using a neighborhood
based on a hamming distance of two. Table 6 reports
the obtained results. In a general manner, performance
results obtained for the thread control (GPUTexTC) are
significantly improved in comparison with its counter-
part without control. Indeed, the accelerations factors
alternate from ×3.8 to ×81.4 for GPUTexTC against ×3.6

to ×73.3. This is quite significant since the results corre-
spond to a performance enhancement from 5% to 20%. In
comparison with the TSP, such an improvement can be
explained by the fact that the neighborhood is smaller.
That the reason why, the dynamic heuristic spent less
time to find a good parameters auto-tuning.

C.6 Analysis of the Data Transfer

As previously said, generating the neighborhood on
CPU and evaluating on GPU may lead to a significant
amount of data transferred. So, the generation of the
neighborhood on GPU is likely to deal with such an
issue. Table 7 reports the time spent by each operation
in the two approaches by using a neighborhood based
on a Hamming distance of one (n neighbors). The third
configuration was used for this experiment. For the first
approach, one can notice that the time spent by the data
transfer is significant. It represents almost 25% of the
total execution time for each instance. In the second
approach, in comparison with the previous one, the time
spent on the data transfer is drastically reduced with the
instance size increase. Indeed, for the instance m = 73
and n = 73, this time corresponds to 19% of the total
running time and it reaches the value of 1% for the
last instance (m = 1301 and n = 1317). Another obser-
vation concerns the time taken by the generation and
the evaluation of the neighborhood on GPU (evaluation
kernel). Generally speaking, the algorithm in the second
approach takes advantage of resource use since most of
the total running time is dedicated to the GPU kernel
execution. For example, in the fourth instance m = 201
and n = 217, the time associated with the evaluation of
the neighborhood accounts for 86% of the total execution
time. This time grows along with the instance size (more
than 90% for the other larger instances).

As a result, the second approach outperforms the first
one in terms of efficiency. Indeed, regarding the related
acceleration factors for the two approaches, the reported
results are in accordance with the previous observations.
This difference of performance tends to grow with the
instance size.



8

TABLE 5
Analysis of the solutions accuracy for the Weierstrass function using single and double precision on the GTX 280

(vector of real values).

Instance CPU conv. GPU max error div. conv. GPUdouble max error div. conv.
1 2034 8203±2312 16×127.1 1.8× 10−2 3±2 8634±2932 62×31.8 1.1× 10−4 15±4 8021±2233

2 4088 6729±2811 32×127.8 2.0× 10−2 5±3 7122±3917 125×32.7 1.9× 10−4 13±3 7434±2745

3 6113 7421±2537 47×130.0 1.4× 10−2 4±2 7634±2335 179×34.1 2.4× 10−4 14±3 8584±2932

4 8137 6776±3402 61×133.4 7.1× 10−2 3±2 8647±2936 220×37.0 1.5× 10−4 13±4 5907±3138

5 10225 8504±2043 76×134.5 5.7× 10−2 3±2 8612±2318 271×37.7 1.7× 10−4 13±4 6935±3982

6 12193 8852±1907 90×135.5 1.9× 10−2 6±4 7639±3972 318×38.2 1.1× 10−4 19±6 8894±2736

7 14319 7530±2572 104×137.7 3.1× 10−2 7±5 8014±1722 369×38.8 1.2× 10−4 17±5 7201±2480

8 16699 6364±2145 120×139.2 9.4× 10−2 5±3 7430±2411 429×38.9 1.4× 10−4 18±5 8537±1968

9 19008 7624±3413 134×141.9 4.7× 10−2 4±2 8194±3720 482×39.4 1.3× 10−4 13±4 7259±3905

10 21095 8301±2741 148×142.5 8.4× 10−2 5±2 8627±2889 533×39.6 1.8× 10−4 15±5 8635±2954

TABLE 6
Measures of the benefits of applying thread control. The permuted perceptron problem using a neighborhood based

on a Hamming distance of two is considered.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

GPUTex GPUTexTC GPUTex GPUTexTC GPUTex GPUTexTC GPUTex GPUTexTC

73-73 0.8×3.6 0.8×3.8 0.2×10.1 0.2×10.3 0.2×10.9 0.2×11.6 0.2×12.3 0.2×12.8

81-81 1.1×3.8 1.0×4.2 0.3×10.4 0.3×10.9 0.2×12.2 0.2×12.8 0.2×13.4 0.2×13.7

101-117 2.5×4.4 2.4×4.6 0.6×12.4 0.6×13.7 0.4×18.1 0.4×19.9 0.3×22.0 0.3×23.2

201-217 15×4.7 13×5.4 3.3×15.4 2.9×17.6 1.9×25.3 1.6×30.1 1.6×30.6 1.4×34.9

401-417 103×5.4 92×6.2 24×18.3 21×21.0 14×28.8 13×31.2 10×38.3 8.9×43.0

601-617 512×6.3 446×7.2 89×28.3 78×32.3 51×40.1 45×45.3 35×58.4 31×65.9

801-817 1245×6.9 1064×8.1 212×32.8 182×38.1 128×42.3 109×49.6 81×67.1 72×75.5

1001-1017 2421×7.2 2087×8.4 409×35.2 350×41.3 252×43.9 216×51.3 154×71.9 138×80.2

1301-1317 4903×8.0 4265×9.2 911×36.2 779×42.5 568×44.1 485×51.7 342×73.3 308×81.4

TABLE 7
Measures of the benefits of generating the neighborhood on GPU. on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of one is considered.

Instance CPU
Evaluation on GPU Generation and evaluation on GPU

GPUTex process transfers kernel GPUTex process transfers kernel
73-73 1.1 3.4×0.3 4.0% 22.7% 73.3% 3.0×0.4 1.0% 23.2% 75.8%
81-81 1.3 3.8×0.3 5.3% 25.9% 68.8% 3.3×0.4 1.1% 22.9% 75.9%

101-117 2.2 5.1×0.4 4.8% 24.5% 70.7% 4.2×0.5 1.1% 19.1% 79.8%
201-217 8.1 11×0.7 6.8% 25.3% 67.9% 7.7×1.1 1.2% 12.0% 86.8%
401-417 31 27×1.2 7.1% 25.0% 67.9% 14×2.2 1.1% 6.2% 92.7%
601-617 105 68×1.5 7.1% 26.1% 66.8% 43×2.4 1.0% 3.9% 95.1%
801-817 200 98×2.0 7.1% 24.2% 68.7% 50×4.0 0.6% 1.4% 98.0%

1001-1017 336 106×3.2 5.5% 23.5% 71.0% 58×5.8 0.3% 0.6% 99.1%
1301-1317 687 146×4.7 5.2% 22.4% 72.4% 85×8.0 0.2% 0.4% 99.4%

C.7 Additional Data Transfer Optimization

In our approach, data transfer from GPU to CPU corre-
sponds to the entire fitnesses structure. In Hill Climbing,
the reduction operator can help to reduce these copying
operations. Table 8 highlights the analysis of the time
dedicated for each major operation for a neighborhood
based on a Hamming distance of two. On the one
hand, for the second approach, whatever the size of
the neighborhood used or the instance size, the data
transfer is nearly constant (varying between 0.01% and
1.46%). It can be clarified by the fact that only one
solution is transferred from the GPU to the CPU at
each iteration. On the other hand, one can also notice
that the time spent on the search process on CPU is
also minimized for the second approach. Indeed, by

definition, the reduction operation consists in finding
the minimum which is performed on the GPU-side in
a logarithmic time. While for the first approach, most of
the CPU search process time corresponds to the search
of the minimum in the fitnesses structure (linear time).
Therefore, both minimization of the data transfers and
complexity reduction can explain such an improvement
of performance.

C.8 Comparison with Other Parallel and Distributed
Architectures

C.8.1 Configurations

The different machines used for the experiments for
COWs and grid are described in Table 9. Most of them



9

TABLE 8
Analysis of the time dedicated for each operation for 100 hill climbing algorithms. The permuted perceptron problem

using a Hamming distance of two and the reduction operation are considered.

Instance
GPUTex GPURTex

process transfers kernel process transfers kernel
73-73 19.0% 11.2% 69.8% 1.43% 1.46% 97.11%
81-81 18.8% 10.7% 70.5% 0.91% 0.98% 98.01%

101-117 18.7% 10.1% 71.2% 0.46% 0.44% 99.10%
201-217 18.5% 7.3% 74.2% 0.36% 0.11% 99.53%
401-417 18.2% 6.3% 75.5% 0.08% 0.04% 99.88%
601-617 17.7% 4.5% 77.8% 0.04% 0.02% 99.94%
801-817 13.3% 2.5% 84.2% 0.03% 0.02% 99.96%

1001-1017 12.7% 1.5% 85.8% 0.02% 0.01% 99.97%
1301-1317 10.9% 1.5% 87.6% 0.01% 0.01% 99.98%

are octo-core workstations. The different computers have
been chosen accordingly to the different GPU configura-
tions i.e. in agreement with their computational power.
Such a metric has been deduced from the potential gflops
delivered by the different machines.

C.8.2 COW

The analysis of the time spent is exactly in accordance
with the previous results (see Table 10). The percentage
dedicated to the transfer operations varies accordingly
with the speed-ups observed.

Furthermore, increasing the number of machines thus
the number of communications has a negative impact
on the performance for small instances such as m = 73
and n = 73. Indeed, the associated time dedicated
to the transfers clearly dominates the algorithm (93%
and 98% for the second and the third configurations).
Such a behaviour does not occur as well in the first
configuration since communication is based only on an
inter-core communication.

C.8.3 Grid organization

An analysis of the time dedicated to the transfers in-
cluding communication time is given in Table 11 for
the grid. In comparison with COWs, the transfer time
corresponding to the partitions sending and the synchro-
nization is significantly more important whatever the
instance size. This can be explained by the distribution
of computers among the different sites (respectively two,
five and seven according to the configuration). Indeed,
in COWs, such an extra inter-sites communication does
not occur since the computers are directly linked by a
gigabit ethernet.

APPENDIX D
STATISTICAL TESTS

Statistical analysis must be performed to ensure that the
conclusions deduced from the experiments are mean-
ingful. Furthermore, an objective is also to prove that a
particular algorithm outperforms another one. However,
the comparison between two average values might be
not enough. Indeed, it may differ from the comparison

between two distributions. Therefore, a test has to be
performed to ensure the statistical significances of the
obtained results. In other words, one has to determine
whether an observation is likely to be due to a sampling
error or not.

The first test consists in checking if the data set is nor-
mally distributed from a number of experiments above
30. This is done by applying a Kolmogorov-Smirnov’s
test which is a powerful and accurate method.

To compare two different distributions (i.e. whether an
algorithm is better than another or not), the Student’s
t-test is widely used to compare averages of normal
data. The prerequisites for such a test are to check the
data normality (Kolmogorov-Smirnov) then to check the
variances equality of the two samples. This latter can be
done by the Levene’s test which is an inferential statistic
used to assess the equality of variances in different
sample.

The statistical confidence level is fixed to 95% and the
p-values are represented for all the statistical analysis
tables.



10

TABLE 9
Parallel and distributed machines used for the experiments on COWs and Grid’5000.

Architecture
Configuration 1 Configuration 2

Machines gflops Machines gflops

GPU
Core 2 Duo T5800

76.8
Core 2 Quad Q6600

384
GeForce 8600M GT GeForce 8800 GTX

COWs
Intel Xeon E5440

90.656
4 Intel Xeon E5440

362.624
8 CPU cores 32 CPU cores

Grid 90.656 406.368

Amd Opteron 2218
Intel Xeon E5520

2 Intel Xeon E5440 2 Intel Xeon E5420
2 × 4 CPU cores Intel Xeon E5440

40 CPU cores

Architecture
Configuration 3 Configuration 4

Machines gflops Machines gflops

GPU
Intel Xeon E5450

981.12
Intel Xeon E5620

1106.08
GeForce GTX 280 Tesla M2050

COWs
11 Intel Xeon E5440

995.236
13 Intel Xeon E5440

1176.188
88 CPU cores 104 CPU cores

Grid

2 Intel Xeon E5520

979.104

4 Intel Xeon E5520

1160.056

2 AMD Opteron 2218 2 AMD Opteron 2218
2 Intel Xeon E5520 2 Intel Xeon E5520
4 Intel Xeon E5520 4 Intel Xeon E5520
Intel Xeon X5570 Intel Xeon X5570
Intel Xeon E5520 Intel Xeon E5520

96 CPU cores 112 CPU cores

TABLE 10
Analysis of the time dedicated for each operation for a cluster of workstations. The permuted perceptron problem

using a neighborhood based on a Hamming distance of two is considered. The fourth configuration is not
represented since it is very similar to the third one.

Instance

Intel Xeon E5440 4 Intel Xeon E5440 11 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores

process transfers workers process transfers workers process transfers workers
73-73 4.2% 45.7% 50.1% 1.8% 93.0% 5.2% 0.7% 98.8% 0.5%
81-81 3.3% 45.3% 51.4% 2.3% 91.9% 5.8% 0.7% 98.7% 0.6%

101-117 2.6% 43.1% 54.3% 3.9% 83.8% 12.3% 1.2% 97.4% 1.4%
201-217 1.9% 42.4% 55.7% 5.7% 67.8% 26.5% 4.6% 88.2% 7.2%
401-417 1.8% 39.6% 58.6% 6.5% 57.1% 36.4% 12.1% 63.8% 24.1%
601-617 0.9% 52.0% 47.1% 3.5% 64.9% 31.6% 7.8% 71.7% 20.5%
801-817 0.6% 56.5% 42.9% 2.3% 67.4% 30.3% 5.3% 75.4% 19.3%

1001-1017 0.5% 59.4% 40.1% 1.9% 70.7% 27.4% 4.0% 79.9% 16.1%
1301-1317 0.4% 62.5% 37.1% 1.6% 71.3% 27.1% 3.5% 80.6% 15.9%

TABLE 11
Analysis of the time dedicated for each operation for workstations distributed in a grid organization. The permuted

perceptron problem using a neighborhood based on a Hamming distance of two is considered. The fourth
configuration is not represented since it is very similar to the third one.

Instance

2 Intel Xeon QC E5440 Configuration 5 machines Configuration 12 machines
8 CPU cores 40 CPU cores 96 CPU cores

process transfers workers process transfers workers process transfers workers
73-73 3.4% 59.5% 37.1% 2.0% 94.1% 3.9% 0.5% 99.1% 0.4%
81-81 2.6% 54.5% 42.9% 2.0% 93.5% 4.5% 0.6% 98.9% 0.5%

101-117 2.1% 53.6% 44.3% 3.1% 87.2% 9.7% 0.8% 98.2% 1.0%
201-217 1.6% 52.7% 45.7% 4.5% 74.5% 21.0% 3.5% 91.2% 5.3%
401-417 1.5% 49.9% 48.6% 5.2% 65.8% 29.0% 10.4% 70.5% 19.1%
601-617 0.8% 59.2% 40.0% 2.8% 72.0% 25.2% 6.4% 77.1% 16.5%
801-817 0.5% 63.8% 35.7% 1.8% 74.1% 24.1% 4.1% 80.2% 15.7%

1001-1017 0.4% 66.7% 32.9% 1.5% 76.6% 21.9% 3.0% 83.3% 13.7%
1301-1317 0.3% 68.3% 31.4% 1.3% 77.1% 21.6% 2.6% 86.4% 11.0%



11

TABLE 12
Measures in terms of efficiency for the quadratic assignment problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

tai30a + + + + + + + + + + + +
tai35a + + + + + + + + + + + +
tai40a + + + + + + + + + + + +
tai50a + + + + + + + + + + + +
tai60a + + + + + + + + + + + +
tai80a + + + + + + + + + + + +
tai100a + + + + + + + + + + + +

TABLE 13
Measures in terms of efficiency for the quadratic assignment problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

tai30a + + + + + + + +
tai35a + + + + + + + +
tai40a + + + + + + + +
tai50a + + + + + + + +
tai60a + + + + + + + +
tai80a + + + + + + + +

tai100a + + + + + + + +

TABLE 14
Measures in terms of efficiency for the quadratic assignment problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

tai30a - - - - - - - -
tai35a - - - - - - - -
tai40a - - - - - - - -
tai50a - - - - - - - -
tai60a - - - - - - - -
tai80a - - - - - - - -

tai100a - - - - - - - -



12

TABLE 15
Measures in terms of efficiency of a shared memory version. The quadratic assignment problem using a

pair-wise-exchange neighborhood is considered. Test of the null hypothesis of normality with the
Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
GPU GPUTex GPUSh GPU GPUTex GPUSh

tai30a + + + + + +
tai35a + + + + + +
tai40a + + + + + +
tai50a + + + + + +
tai60a + + + + + +
tai80a + + + + + +

tai100a + + + + + +

Instance

Intel Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050

240 GPU cores 448 GPU cores
GPU GPUTex GPUSh GPU GPUTex GPUSh

tai30a + + + + + +
tai35a + + + + + +
tai40a + + + + + +
tai50a + + + + + +
tai60a + + + + + +
tai80a + + + + + +

tai100a + + + + + +

TABLE 16
Measures in terms of efficiency of a shared memory version. The quadratic assignment problem using a

pair-wise-exchange neighborhood is considered. Test of the null hypothesis of variances equality with the Levene’s
test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh

tai30a + + + + + + + +
tai35a + + + + + + + +
tai40a + + + + + + + +
tai50a + + + + + + + +
tai60a + + + + + + + +
tai80a + + + + + + + +

tai100a + + + + + + + +

TABLE 17
Measures in terms of efficiency of a shared memory version. The quadratic assignment problem using a

pair-wise-exchange neighborhood is considered. Test of the null hypothesis of the averages equality with the
Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh GPUSh

tai30a - - - - - - - -
tai35a - - - - - - - -
tai40a - - - - - - - -
tai50a - - - - - - - -
tai60a - - - - - - - -
tai80a - - - - - - - -

tai100a - - - - - - - -



13

TABLE 18
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of one (binary representation). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

73-73 + + + + + + + + + + + +
81-81 + + + + + + + + + + + +

101-117 + + + + + + + + + + + +
201-217 + + + + + + + + + + + +
401-417 + + + + + + + + + + + +
601-617 + + + + + + + + + + + +
801-817 + + + + + + + + + + + +

1001-1017 + + + + + + + + + + + +
1301-1317 + + + + + + + + + + + +

TABLE 19
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of one (binary representation). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +
401-417 + + + + + + + +
601-617 + + + + + + + +
801-817 + + + + + + + +

1001-1017 + + + + + + + +
1301-1317 + + + + + + + +

TABLE 20
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of one (binary representation). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -
401-417 - - - - - - - -
601-617 - - - - - - - -
801-817 - - - - - - - -

1001-1017 - - - - - - - -
1301-1317 - - - - - - - -



14

TABLE 21
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of two (binary representation). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

73-73 + + + + + + + + + + + +
81-81 + + + + + + + + + + + +

101-117 + + + + + + + + + + + +
201-217 + + + + + + + + + + + +
401-417 + + + + + + + + + + + +
601-617 + + + + + + + + + + + +
801-817 + + + + + + + + + + + +

1001-1017 + + + + + + + + + + + +
1301-1317 + + + + + + + + + + + +

TABLE 22
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of two (binary representation). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +
401-417 + + + + + + + +
601-617 + + + + + + + +
801-817 + + + + + + + +

1001-1017 + + + + + + + +
1301-1317 + + + + + + + +

TABLE 23
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of two (binary representation). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -
401-417 0.083 - - - - - - -
601-617 - - - - - - - -
801-817 - - - - - - - -

1001-1017 - - - - - - - -
1301-1317 - - - - - - - -



15

TABLE 24
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of three (binary representation). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

73-73 + + + + + + + + + + + +
81-81 + + + + + + + + + + + +

101-117 + + + + + + + + + + + +
201-217 + + + + + + + + + + + +

TABLE 25
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming
distance of three (binary representation). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +

TABLE 26
Measures in terms of efficiency for the permuted perceptron problem using a neighborhood based on a Hamming

distance of three (binary representation). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -

TABLE 27
Measures of the benefits of using coalescing accesses to the global memory on the GTX 280. The permuted
perceptron problem using a neighborhood based on a Hamming distance of two is considered. Test of the null

hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance CPU
Non-coalesced accesses Coalesced accesses
GPU GPUTex GPU GPUTex

401-417 + + + + +
601-617 + + + + +
801-817 + + + + +

1001-1017 + + + + +
1301-1317 + + + + +

TABLE 28
Measures of the benefits of using coalescing accesses to the global memory on the GTX 280. The permuted
perceptron problem using a neighborhood based on a Hamming distance of two is considered. Test of the null

hypothesis of variances equality with the Levene’s test.

Instance CPU - Nca/GPU Nca/GPU - Ca/GPU Nca/GPUTex - Ca/GPUTex

401-417 + + +
601-617 + + +
801-817 + + +

1001-1017 + + +
1301-1317 + + +



16

TABLE 29
Measures of the benefits of using coalescing accesses to the global memory on the GTX 280. The permuted
perceptron problem using a neighborhood based on a Hamming distance of two is considered. Test of the null

hypothesis of the averages equality with the Student’s t-test.

Instance CPU - Nca/GPU Nca/GPU - Ca/GPU Nca/GPUTex - Ca/GPUTex

401-417 - - -
601-617 - - -
801-817 - - -

1001-1017 - - -
1301-1317 - - -

TABLE 30
Measures in terms of efficiency for the Weierstrass function using single precision (vector of real values with 10000

neighbors). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU

1 + + + + + + + +
2 + + + + + + + +
3 + + + + + + + +
4 + + + + + + + +
5 + + + + + + + +
6 + + + + + + + +
7 + + + + + + + +
8 + + + + + + + +
9 + + + + + + + +
10 + + + + + + + +

TABLE 31
Measures in terms of efficiency for the Weierstrass function using single precision (vector of real values with 10000

neighbors). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU - GPU CPU - GPU CPU - GPU CPU - GPU

1 + + + +
2 + + + +
3 + + + +
4 + + + +
5 + + + +
6 + + + +
7 + + + +
8 + + + +
9 + + + +
10 + + + +

TABLE 32
Measures in terms of efficiency for the Weierstrass function using single precision (vector of real values with 10000

neighbors). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU - GPU CPU - GPU CPU - GPU CPU - GPU

1 - - - -
2 - - - -
3 - - - -
4 - - - -
5 - - - -
6 - - - -
7 - - - -
8 - - - -
9 - - - -
10 - - - -



17

TABLE 33
Measures in terms of efficiency for the Weierstrass function using single precision. The problem of dimension 2 is

considered for different neighborhood sizes. Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s
test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU

100 + + + + + + + +
500 + + + + + + + +
1000 + + + + + + + +
5000 + + + + + + + +

10000 + + + + + + + +
20000 + + + + + + + +
50000 + + + + + + + +

100000 + + + + + + + +

TABLE 34
Measures in terms of efficiency for the Weierstrass function using single precision. The problem of dimension 2 is

considered for different neighborhood sizes. Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU - GPU CPU - GPU CPU - GPU CPU - GPU

100 + + + +
500 + + + +
1000 + + + +
5000 + + + +

10000 + + + +
20000 + + + +
50000 + + + +

100000 + + + +

TABLE 35
Measures in terms of efficiency for the Weierstrass function using single precision. The problem of dimension 2 is
considered for different neighborhood sizes. Test of the null hypothesis of the averages equality with the Student’s

t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU - GPU CPU - GPU CPU - GPU CPU - GPU

100 - - - -
500 - - - -
1000 - - - -
5000 - - - -

10000 - - - -
20000 - - - -
50000 - - - -

100000 - - - -

TABLE 36
Analysis of the solutions accuracy for the Weierstrass function using single and double precision on the GTX 280

(vector of real values). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance CPU conv. GPU div. conv. GPUdouble div. conv.
1 + + + + + + + +
2 + + + + + + + +
3 + + + + + + + +
4 + + + + + + + +
5 + + + + + + + +
6 + + + + + + + +
7 + + + + + + + +
8 + + + + + + + +
9 + + + + + + + +
10 + + + + + + + +



18

TABLE 37
Analysis of the solutions accuracy for the Weierstrass function using single and double precision on the GTX 280

(vector of real values). Test of the null hypothesis of variances equality with the Levene’s test.

Instance
GPU - GPUdouble GPU - GPUdouble GPU - GPUdouble CPU - GPU CPU - GPUdouble

time max error div. conv. conv.
1 + + + + +
2 + + + + +
3 + + + + +
4 + + + + +
5 + + + + +
6 + + + + +
7 + + + + +
8 + + + + +
9 + + + + +
10 + + + + +

TABLE 38
Analysis of the solutions accuracy for the Weierstrass function using single and double precision on the GTX 280

(vector of real values). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance
GPU - GPUdouble GPU - GPUdouble GPU - GPUdouble CPU - GPU CPU - GPUdouble

time max error div. conv. conv.
1 - - - 0.147 0.083
2 - - - 0.072 0.095
3 - - - 0.085 0.144
4 - - - 0.128 0.088
5 - - - 0.143 0.139
6 - - - 0.095 0.107
7 - - - 0.073 0.071
8 - - - 0.147 0.118
9 - - - 0.107 0.151
10 - - - 0.142 0.084

TABLE 39
Measures in terms of efficiency for the traveling salesman problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex CPU GPU GPUTex

eil101 + + + + + + + + + + + +
d198 + + + + + + + + + + + +

pcb442 + + + + + + + + + + + +
rat783 + + + + + + + + + + + +
d1291 + + + + + + + + + + + +
pr2392 + . . + + + + + + + + +
fnl4461 + . . + . . + + + + + +
rl5915 + . . + . . + . . + + +

TABLE 40
Measures in terms of efficiency for the traveling salesman problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

eil101 + + + + + + + +
d198 + + + + + + + +

pcb442 + + + + + + + +
rat783 + + + + + + + +
d1291 + + + + + + + +
pr2392 . . + + + + + +
fnl4461 . . . . + + + +
rl5915 . . . . . + + +



19

TABLE 41
Measures in terms of efficiency for the traveling salesman problem using a pair-wise-exchange neighborhood

(permutation representation). Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPU CPU GPU CPU GPU CPU GPU
GPU GPUTex GPU GPUTex GPU GPUTex GPU GPUTex

eil101 - - 0.064 - - - - -
d198 - - - - - - - -

pcb442 - - - - - - - -
rat783 - - - - - - - -
d1291 - - - - - - - -
pr2392 . . - - - - - -
fnl4461 . . . . - - - -
rl5915 . . . . . - - -



20

TABLE 42
Measures of the benefits of applying thread control. The traveling salesman problem using a pair-wise-exchange

neighborhood is considered. Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
CPU GPUTex GPUTexTC CPU GPUTex GPUTexTC

eil101 + + + + + +
d198 + + + + + +

pcb442 + + + + + +
rat783 + + + + + +
d1291 + + + + + +
pr2392 + . + + + +
fnl4461 + . + + . +
rl5915 + . + + . +

Instance

Intel Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050

240 GPU cores 448 GPU cores
CPU GPUTex GPUTexTC CPU GPUTex GPUTexTC

eil101 + + + + + +
d198 + + + + + +

pcb442 + + + + + +
rat783 + + + + + +
d1291 + + + + + +
pr2392 + + + + + +
fnl4461 + + + + + +
rl5915 + . + + + +

TABLE 43
Measures of the benefits of applying thread control. The traveling salesman problem using a pair-wise-exchange

neighborhood is considered. Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC

eil101 + + + + + + + +
d198 + + + + + + + +

pcb442 + + + + + + + +
rat783 + + + + + + + +
d1291 + + + + + + + +
pr2392 + . + + + + + +
fnl4461 + . + . + + + +
rl5915 + . + . + . + +

TABLE 44
Measures of the benefits of applying thread control. The traveling salesman problem using a pair-wise-exchange

neighborhood is considered. Test of the null hypothesis of the averages equality with the Student’s t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC

eil101 - 0.58 - - - 0.65 - -
d198 - 0.62 - - - 0.60 - -

pcb442 - - - - - - - -
rat783 - 0.55 - - - - - -
d1291 - 0.64 - - - - - -
pr2392 - . - - - - - -
fnl4461 - . - . - - - -
rl5915 - . - . - . - -



21

TABLE 45
Measures of the benefits of applying thread control. The permuted perceptron problem using a neighborhood based
on a Hamming distance of two is considered. Test of the null hypothesis of normality with the Kolmogorov-Smirnov’s

test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600
GeForce 8600M GT GeForce 8800 GTX

32 GPU cores 128 GPU cores
CPU GPUTex GPUTexTC CPU GPUTex GPUTexTC

73-73 + + + + + +
81-81 + + + + + +

101-117 + + + + + +
201-217 + + + + + +
401-417 + + + + + +
601-617 + + + + + +
801-817 + + + + + +

1001-1017 + + + + + +
1301-1317 + + + + + +

Instance

Intel Xeon E5450 Xeon E5620
GeForce GTX 280 Tesla M2050

240 GPU cores 448 GPU cores
32 GPU cores 128 GPU cores

CPU GPUTex GPUTexTC CPU GPUTex GPUTexTC

73-73 + + + + + +
81-81 + + + + + +

101-117 + + + + + +
201-217 + + + + + +
401-417 + + + + + +
601-617 + + + + + +
801-817 + + + + + +

1001-1017 + + + + + +
1301-1317 + + + + + +

TABLE 46
Measures of the benefits of applying thread control. The permuted perceptron problem using a neighborhood based
on a Hamming distance of two is considered. Test of the null hypothesis of variances equality with the Levene’s test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC

73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +
401-417 + + + + + + + +
601-617 + + + + + + + +
801-817 + + + + + + + +

1001-1017 + + + + + + + +
1301-1317 + + + + + + + +

TABLE 47
Measures of the benefits of applying thread control. The permuted perceptron problem using a neighborhood based
on a Hamming distance of two is considered. Test of the null hypothesis of the averages equality with the Student’s

t-test.

Instance

Core 2 Duo T5800 Core 2 Quad Q6600 Intel Xeon E5450 Xeon E5620
GeForce 8600M GT GeForce 8800 GTX GeForce GTX 280 Tesla M2050

32 GPU cores 128 GPU cores 240 GPU cores 448 GPU cores
CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC GPUTexTC

73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -
401-417 - - - - - - - -
601-617 - - - - - - - -
801-817 - - - - - - - -

1001-1017 - - - - - - - -
1301-1317 - - - - - - - -



22

TABLE 48
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of
normality with the Kolmogorov-Smirnov’s test.

Instance CPU
Evaluation on GPU Generation and evaluation on GPU

GPUTex process transfers kernel GPUTex process transfers kernel
73-73 + + + + + + + + +
81-81 + + + + + + + + +

101-117 + + + + + + + + +
201-217 + + + + + + + + +
401-417 + + + + + + + + +
601-617 + + + + + + + + +
801-817 + . . . . + + + +

1001-1017 + . . . . + + + +
1301-1317 + . . . . + + + +

TABLE 49
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of
variances equality with the Levene’s test.

Instance CPU - E/GPUTex

E/GPUTex −EG/GPUTex

transfers kernel
73-73 + + +
81-81 + + +

101-117 + + +
201-217 + + +
401-417 + + +
601-617 + + +
801-817 . . .

1001-1017 . . .
1301-1317 . . .

TABLE 50
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of the
averages equality with the Student’s t-test.

Instance CPU - E/GPUTex

E/GPUTex −EG/GPUTex

transfers kernel
73-73 - - -
81-81 - - -

101-117 - - -
201-217 - - -
401-417 - - -
601-617 - - -
801-817 . . .

1001-1017 . . .
1301-1317 . . .

TABLE 51
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of one is considered. Test of the null hypothesis of
normality with the Kolmogorov-Smirnov’s test.

Instance CPU
Evaluation on GPU Generation and evaluation on GPU

GPUTex process transfers kernel GPUTex process transfers kernel
73-73 + + + + + + + + +
81-81 + + + + + + + + +

101-117 + + + + + + + + +
201-217 + + + + + + + + +
401-417 + + + + + + + + +
601-617 + + + + + + + + +
801-817 + + + + + + + + +

1001-1017 + + + + + + + + +
1301-1317 + + + + + + + + +



23

TABLE 52
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of one is considered. Test of the null hypothesis of
variances equality with the Levene’s test.

Instance CPU - E/GPUTex

E/GPUTex −EG/GPUTex

transfers kernel
73-73 + + +
81-81 + + +

101-117 + + +
201-217 + + +
401-417 + + +
601-617 + + +
801-817 + + +

1001-1017 + + +
1301-1317 + + +

TABLE 53
Measures of the benefits of generating the neighborhood on GPU on the GTX 280. The permuted perceptron

problem using a neighborhood based on a Hamming distance of one is considered. Test of the null hypothesis of the
averages equality with the Student’s t-test.

Instance CPU - E/GPUTex

E/GPUTex −EG/GPUTex

transfers kernel
73-73 - - -
81-81 - - -

101-117 - - -
201-217 - - -
401-417 - - -
601-617 - - -
801-817 - - -

1001-1017 - - -
1301-1317 - - -



24

TABLE 54
Measures of the benefits of using the reduction operation on the GTX 280. The permuted perceptron problem is

considered for two different neighborhoods using 100 hill climbing algorithms. Test of the null hypothesis of normality
with the Kolmogorov-Smirnov’s test.

Instance
n neighbors

n×(n−1)
2

neighbors
CPU GPUTex GPUTexR CPU GPUTex GPUTexR

73-73 + + + + + +
81-81 + + + + + +

101-117 + + + + + +
201-217 + + + + + +
401-417 + + + + + +
601-617 + + + + + +
801-817 + + + + + +

1001-1017 + + + + + +
1301-1317 + + + + + +

TABLE 55
Measures of the benefits of using the reduction operation on the GTX 280. The permuted perceptron problem is

considered for two different neighborhoods using 100 hill climbing algorithms. Test of the null hypothesis of variances
equality with the Levene’s test.

Instance
n neighbors

n×(n−1)
2

neighbors
CPU - GPUTexR GPUTex - GPUTexR CPU - GPUTexR GPUTex - GPUTexR

73-73 + + + +
81-81 + + + +

101-117 + + + +
201-217 + + + +
401-417 + + + +
601-617 + + + +
801-817 + + + +

1001-1017 + + + +
1301-1317 + + + +

TABLE 56
Measures of the benefits of using the reduction operation on the GTX 280. The permuted perceptron problem is
considered for two different neighborhoods using 100 hill climbing algorithms. Test of the null hypothesis of the

averages equality with the Student’s t-test.

Instance
n neighbors

n×(n−1)
2

neighbors
CPU - GPUTexR GPUTex - GPUTexR CPU - GPUTexR GPUTex - GPUTexR

73-73 0.064 0.059 - -
81-81 0.058 0.057 - -

101-117 0.071 0.060 - -
201-217 0.062 0.063 - -
401-417 - - - -
601-617 - - - -
801-817 - - - -

1001-1017 - - - -
1301-1317 - - - -

TABLE 57
Analysis of the time dedicated for each operation for 100 hill climbing algorithms. The permuted perceptron problem

using a Hamming distance of two and the reduction operation are considered. Test of the null hypothesis of normality
with the Kolmogorov-Smirnov’s test.

Instance
GPUTex GPUTexR

process transfers kernel process transfers kernel
73-73 + + + + + +
81-81 + + + + + +

101-117 + + + + + +
201-217 + + + + + +
401-417 + + + + + +
601-617 + + + + + +
801-817 + + + + + +

1001-1017 + + + + + +
1301-1317 + + + + + +



25

TABLE 58
Analysis of the time dedicated for each operation for 100 hill climbing algorithms. The permuted perceptron problem

using a Hamming distance of two and the reduction operation are considered. Test of the null hypothesis of variances
equality with the Levene’s test.

Instance
GPUTex - GPUTexR

process transfers kernel
73-73 + + +
81-81 + + +

101-117 + + +
201-217 + + +
401-417 + + +
601-617 + + +
801-817 + + +

1001-1017 + + +
1301-1317 + + +

TABLE 59
Analysis of the time dedicated for each operation for 100 hill climbing algorithms. The permuted perceptron problem

using a Hamming distance of two and the reduction operation are considered. Test of the null hypothesis of the
averages equality with the Student’s t-test.

Instance
GPUTex - GPUTexR

process transfers kernel
73-73 - - -
81-81 - - -

101-117 - - -
201-217 - - -
401-417 - - -
601-617 - - -
801-817 - - -

1001-1017 - - -
1301-1317 - - -

TABLE 60
Measures in terms of efficiency for a cluster of workstations. The permuted perceptron problem using a

neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of normality with the
Kolmogorov-Smirnov’s test.

Instance

Intel Xeon E5440 4 Intel Xeon E5440 11 Intel Xeon E5440 13 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores 104 CPU cores

CPU GPUTex COW CPU GPUTex COW CPU GPUTex COW CPU GPUTex COW
73-73 + + + + + + + + + + + +
81-81 + + + + + + + + + + + +

101-117 + + + + + + + + + + + +
201-217 + + + + + + + + + + + +
401-417 + + + + + + + + + + + +
601-617 + + + + + + + + + + + +
801-817 + + + + + + + + + + + +

1001-1017 + + + + + + + + + + + +
1301-1317 + + + + + + + + + + + +



26

TABLE 61
Measures in terms of efficiency for a cluster of workstations. The permuted perceptron problem using a

neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of variances equality
with the Levene’s test.

Instance

Intel Xeon E5440 4 Intel Xeon 2.83 Ghz 11 Intel Xeon E5440 13 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores 104 CPU cores

CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

COW COW COW COW COW COW COW COW
73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +
401-417 + + + + + + + +
601-617 + + + + + + + +
801-817 + + + + + + + +

1001-1017 + + + + + + + +
1301-1317 + + + + + + + +

TABLE 62
Measures in terms of efficiency for a cluster of workstations. The permuted perceptron problem using a

neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of the averages
equality with the Student’s t-test.

Instance

Intel Xeon E5440 4 Intel Xeon 2.83 Ghz 11 Intel Xeon E5440 13 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores 104 CPU cores

CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

COW COW COW COW COW COW COW COW
73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -
401-417 - - - - - - - -
601-617 - - - - - - - -
801-817 - - - - - - - -

1001-1017 - - - - - - - -
1301-1317 - - - - - - - -

TABLE 63
Analysis of the time dedicated for each operation for a cluster of workstations. The permuted perceptron problem
using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of normality

with the Kolmogorov-Smirnov’s test.

Instance

Intel Xeon E5440 4 Intel Xeon 2.83 Ghz 11 Intel Xeon E5440
8 CPU cores 32 CPU cores 88 CPU cores

process transfers workers process transfers workers process transfers workers
73-73 + + + + + + + + +
81-81 + + + + + + + + +

101-117 + + + + + + + + +
201-217 + + + + + + + + +
401-417 + + + + + + + + +
601-617 + + + + + + + + +
801-817 + + + + + + + + +

1001-1017 + + + + + + + + +
1301-1317 + + + + + + + + +



27

TABLE 64
Measures in terms of efficiency for workstations distributed in a grid organization. The permuted perceptron problem

using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of normality
with the Kolmogorov-Smirnov’s test.

Instance

2 Intel Xeon QC E5440 5 machines 12 machines 14 machines
8 CPU cores 40 CPU cores 96 CPU cores 112 CPU cores

CPU GPUTex Grid CPU GPUTex Grid CPU GPUTex Grid CPU GPUTex Grid
73-73 + + + + + + + + + + + +
81-81 + + + + + + + + + + + +

101-117 + + + + + + + + + + + +
201-217 + + + + + + + + + + + +
401-417 + + + + + + + + + + + +
601-617 + + + + + + + + + + + +
801-817 + + + + + + + + + + + +

1001-1017 + + + + + + + + + + + +
1301-1317 + + + + + + + + + + + +

TABLE 65
Measures in terms of efficiency for workstations distributed in a grid organization. The permuted perceptron problem
using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of variances

equality with the Levene’s test.

Instance

2 Intel Xeon QC E5440 5 machines 12 machines 14 machines
8 CPU cores 40 CPU cores 96 CPU cores 112 CPU cores

CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

Grid Grid Grid Grid Grid Grid Grid Grid
73-73 + + + + + + + +
81-81 + + + + + + + +

101-117 + + + + + + + +
201-217 + + + + + + + +
401-417 + + + + + + + +
601-617 + + + + + + + +
801-817 + + + + + + + +

1001-1017 + + + + + + + +
1301-1317 + + + + + + + +

TABLE 66
Measures in terms of efficiency for workstations distributed in a grid organization. The permuted perceptron problem
using a neighborhood based on a Hamming distance of two is considered. Test of the null hypothesis of the averages

equality with the Student’s t-test.

Instance

2 Intel Xeon QC E5440 5 machines 12 machines 14 machines
8 CPU cores 40 CPU cores 96 CPU cores 112 CPU cores

CPU GPUTex CPU GPUTex CPU GPUTex CPU GPUTex

Grid Grid Grid Grid Grid Grid Grid Grid
73-73 - - - - - - - -
81-81 - - - - - - - -

101-117 - - - - - - - -
201-217 - - - - - - - -
401-417 - - - - - - - -
601-617 - - - - - - - -
801-817 - - - - - - - -

1001-1017 - - - - - - - -
1301-1317 - - - - - - - -



28

TABLE 67
Analysis of the time dedicated for each operation for workstations distributed in a grid organization. The permuted

perceptron problem using a neighborhood based on a Hamming distance of two is considered. Test of the null
hypothesis of normality with the Kolmogorov-Smirnov’s test.

Instance

2 Intel Xeon QC E5440 5 machines 12 machines
8 CPU cores 40 CPU cores 96 CPU cores

process transfers workers process transfers workers process transfers workers
73-73 + + + + + + + + +
81-81 + + + + + + + + +

101-117 + + + + + + + + +
201-217 + + + + + + + + +
401-417 + + + + + + + + +
601-617 + + + + + + + + +
801-817 + + + + + + + + +

1001-1017 + + + + + + + + +
1301-1317 + + + + + + + + +



29

REFERENCES

[1] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooper-
ative learning approach to the traveling salesman problem,” IEEE
Trans. on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997.

[2] S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S.
Baghsorkhi, and W. mei W. Hwu, “Program optimization carving
for gpu computing,” J. Parallel Distribributed Computing, vol. 68,
no. 10, pp. 1389–1401, 2008.

[3] J. D. Owens, M.Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, 2008.

[4] R. K. Ahuja, J. Goodstein, A. Mukherjee, J. B. Orlin, and D. Sharma,
“A very large-scale neighborhood search algorithm for the com-
bined through-fleet-assignment model,” INFORMS Journal on Com-
puting, vol. 19, no. 3, pp. 416–428, 2007.

[5] NVIDIA, CUDA Programming Guide Version 4.0, 2011.


