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Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi

INRIA Dolphin Project / Opac LIFL CNRS
40 avenue Halley, 59650 Villeneuve d’Ascq Cedex FRANCE.

The-Van.Luong@inria.fr, [Nouredine.Melab, El-Ghazali.Talbi]@lifl.fr

Abstract. In practice, combinatorial optimization problems are com-
plex and computationally time-intensive. Local search algorithms are
powerful heuristics which allow to significantly reduce the computation
time cost of the solution exploration space. In these algorithms, the multi-
start model may improve the quality and the robustness of the obtained
solutions. However, solving large size and time-intensive optimization
problems with this model requires a large amount of computational re-
sources. GPU computing is recently revealed as a powerful way to harness
these resources. In this paper, the focus is on the multi-start model for lo-
cal search algorithms on GPU. We address its re-design, implementation
and associated issues related to the GPU execution context. The prelim-
inary results demonstrate the effectiveness of the proposed approaches
and their capabilities to exploit the GPU architecture.

Keywords: GPU-based metaheuristics, multi-start on GPU.

1 Introduction

Over the last years, interest in metaheuristics (generic heuristics) has risen con-
siderably in the field of optimization. Indeed, plenty of hard problems in a wide
range of areas including logistics, telecommunications, biology, etc., have been
modeled and tackled successfully with metaheuristics. Local search (LS) algo-
rithms are a class of metaheuristics which handle with a single solution iteratively
improved by exploring its neighborhood in the solution space. Different parallel
models have been proposed in the literature for the design and implementation
of LSs [1]. The multi-start model consists in executing in parallel many LSs in an
independent/cooperative manner. This mechanism may provide more effective,
diversified and robust solutions.

Nevertheless, although LS methods have provided very powerful search al-
gorithms, problems in practice are becoming more and more complex and CPU
time-intensive and their resolution requires to harness more and more computa-
tional resources. In parallel, the recent advances in hardware architecture allow
to provide such required tremendous computational power through GPU in-
frastructures. This new emerging technology is indeed believed to be extremely
useful to speed up many complex algorithms. However, the exploitation of such
computational infrastructures in metaheuristics is not straightforward.



Indeed, several scientific challenges mainly related to the hierarchical memory
management or to the execution context have to be faced. The major issues are
the efficient distribution of data processing between the CPU and the GPU, the
thread synchronization, the optimization of data transfer between the different
memories, the capacity constraints of these memories, etc. The main objective
of our research work is to deal with such issues for the re-design of parallel
metaheuristics models to allow solving of large scale optimization problems on
GPU architectures. In [2, 3], we have proposed to re-design the parallel evalua-
tion of the neighborhood model for LSs on GPU. To go on this way, the main
objective of this paper is to deal with the well-known multi-start model on GPU
architectures where many LSs are executed in parallel.

We deal with the entire re-design of the multi-start model on GPU by taking
into account the particular features related to both the LS process and the
GPU computing. More exactly, we provide two different general schemes for
building efficient multi-start LSs on GPU. The first scheme combines the multi-
start model with the parallel evaluation of the neighborhood on GPU previously
mentioned above. In the second scheme, the search process of each LS algorithm
is fully distributed on GPU. The advantage of the full distribution of the search
process on GPU is to reduce CPU/GPUmemory copy latency. We will essentially
focus on this approach throughout this paper.

Despite the fact that the second scheme for the multi-start model has already
been applied in some previous works in the context of the tabu search on GPU
[4,5], to the best of our knowledge, it has never been widely investigated in terms
of 1) reproducibility for any other LS algorithm and 2) memory management.
Indeed, the contribution of this paper is to provide a general methodology for the
design of multi-start LSs on GPU applicable to any class of LS algorithms such
as hill climbing, tabu search or simulated annealing. Furthermore, a particular
focus is made on finding efficient associations between the different available
memories and the data commonly used in the multi-start LS algorithms.

The remainder of the paper is organized as follows: on the hand, Section 2
highlights the principles of LS parallel models. On the other hand, a brief review
of the GPU architecture is also depicted. Section 3 presents a methodology for the
design and the implementation of parallel multi-start LS methods on GPU. The
performance results obtained for the associated implementations are reported in
Section 4. Finally, a discussion and some conclusions of this work are drawn in
Section 5.

2 Parallel Local Search Algorithms and GPU Computing

2.1 Parallel Models of LS Algorithms

For non-trivial problems, executing the iterative process of a simple LS on
large neighborhoods requires a large amount of computational resources. Con-
sequently, a variety of algorithmic issues are being studied to design efficient LS
heuristics. Parallelism arises naturally when dealing with a neighborhood, since



each of the solutions belonging to it is an independent unit. Due to this, the
performance of LS algorithms is particularly improved when running in parallel.
Parallel design and implementation of metaheuristics have been studied as well
on different architectures [6–8].

Basically, three major parallel models for LS heuristics can be distinguished:
solution-level, iteration-level and algorithmic-level.

• Solution-level Parallel Model. A focus is made on the parallel evaluation of
a single solution. Problem-dependent operations performed on solutions are
parallelized. In that case, the function can be viewed as an aggregation of a
given number of partial functions.

• Iteration-level Parallel Model. This model is a low-level Master-Workermodel
that does not alter the behavior of the heuristic. Exploration and evaluation
of the neighborhood are made in parallel. At the beginning of each iteration,
each parallel node manages some candidates and the results are returned
back to the master. An efficient execution is often obtained particularly
when the evaluation of each solution is costly.

• Algorithmic-level Parallel Model. Several LS algorithms are simultaneously
launched for computing better and robust solutions. They may be heteroge-
neous or homogeneous, independent or cooperative, start from the same or
different solution(s), configured with the same or different parameters.

The solution-level model is problem-dependent and does not present many
generic concepts. In this paper, we will focus on the multi-start model which
is an instantiation of the algorithmic-level model where LS algorithms are all
homogeneous.

2.2 GPU Computing

GPUs have evolved into a highly parallel, multithreaded and many-core envi-
ronment. Indeed, since more transistors are devoted to data processing rather
than data caching and flow control, GPU is specialized for compute-intensive
and highly parallel computation. A complete review of GPU architecture can be
found in [9].

In general-purpose computing on graphics processing units, the CPU is con-
sidered as a host and the GPU is used as a device coprocessor. This way, each
GPU has its own memory and processing elements that are separate from the
host computer. Memory transfer from the CPU to the GPU device memory is a
(a)synchronous operation which is time consuming. Bus bandwidth and latency
between the CPU and the GPU can significantly decrease the performance of
the search, so data transfers must be minimized.

Each processor device on GPU supports the single program multiple data
(SPMD) model, i.e. multiple processors simultaneously execute the same pro-
gram on different data. For achieving this, the concept of kernel is defined. The
kernel is a function callable from the host and executed on the specified device
by several processors in parallel.



This kernel handling is dependent of the general-purpose language. For in-
stance, CUDA [10] or OpenCL [11] are parallel computing environments which
provide an application programming interface. These toolkits introduce a model
of threads which provides an easy abstraction for single-instruction and multiple-
data (SIMD) architecture.

Regarding their spatial organization, threads are organized within so called
thread blocks. A kernel is executed by multiple equally threaded blocks. Blocks
can be organized into a one-dimensional or two-dimensional grid of thread blocks,
and threads inside a block are grouped in a similar way. All the threads belonging
to the same thread block will be assigned as a group to a single multiprocessor,
while different thread blocks can be assigned to different multiprocessors.

From a hardware point of view, graphics cards consist of streaming mul-
tiprocessors, each with processing units, registers and on-chip memory. Since
multiprocessors are used according to the SPMD model, threads share the same
code and have access to different memory areas. Basically, the communication
between the CPU host and its device is done through the global memory.

3 Design and implementation of multi-start local search

algorithms on GPU

With the recent advances in parallel computing particularly based on GPU com-
puting, the multi-start model has to be re-visited from the design and implemen-
tation points of view. In this section, we propose multiple deployment schemes
of the multi-start model for LS algorithms on GPU.

3.1 Multi-start Local Search Algorithms Based on the

Iteration-level

In [2, 3], we have proposed the design and the implementation of the parallel
evaluation of the neighborhood (iteration-level) model for a single LS on GPU.
That is the reason why, a natural way for designing multi-start LSs on GPU
based on the iteration-level is to iterate the whole process (i.e. the execution of
a single LS on GPU) to deal with as many LSs as needed (see Fig. 1). Indeed,
in general, evaluating a fitness function for each neighbor is frequently the most
costly operation of the LS. Therefore, in this scheme, task distribution is clearly
defined: the CPU manages the whole sequential LS process for each LS algorithm
and the GPU is dedicated only to the parallel evaluation of solutions.

Algorithm 2 gives the template of this model. The reader is referred to [2,3] for
more details about the original algorithm. Basically, for each LS, the CPU first
sends the number of expected neighbors to be evaluated to the GPU and then
these solutions are processed on GPU. Regarding the kernel thread organization,
as quoted above, a GPU is organized following the SPMD model, meaning that
each GPU thread associated with one neighbor executes the same evaluation
function kernel. Finally, results of the evaluation function are returned back to
the host via the global memory.



Fig. 1. Multi-start LS algorithms based on the parallel evaluation of the neighborhood
on GPU (iteration-level). In this scheme, one thread is associated with one neighbor.

Algorithm 1 Multi-start local search algorithms template on GPU based on
the iteration-level model
1: Allocate problem data inputs on GPU memory
2: Copy problem data inputs on GPU memory
3: Allocate a solution on GPU memory
4: Allocate a neighborhood fitnesses structure on GPU memory
5: Allocate additional solution structures on GPU memory
6: for m = 1 to #local searches do

7: Choose an initial solution
8: Evaluate the solution
9: Specific LS initializations
10: end for

11: repeat

12: for m = 1 to #local searches do

13: Copy the solution on GPU memory
14: Copy additional solution structures on GPU memory
15: for each neighbor in parallel on GPU do

16: Incremental evaluation of the candidate solution
17: Insert the resulting fitness into the neighborhood fitnesses structure
18: end for

19: Copy back the neighborhood fitnesses structure on CPU memory
20: Specific LS solution selection strategy on the neighborhood fitnesses structure
21: Specific LS post-treatment
22: end for

23: Possible cooperation between the different solutions
24: until a stopping criterion satisfied



This way, the GPU is used as a coprocessor in a synchronous manner. The
time-consuming part i.e. the incremental evaluation kernel is calculated by the
GPU and the rest is handled by the CPU. The advantage of this scheme resides in
its highly parallel structure (i.e. an important number of generated neighbors to
handle), leading to a significant multiprocessors occupancy of the GPU. However,
depending on the number of LS algorithms, the main drawback of this scheme
is that copying operations from the CPU to the GPU can become frequent and
thus can lead to a significant performance decrease.

3.2 Design of Multi-start Local Search Algorithms Based on the

Algorithmic-level

A natural way for designing multi-start LSs on GPU is to parallelize the whole
LS process on GPU by associating one GPU thread with one LS. This way,
the main advantage of this approach is to minimize the data transfers between
the host CPU memory and the GPU. Figure 2 illustrates this idea of this full
distribution (algorithmic-level). In the rest of this paper, we will focus on this
approach.

Fig. 2. Multi-start LS algorithms based on the full distribution of LSs on GPU
(algorithmic-level). One thread is associated with one local search.

The details of the algorithm are given in Algorithm 1. First of all, at initial-
ization stage, memory allocations on GPU are made: data inputs of the problem
must be allocated and copied on GPU (lines 1 and 2). It is important to notice
that problem data inputs (e.g. a matrix in the traveling salesman problem [12])



are a read-only structure and never change during all the execution of LS al-
gorithms. Therefore, their associated memory is copied only once during all
the execution. Second, a certain number of solutions corresponding to each LS
must be allocated on GPU (line 3). Additional solution structures which are
problem-dependent can also be allocated to facilitate the computation of incre-
mental evaluation (line 4). Third, during the initialization of the different LS
algorithms on GPU, each solution is generated and evaluated (from lines 5 to
9). Fourth, comes the algorithmic-level, in which the iteration process of each
LS is performed in parallel on GPU (from lines 11 to 17). Since each neighbor
is evaluated in a sequential manner on GPU, unlike the iteration-level scheme,
there is no need to allocate and manipulate any neighborhood fitness structure.
Fifth, an exchange of the best-so-far solutions could be made to accelerate the
search process (line 18). In that case, operations on the global memory may be
considered. Finally, the process is repeated until a stopping criterion is satisfied.

Algorithm 2 Multi-start local search algorithms template on GPU based on
the algorithmic-level model

1: Allocate problem data inputs on GPU memory
2: Copy problem data inputs on GPU memory
3: Allocate #local searches solutions on GPU memory
4: Allocate #local searches additional solution structures on GPU memory
5: for each LS in parallel on GPU do

6: Choose an initial solution
7: Evaluate the solution
8: Specific LS initializations
9: end for

10: repeat

11: for each LS in parallel on GPU do

12: for each neighbor do
13: Incremental evaluation of the candidate solution
14: Specific LS solution selection strategy
15: end for

16: Specific LS post-treatment
17: end for

18: Possible cooperation between the different solutions
19: until a stopping criterion satisfied

3.3 Memory Management of Multi-start Local Search Algorithms

on the Algorithmic-level

Memory Coalescing Issues. When an application is executed on GPU, each
block of threads is split into SIMD groups of threads called warps. At any clock
cycle, each processor of the multiprocessor selects a half-warp (16 threads) that
is ready to execute the same instruction on different data. Global memory is



conceptually organized into a sequence of 128-byte segments. The number of
memory transactions performed for a half-warp will be the number of segments
having the same addresses than those used by that half-warp. Fig. 3 illustrates
an example of the memory management layer for a simple vector addition.

Fig. 3. An example of kernel execution for vector addition.

For more efficiency, global memory accesses must be coalesced, which means
that a memory request performed by consecutive threads in a half-warp is asso-
ciated with precisely one segment. The requirement is that threads of the same
warp must read global memory in an ordered pattern. If per-thread memory ac-
cesses for a single half-warp constitute a contiguous range of addresses, accesses
will be coalesced into a single memory transaction. In the example of vector ad-
dition, memory accesses to the vectors a and b are fully coalesced, since threads
with consecutive thread indices access contiguous words.

Otherwise, accessing scattered locations results in memory divergence and
requires the processor to perform one memory transaction per thread. The per-
formance penalty for non-coalesced memory accesses varies according to the size
of the data structure. Regarding LS structures, coalescing is difficult when global
memory accesses have a data-dependent unstructured pattern (especially for a
permutation representation). As a result, non-coalesced memory accesses imply
many memory transactions and it can lead to a significant performance decrease
for LS methods.

Memory Organization. Optimizing the performance of GPU applications of-
ten involves optimizing data accesses which includes the appropriate use of the
various GPU memory spaces. For instance, the use of texture memory is a so-
lution for reducing memory transactions due to non-coalesced accesses. Texture
memory provides a surprising aggregation of capabilities including the ability



to cache global memory (separate from register, global, and shared memory).
Regarding the data management on the different GPU memories, the following
observations can be made whatever the used multi-start LS algorithm:

• Global memory: For each running LS on GPU (one thread), its associated
solution is stored on the global memory. The same goes on for additional
solution structures. This way, it ensures a global visibility among the different
threads (LSs) during the entire search process for a possible cooperation. In a
general way, all the data in combinatorial problems could be also associated
with the global memory. However, as previously said, non-coalesced memory
accesses may lead to a performance decrease. Therefore, the texture memory
might be preferred since it can be seen as a relaxed mechanism for the
threads to access the global memory. Indeed, the coalescing requirements do
not apply to texture memory accesses.

• Texture memory: This read-only memory is adapted to LS algorithms
since the problem inputs do not change during the execution of the algorithm.
In most of optimization problems, problem inputs do not often require a large
amount of allocated space memory. As a consequence, these structures can
take advantage of the 8KB cache per multiprocessor of texture units. Indeed,
minimizing the number of times that data goes through cache can increase
significantly the efficiency of algorithms [13]. Moreover, cached texture data
is laid out to give best performance for structures with 1D/2D access patterns
such as matrices. The use of textures in place of global memory accesses
is a completely mechanical transformation. Details of texture coordinate
clamping and filtering is given in [10, 14].

• Constant memory: This memory is read only from kernels and is hardware
optimized for the case where all threads read the same location. It might be
used when the calculation of the evaluation function requires a common
lookup table for all solutions (e.g. a decoder table for an indirect encoding
on the job shop scheduling problem [15]).

• Shared memory: The shared memory is a fast memory located on the mul-
tiprocessors and shared by threads of each thread block. Since this memory
area provides a way for threads to communicate within the same block, it
might be used with the global memory in the context of a possible coop-
eration between different LS algorithms. In the case of the multi-start LS
model, the type of shared information is the best-so-far solution found at
each iteration of the search process.

• Registers: Among streaming processors, they are partitioned among the
threads running on it and they constitute fast access memory. In the kernel
code, each declared variable is automatically put into registers.

• Local memory: In a general way, additional structures such as declared
array will reside in local memory. In fact, local memory resides in the global
memory allocated by the compiler and its visibility is local to a thread (a
LS).

Table 1 summarizes the kernel memory management in accordance with the
different LS components. For the management of random numbers in SA, effi-



Table 1. Kernel memory management. Summary of the different memories used in the
multi-start LS algorithms on GPU.

Type of memory LS structure

Texture memory problem data inputs

Global memory candidate solutions, additional candidate solution structures

Shared memory possible solutions to exchange

Registers additional LS variables

Local memory additional LS structures

Constant memory additional problem lookup tables

cient techniques are provided in many books such as [16] to implement random
generators on GPU. For deterministic multi-start LSs based on HC or TS, the
random initialization of solutions might be done on CPU and then they can be
copied on the GPU via the global memory to perform the LS process. This way,
it ensures that the obtained results are the same as a multi-start LS performed
on a traditional CPU. Regarding the management of the tabu list on GPU, since
the list is particular to a TS execution, a natural mapping is to associate a tabu
list to the local memory. However, since this memory has a limited size, large
tabu lists should be associated with the global memory instead.

4 Experiments

To validate our approach, the multi-start model has been implemented on the
quadratic assignment problem (QAP) on GPU using CUDA. The QAP arises
in many applications such as facility location or data analysis. Let A = (aij)
and B = (bij) be n × n matrices of positive integers. Finding a solution of the
QAP is equivalent to finding a permutation π = (1, 2, . . . , n) that minimizes the
objective function:

z(π) =

n∑

i=1

n∑

j=1

aijbπ(i)π(j)

The problem has been implemented using a permutation representation. The
chosen neighborhood for all the experiments is based on a 2-exchange operator

(n×(n−1)
2 neighbors). The incremental evaluation function has a time complexity

of O(n). The considered instances are the Taillard instances proposed in [17].
They are uniformly generated and are well-known for their difficulty.

The used configuration is an Intel Xeon 3GHz 2 cores with a GTX 280 (30
multiprocessors). From an implementation point of view, to build the CPU test
code, the g++ compiler has been used with the -O2 optimization flag and SSE
instructions. The specific parameters for each single LS algorithm are given in
Table 2.



Table 2. Used parameters for each particular LS.

Tabu search Simulated annealing

geometric cooling schedule

tabu list size: tl = n×(n−1)
16

initial temperature: T0 = 10000
threshold: thr = 1

iterations: iters = 10000 ratio: r = 0.9

iterations: iters = n×(n−1)
2

equilibrium state: T < thr

4.1 Measures of the Efficiency of Multi-start Algorithms Based on

the Algorithmic-level

In the next experiments, the effectiveness in terms of quality of solutions is not
addressed here. Only execution times and acceleration factors are reported in
comparison with a mono-core CPU. The objective is to evaluate the impact of
a GPU implementation of multi-start algorithms based on the algorithmic-level
(i.e. the full distribution of the search process on GPU) in terms of efficiency.
For each multi-start algorithm, a standalone mono-core CPU implementation, a
pure GPU one, and a GPU version using texture memory (GPUtex) are consid-
ered. The number of LS algorithms of the multi-start model is set to 4096 which
corresponds to a realistic scenario in accordance with the algorithm convergence.
The average time has been measured in seconds for 30 runs. The standard de-
viation is not represented since its value is very low for each measured instance.
The obtained results are reported in Table 3 for the different LS multi-start
algorithms on GPU.

Table 3. Measures of the efficiency of the algorithmic-level on the QAP. The average
time is reported in seconds for 30 executions, the number of LSs is fixed to 4096.

tai30a tai40a tai50a tai60a tai80a tai100a

HC CPU 5.48 17.18 44.56 88.32 302.43 810.39

HC GPU 3.19×1.7 7.44×2.3 15.79×2.8 30.06×2.9 90.45×3.3 224.51×3.6

HC GPUTex 1.02×5.4 2.96×5.8 6.69×6.7 12.52×7.1 41.65×7.3 103.59×7.8

TS CPU 335.57 725.39 1539.60 2439.86 6097.61 13004.76

TS GPU 105.12×3.2 207.12×3.5 414.50×3.7 655.32×3.7 1544.32×3.9 3222.01×4.0

TS GPUTex 55.12×6.1 105.65×6.9 176.29×8.7 262.31×9.3 588.33×10.4 1207.77×10.8

SA CPU 412.64 874.44 1672.63 2699.89 6807.88 13960.69

SA GPU 115.32×3.6 223.65×3.9 422.32×4.0 677.28×4.0 1578.21×4.3 3121.28×4.5

SA GPUTex 72.25×5.7 135.21×6.5 205.74×8.1 278.88×9.7 609.78×11.2 1161.52×12.0

Regarding the acceleration for a pure implementation on GPU based on HC
(HC GPU), it varies between ×1.7 for the instance tai30a to ×3.6 for the last
instance. In comparison with a pure CPU implementation, the obtained accel-



eration factors are positive but not impressive. Indeed, due to high misaligned
accesses to global memories (flows and distances in QAP), non-coalescing mem-
ory reduces the performance of the implementation. Binding texture on global
memory allows to overcome the problem (HC GPUTex). Indeed, from the in-
stance tai30a, using texture memory starts providing significant acceleration
factors (×5.4). GPU keeps accelerating the LS process as long as the size grows
and the best results are obtained for the instance tai100a (×7.8).

Regarding the performance for the other multi-start algorithms (TS and SA
based), similar observations can be made. Indeed, on the hand, the obtained
speed-ups for the texture version of multi-start algorithms based on TS vary
between ×6.1 to ×10.8. And on the other hand, they vary from ×5.7 to ×12.0
for the multi-start algorithms based on SA. In a general manner, the perfor-
mance variation obtained with the different algorithms on GPU is in accordance
with the algorithm complexity (Complexity(SA) >= Complexity(TS) >>

Complexity(HC)).

The point to highlight in these experiments is that organizing data into cache
such as texture memory clearly allows to improve the speed-ups in comparison
with a standard GPU version where inputs are stored in the global memory.

4.2 Measures of the Efficiency of Large GPU-based Implementations

Another experiment consists in measuring the impact in terms of efficiency by
varying the number of LSs in the multi-start based on the algorithmic-level. In
addition, we propose to compare this approach with the multi-start based on the
iteration-level model (parallel evaluation of the neighborhood on GPU) presented
in Section 3.1. For doing this, we propose to deal with the instance tai50a with
the same parameters used before in the context of multi-start methods based on
TS. The obtained results are depicted in Fig. 4 for the texture optimization.

For the algorithmic-level, one can notice that it starts providing a positive
acceleration of ×1.7 from a number of 512 LSs (one thread per LS). From 1024
LSs, the acceleration factors are drastically improved until reaching ×8.7 for
4096 LSs. After that, the speed-up keeps improving slowly with the size increase.
However, as one can see in Fig. 5, no significant difference can be made in terms of
the quality of the solutions obtained for more than 168384 LSs. Therefore, since
the execution is already time-consuming, it might not be relevant to perform
more LSs.

Regarding a small number of running LSs, from 1 to 256 LSs, the multi-start
for the algorithmic-level is clearly inefficient. This can be explained by the fact
that since the number of threads is relatively small, the number of threads per
block is not enough to fully cover the memory access latency.

Unlike the previous model, for the multi-start based on the iteration-level, the
obtained speed-ups are quiet regular (from ×4.4 to ×5.1) whatever the number of

running LSs. Indeed, since one thread is associated with one neighbor (n×(n−1)
2

neighbors), during the kernel execution, there is enough threads to keep the GPU
multiprocessors busy. However, as one can notice, the maximal performance of



Fig. 4. Measures of the efficiency of the two multi-start approaches using the texture
memory algorithmic-level approach in comparison with the iteration-level by varying
the number of tabu searches (instance tai50a).

Fig. 5. Measures of the quality of the solutions for the multi-start model based on the
algorithmic-level (tai50a). The average fitness is reported for 30 executions where each
point represents a certain number of LSs.



this scheme is quiet limited because of the multiple data copies between the CPU
and the GPU (see [2] for an analysis of data transfers).

5 Discussion and Conclusion

Parallel metaheuristics such as the multi-start model allow to improve the effec-
tiveness and robustness in optimization problems. Their exploitation for solv-
ing real-world problems is possible only by using a great computational power.
High-performance computing based on GPU accelerators is recently revealed as
an efficient way to use the huge amount of resources at disposal. However, the
exploitation of the multi-start model is not trivial and many issues related to
the context execution and to the memory hierarchy of this architecture have to
be considered.

In this paper, we have proposed a guideline to design and implement general
GPU-based multi-start LS algorithms. The different concepts addressed through-
out this paper takes into account popular LS algorithms such as HC, SA or TS.
The designed and implemented approaches have been experimentally validated
on a combinatorial optimization problem. To the best of our best of knowledge,
multi-start parallel LS approaches have never been widely investigated so far.

The idea of our methodology is based on two natural schemes which exploit
the GPU in a different manner. In the first scheme, the multi-start model is
combined with the parallel evaluation of the neighborhood. The advantage of this
scheme is to maximize the GPU in terms of multiprocessor occupancy. However,
the performance of this scheme is limited due to the data transfers between the
CPU and the GPU. To deal with this issue, we have particularly focused on
the full distribution of the search process on GPU with the appropriate use of
memory. Applying such mechanism with an efficient memory management allows
to provide significant speed-ups (up to ×12). However, this second scheme could
also present some performance limitations when dealing with a small number of
LS executions.

In a general manner, the two proposed schemes are complementary and their
use strongly depends of the number of LSs to deal with. It would be interesting
to test the performance of our approaches with some combinatorial optimization
problems involving the use of different memories such as the constant and the
shared memory.

Another perspective of this work is to combine the multi-start on GPU with
a pure multi-core approach. Indeed, since this model has a high degree of par-
allelism, the CPU cores can also work in parallel in an independent manner.
Moreover, since nowadays the actual configurations have 4 and 8 cores, instead
of waiting the results back from the GPU, this computational power should be
well-exploited in parallel to provide additional accelerations.
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