
HAL Id: inria-00638936
https://hal.inria.fr/inria-00638936

Submitted on 7 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-task implementation of multi-periodic
synchronous programs

Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, David Lesens

To cite this version:
Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, David Lesens. Multi-task implemen-
tation of multi-periodic synchronous programs. Discrete Event Dynamic Systems, Springer Verlag,
2011, 21 (3), pp.307-338. �10.1007/s10626-011-0107-x�. �inria-00638936�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49948171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00638936
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Multi-task implementation of multi-periodic synchronous

programs

Claire Pagetti · Julien Forget · Frédéric Boniol ·
Mikel Cordovilla · David Lesens

the date of receipt and acceptance should be inserted later

Abstract This article presents a complete scheme for the integration and the development of

multi-periodic critical embedded systems. A system is formally specified as a modular and

hierarchical assembly of several locally mono-periodic synchronous functions into a glob-

ally multi-periodic synchronous system. To support this, we introduce a real-time software

architecture description language, named PRELUDE, which is built upon the synchronous

languages and which provides a high level of abstraction for describing the functional and

the real-time architecture of a multi-periodic control system. A program is translated into

a set of real-time tasks that can be executed on a monoprocessor real-time platform with

an on-line priority-based scheduler such as Deadline-Monotonic or Earliest-Deadline-First.

The compilation is formally proved correct, meaning that the generated code respects the

real-time semantics of the original program (respect of periods, deadlines, release dates and

precedences) as well as its functional semantics (respect of variable consumption).

Keywords Real-time · Synchronous languages · Preemptive multitasking · Embedded

systems.

CR Subject Classification 25: Performance Analysis, 35: General Software Eng &

Cybernetics

1 Introduction

1.1 Context

Embedded systems. Digital embedded systems represent a growing part in many manu-

factured products such as cars, trains, airplanes or medical devices. These systems are re-

Frédéric Boniol · Mikel Cordovilla · Claire Pagetti

ONERA, 2, avenue Edouard Belin, 31055 Toulouse, E-mail: firstname.lastname@onera.fr

Julien Forget

LIFL/INRIA, 40, avenue Halley, 59650 Villeneuve d’Ascq

David Lesens

EADS Astrium Space Transportation, route de Verneuil, 78133 Les Mureaux

Claire Pagetti

IRIT/ENSEEIHT, 2, rue Charles Camichel, 31000 Toulouse

2

sponsible for various functions such as navigation, guidance, stability, fuel management,

air/ground communications. Most of them belong to the so called real-time critical systems

family, where failures may have catastrophic consequences.

In this paper we consider multi-periodic control systems, that is to say systems with

actions operating at different real-time rates. These systems are generally made up of three

kinds of actions: (1) data acquisition (e.g. in an aircraft, at each period the flight control

system begins by acquiring the positions of all the flight control surfaces and other flight

data such as speeds and accelerations of the aircraft), (2) outputs computation (in response

to the inputs acquired at the beginning of the period) and (3) control (sending outputs to

actuators).

The complexity of such systems is continuously growing, from a software architecture

point of view (more functions to integrate, more communications between functions, more

constraints - such as deadline and precedence constraints - to take into account), as well as

from an algorithmic point of view (the behaviour of each subfunction, such as a navigation

law, becomes more complex). Therefore, designing these systems requires a careful attention

and should rely as much as possible on high level languages for both description levels and

associated automated code generators.

Concurrent execution. In parallel to this functional evolution, communication and infor-

mation management technologies evolve to provide new embedded hardware architectures.

The implementation of modern embedded systems (whatever the domain - aircraft, cars,

trains. . .) tends to rely on Integrated Modular Architectures (IMA) instead of the more clas-

sical federated architectures. In a federated architecture, each functional sub-system is im-

plemented as a sequential code executed on a private computing resource. On the opposite,

with IMA, computing resources are shared by several systems (and thus by several design

and development teams). To ensure such a genericity, the computing resources are managed

by standardized real-time operating systems with multi-tasking capabilities. Thus, the func-

tions are coded by several threads, scheduled concurrently by the real-time operating sys-

tem. Several norms for real-time operating system are now available such as OSEK (OSEK

(2003)), for the automotive domain, and ARINC653 (ARINC (2005)), for the avionic do-

main.

IMA was designed for numerous expected benefits such as the reduction of the weight

and the costs. In terms of real-time, this kind of architecture has an impact on the devel-

opment: the designer has to ensure that concurrent execution does not jeopardize the func-

tional determinism of the system. The different subfunctions (corresponding to threads) are

related by data-dependencies, as data produced by one subfunction may be required by an-

other. Because of the multithreaded execution, the programmer (or the integrator) must care-

fully control the order in which data is produced and consumed, otherwise the behaviour of

the system might not be deterministic and erroneous. This requires to introduce synchro-

nization mechanisms between threads and/or a communication protocol. Synchronizations

can be implemented either by precisely controlling the dates at which threads execute so

that data is produced and consumed in the right order (time-triggered communications with

shared memory), or by using blocking synchronization primitives like semaphores (rendez-

vous communications). The communication protocol indicates to the threads where to write

and read data. Programming and implementing such mechanisms manually can be very te-

dious and error prone. High level software architecture languages, such as AADL (Feiler

et al (2006)), GIOTTO (Henzinger et al (2003)) or CLARA (Faucou et al (2004)) for in-

stance, aim at simplifying the specification of the communication and synchronization re-

3

quirements, and at generating the corresponding low level code automatically. The objective

of our work is similar.

Example. To motivate our work, let us consider a simplified flight control system. The role

of the system is to control the aircraft altitude, trajectory, speed and auto-pilot. To that pur-

pose, it periodically computes the orders that must be applied to the flight control surfaces

in response to the pilot commands and to the aircraft movements. The hardware architec-

ture of the system is made up of a single processor, piloting organs (side-stick, rudder bar,

navigation panel), sensors acquiring the aircraft state (GPS for position, accelerometer for

speed, etc.) and actuators (ailerons, rudder, etc.). The software architecture is made up of

7 functional tasks and is represented in Figure 1. A fast loop (period 30ms) controls the

servo-commands. This fast loop is made up of a filter SF (servo-control filter) and a con-

trol task SL (servo-control law). The intermediate loop (period 40ms) manages the aircraft

guidance and is made up of NF (navigation filter) and NL (navigation law). Data required

by this intermediate loop is acquired in the fast loop by GNA (guidance and navigation data

acquisition). The slowest loop (period 70ms) manages the auto-pilot and is made up of GL

(guidance law), the inputs of which are acquired and filtered by GF (guidance filter). This

loop computes the acceleration to apply. The required position of the airplane is acquired at

the slow rate. Each functional task is implemented as a separate real-time task.

If we assume that these 7 tasks are scheduled using a preemptive scheduling policy, it

is fairly obvious that the behaviour of the system might vary depending on the scheduling

order. Indeed, due to task communications, the task execution order has an impact on the

functional behaviour of the system. Therefore, tasks are related by precedence constraints,

which are deduced from data freshness requirements.

Guidance

Law

(GL)

Guidance

Filter

(GF)

Piloting Law

(PL)

Piloting Filter

(PF)

Servo-Control

Law

(SL)

Servo-Control

Filter.

(SF)

Guidance

and Navigation

data Acquisition

(GNA)

observed

position

(o_pos)

required

position

(r_pos)

observed

acceleration

(o_acc)

required

acceleration

(r_acc)

observed

angle
(o_angle)

(acc_i)

(pos_i)

required

angle

(r_angle)

flight control

surfaces orders

(order)

true angle

(angle)

true acceleration

(acc)

true position

(pos)

70 ms 40 ms 30 ms

Fig. 1 A simplified flight control system (FCS)

A real size flight control system, may require to integrate up to 5000 tasks on the same

computing resource. These tasks may be developed by different persons or different teams

from different companies. The integration team then has in charge to assemble them to build

the whole system, while respecting all the functional requirements, in particular communi-

cation, precedence, and real-time constraints. Due to the huge number of tasks, producing

the low level integration code manually, that is to say implementing mechanisms that ensure

that the tasks are executed in the right order and that communications take place at the right

4

dates, is very tedious and error prone. The objective of this paper is to automatize this activ-

ity, starting from a formal high level functional description of the system similar to the one

presented in Figure 1.

1.2 Related works

Hypothesis Our general goal is to provide a framework for designing safety critical applica-

tions. This implies that the designer must prove, mathematically, that the system is correct.

In terms of real-time, he/she must prove that the system is predictable which includes that

the functions respect their real-time constraints such as period or deadline whatever the con-

figuration. For a multitask implementation, it means that whatever the authorised execution

orderings of the tasks and whatever the timing variations (e.g. on the execution time), the

behaviour remains valid. To answer this general question, without any additional hypothesis,

it requires an exhaustive search among all the executions. For priority-based uniprocessor

scheduling, there exist several sufficient tests, exact methods and tools that help proving

the correctness. Preemptive on-line scheduling policies are today generally accepted in the

safety critical system design. It is the case for IMA where the scheduler proposes sequential

code or DM. It is also the case in the space: the ATV (Automate Transfer Vehicle) and Ari-

ane 5 (European heavy space launcher) flight software designs are also implemented on this

principle. This is the reason why we focus on classical scheduling policies.

The control / scheduling codesign method. Cervin (2003); Sename et al (2008) proposed a

codesign method for flexible real-time control systems, integrating control theory and real-

time scheduling theory. Following this codesign method, the scheduler uses feedback from

execution-time measures and feedforward from workload changes to adjust the sampling

periods of a set of control tasks so that the performance of the controller is optimized. The

main advantage is that this achieves higher resource utilization and better control perfor-

mance (input-output latencies may be reduced). However, this approach assumes that it is

possible to derive scheduling requirements at runtime from the quality of the control, and

then to change the schedule, also at runtime, depending on values received (inputs) or com-

puted by the system.

The designer must prove that whatever the variations, the system satisfies the real-time

constraints. To do this, he/she can reuse a classical result on EDF and fixed priority which are

sustainable for uniprocessor and synchronous periodic task set (Baruah and Burns (2006)).

This means that if a task set is schedulable for one of these policies, it remains schedulable

when decreasing execution times, increasing periods or increasing deadlines. If the worst

scenario is schedulable, that is when considering the smallest periods, the smallest deadlines

and the greatest execution times, then the variations will respect the constraints. However, if

this does not hold, the designer must study all the combinations and prove the correctness.

The second drawback is that this approach requires the operating system to be able

to modify on-line the real-time attributes of the tasks (which is for instance not possible

with Arinc653 or OSEK). The designer must also ensure that such on-line modifications

can be done safely and in a bounded time. Furthermore, the overhead due to these on-line

modifications should be incorporated in the computation of the response time of the system.

To avoid these difficulties, in our context we suppose that control requirements are

translated off-line into fixed real-time requirements (periods, deadlines, and precedence con-

straints).

5

Matlab/Simulink. SIMULINK (The Mathworks (2009)) is a high-level modelling language

widely used in many industrial application domains. In particular, it allows the descrip-

tion of multi-periodic systems in terms of blocks (and subblocks) communicating through

data-flows or events. SIMULINK was originally designed for specification and simulation

purposes but commercial code generators have been developed since, such as REAL-TIME

WORKSHOP EMBEDDED CODER from Mathworks, or TARGETLINK from dSpace.

However, from what we know, SIMULINK has several limitations. Firstly, it allows only

harmonic multi-periodic description, which means that the frequency of the blocks must

be multiples of one another. So, for instance, the simplified control system presented in

Figure 1 cannot be specified with this language. Secondly, it does not allow to define blocks

with deadlines different from their periods. Thirdly, synchronization between blocks are

implemented by blocking mechanisms (such as semaphores). These mechanisms should be

avoided for several reasons. First, the use of semaphores can lead to scheduling anomalies.

When used together with semaphores, the EDF and fixed priority scheduling policies, are

not sustainable anymore: the system may become unschedulable due to a task that does not

take its complete wcet to execute (Graham (1969)).

Another difficulty for using SIMULINK for programming critical systems is that the lan-

guage and the associated tools lack formal definition. For instance, SIMULINK has several

semantics, which depend on user-configurable options and which are only informally de-

fined. Similarly, the conservation of the semantics between the model simulation and the

generated code (either for RT WORKSHOP or TARGETLINK) is unclear.

As SIMULINK models are mainly data-flow graphs, a translation from SIMULINK to

LUSTRE has been proposed in Tripakis et al (2005). This translation only considers a well-

defined subset of SIMULINK models and allows developers to benefit from the formal def-

inition of LUSTRE. This enables formal verification and automated code generation that

preserves the semantics of the original SIMULINK model.

Synchronous programming. Synchronous data-flow languages (Benveniste et al (2003)) have

successfully been applied to the implementation of reactive systems. They were designed to

ensure functional determinism, providing a formal approach to the implementation process.

A synchronous program captures the behaviour of a reactive system by describing the com-

putations performed during one basic iteration of the system. Following the synchronous

hypothesis, at each iteration the program is considered to react instantaneously, meaning

that the duration of a basic iteration (called instant) is abstract and that the inputs and out-

puts are considered to be available simultaneously. In practice, synchronous programs are

usually translated to sequential single loop code, implemented by a single task, whose body

corresponds to the computations performed during an instant.

Fully sequential compilation is not very well suited for the implementation of multi-

periodic systems. Using a real-time operating system with multi-tasking capabilities (and

preemption) enables to meet real-time constraints for a much larger class of systems. There-

fore, several approaches have been proposed, to translate synchronous programs into a set of

communicating tasks scheduled by a RTOS. Among these approaches, Girault and Nicollin

(2003); Girault et al (2006) proposed an automatic distribution method of LUSTRE programs

into several “computation locations”, where different computation location can either cor-

respond to different processors or different tasks. In this approach, the distribution is driven

by the clocks of the program. The programmer manually classifies the clocks of the pro-

gram into different partitions. A program (a task) is then generated for each partition, it

contains the computations of all the expressions the clock of which belongs to this parti-

tion. Notice that in our approach the partitioning of the program into tasks is automatized.

6

In SIGNAL (Aubry et al (1996)), a SIGNAL program is translated into a graph represent-

ing the clock hierarchy of the program, where each vertex of the graph corresponds to the

computations that must be performed for a given clock of the hierarchy and edges corre-

spond to dependencies between the vertices. This graph can then be partitioned into several

subgraph, each subgraph is translated into sequential code and encapsulated into a task.

In both approaches, tasks are synchronized by blocking communications (semaphores) and

thus face the problems already mentioned for SIMULINK. Furthermore, the computation of

the priorities of the different tasks is not considered, while it is automatized in our approach.

Finally, the problem of preserving the synchronous semantics of a set of concurrent

tasks scheduled with a preemptive policy has been studied by Sofronis et al (2006). The au-

thors proposed a buffering protocol called Dynamic Buffering Protocol similar to ours. The

protocol allows to compute a sufficient number of cells1 required for task communication

buffers and determines for each task instance in which cell of the buffer it must write or

read. This approach can be applied to periodic as well as aperiodic tasks. Even though this

approach addresses a problem similar to ours (transforming a LUSTRE program into a set of

tasks managed by a real-time scheduler while preserving the synchronous semantics of the

original LUSTRE program), the generation of the tasks from the LUSTRE program and the

computation of their real-time attributes, in particular their deadline and priority, is out of

their scope.

1.3 Contribution

Forget et al (2008) defined a real-time software Architecture Description Language (ADL)

for programming embedded control systems. The language, baptised PRELUDE, transposes

the synchronous data-flow semantics to the architecture design level and defines simple real-

time primitives to handle multi-rate systems efficiently. The objective of the language is to

provide a high level of abstraction for describing the functional and the real-time archi-

tecture of a multi-periodic control system. PRELUDE is very close to LUSTRE (Halbwachs

(1993)) in its syntax. Being an ADL, it does however serve a different purpose and should

be considered as an integration language rather than a classic programming language. The

development of complex embedded control-systems usually involves several teams, which

separately define the different functions of the system. The functions are then assembled by

the integrator, who specifies the real-time properties of the functions and the communication

schemes between the functions. PRELUDE is designed specifically for the specification of

this integration level. In that sense, it can be considered as a real-time software architecture

language that enables developers to assemble locally mono-periodic synchronous systems

into a globally multi-periodic synchronous system. The second key difference with LUS-

TRE or similar synchronous languages is that a PRELUDE program can easily be translated

into a set of real-time tasks. This leads to better analysis possibilities (performing schedu-

lability analysis) and allows the production of more optimized code (multi-task preemptive

scheduling, specific multi-rate communication protocols).

The implementation process is detailed in Figure 2. The program is first specified using

the PRELUDE language, briefly presented in Section 2. The objective of this paper is then

to describe how, starting from a PRELUDE specification, we can generate a set of real-time

threads along with non-blocking communication mechanisms that preserve the PRELUDE

semantics. This generation process consists of two steps:

1 If the tasks are all periodic, the number of cells computed by the protocol is proved minimal.

7

Design:

PRELUDE integration program
imported node t a u _ k (i : i n t) r e t u r n s (j : i n t) wcet 2 ;

node conso (i1 , i 2) r e t u r n s (o1 , o2)

l e t

o1= t a u _ 2 (t a u _ 1 (i 1) / ^ 3) ;

o2= t a u _ 4 ((0 fby t a u _ 3 (i 2))∗^ 4 ;

t e l

Dependent task set:

Real-time tasks + precedences
τ1 = (10,0,2,10). . .

w1,2 = (−1,0)(1,1)(3,1), . . .

Independent task set:

Real-time tasks + communication protocol
τ1 = (10,0,2,8), . . .

V1 = [1, [τ2,1],4, [τ2,2]], . . .

Multi-threaded C code

for RTOS with EDF/DM
vo id∗ t a u _ 1 _ f u n (vo id∗ a r g s) {

s t a t i c i n t i n s t a n c e = 0 ; . . .

t a u _ 1 (i , j ,&o) ;

i f (m u s t _ w r i t e (p r o t o _ t o _ t a u _ 2 , i n s t a n c e))

b u f _ t o _ t a u _ 2 [c u r r e n t _ c e l l]= o ;

. . .

}

. . .

t a u _ 1 _ a t t . p e r i o d =10; t a u _ 1 _ a t t . i n i t _ r e l e a s e =0;

t a u _ 1 _ a t t . t a s k _ b o d y = t a u _ 1 _ f u n ; . . .

Fig. 2 Compilation chain

1. First we transform the PRELUDE specification into a dependent task set which con-

sists of a set of real-time tasks related by precedence constraints (Section 3). Note that

when a precedence constrains two tasks of different periods, it does not constrain all

the instances of the two tasks but only some of them. We encode the precedence con-

straints in periodic data dependency words which precisely describe the communication

precedences between tasks at the instance level. Due to the deterministic semantics of

PRELUDE, this representation of multi-periodic dependencies is very compact.

2. The dependent task set is then translated into an independent task set, i.e. without prece-

dences (Section 4). This consists in two sub-steps:

(a) The precedence constraints are encoded by adjusting task real-time attributes ac-

cording to the chosen scheduling policy, EDF or DM (Section 4.1). The encoding of

task precedences ensures that for each data-dependency the scheduler will schedule

the task producing the data before the task consuming it.

(b) Then, we rely on data dependency words to generate an optimal static non-blocking

communication protocol, based on read-write buffer mechanisms, which ensure that

task communications respect the synchronous semantics, that is to say, the right

instance of the consumer reads the value produced by the right instance of the pro-

ducer (Section 4.2).

3. The independent task set can then pretty straightforwardly be translated into multi-

threaded C code, which is executable with a classic preemptive scheduling policy such

as EDF or DM.

Finally, Section 5 gives experimental results concerning the implementation of industrial

case studies with our compiler prototype.

8

2 The PRELUDE Integration Language

The integration of a system is specified using the PRELUDE language defined in Forget

et al (2008); Forget (2009). This section provides a detailed description of the language.

We first recall some definitions on standard synchronous data-flow languages. We then de-

tail the real-time primitives introduced in PRELUDE to enable the high-level description of

a multi-periodic control system. For the most part, these primitives can be considered as

particular cases of the classic ✇❤❡♥ and ❝✉rr❡♥t LUSTRE operators, or of more recent op-

erators proposed by Smarandache and Le Guernic (1997), Cohen et al (2006). However, the

key difference is that real-time characteristics can easily be deduced from our primitives by

a compiler, which enables efficient concurrent multi-task implementation of PRELUDE pro-

grams. Finally, we present formally the syntax and the semantics of PRELUDE and illustrate

it through the programming of the example defined in Figure 1.

2.1 Synchronous Data-Flow

LUSTRE (Halbwachs et al (1991a)), SIGNAL (Benveniste et al (1991)) or LUCID SYN-

CHRONE (Pouzet (2006)) belong to the family of synchronous data-flow languages. In LUS-

TRE, the variables and expressions of a program denote infinite sequences of values called

flows. Each flow is accompanied with a clock, which defines the instant during which each

value of the flow must be computed. A program consists of a set of equations, structured

into nodes. The equations of a node define its output flows from its input flows. It is possible

to define a node that includes several subnode calls executed at different rates. For instance,

suppose that we want to define a simple communication loop, made up of two nodes ❋ and

❙, where ❙ executes n times slower than ❋. This can be done as follows (here in LUSTRE):

node m u l t i _ r a t e (c o n s t n : i n t ; i : i n t) r e t u r n s (o : i n t)

var count , vs : i n t ; c lockN : boo l ;

l e t
c o u n t =0 fby (c o u n t + 1) ;

c lockN =(c o u n t mod n = 0) ;

vs=S (o when clockN) ;

o=F (i , current (0 fby vs)) ;

t e l

The behaviour of the program is illustrated in Figure 3, where we give the value of each flow

at each instant. The node ♠✉❧t✐❴r❛t❡ has two inputs: a constant (♥), which corresponds to

the factor relating the rates of ❙ and ❋, and an integer (✐); one output (♦) and three local

variables (❝♦✉♥t), (✈s) and (❝❧♦❝❦◆). The first equation states that at each instant, the value

of the flow ❝♦✉♥t is computed by the expression ✵ ❢❜② ✭❝♦✉♥t✰✶✮. The operator ❢❜② is the

delay operator, the value of the expression ✵ ❢❜② ✭❝♦✉♥t✰✶✮ is 0 at the first instant followed

by the previous value of ❝♦✉♥t plus 1 at the other instants. Thus ❝♦✉♥t is a simple counter.

The variable ❝❧♦❝❦◆ is true whenever ❝♦✉♥t ♠♦❞ ♥ equals 0, thus every n instants. We use

the operator ✇❤❡♥ to activate ❙ at a slower rate: ♦ ✇❤❡♥ ❝❧♦❝❦◆ takes the value of ♦ every

time ❝❧♦❝❦◆ is true (the flow is present), and has no value otherwise (the flow is absent).

The operator ✇❤❡♥ is an under-sampling operator. As a consequence, ❙ is executed every

n-th instant, and ✈s is also produced every n instants. As ❋ executes every instant, ✈s must

be over-sampled before being consumed by ❋, because the inputs of ❋ must be synchronous.

This is done using the operator ❝✉rr❡♥t, which replaces every absent value due to the ✇❤❡♥

operator by the value of the flow the last time it was present.

Designing a multi-periodic system can be realised with such a language. However, read-

ability could be improved, it may not be immediately obvious for a developer reading the

9

♥ 3 3 3 3 3 . . .

✐ i1 i2 i3 i4 i5 . . .
❝♦✉♥t❂

✵ ❢❜② ✭❝♦✉♥t✰✶✮ 0 1 2 3 4 . . .
❝♦✉♥t ♠♦❞ ♥ 0 1 2 0 1 . . .
❝❧♦❝❦◆ true false false true false . . .

♦ o1 = F(i1,0) o2 = F(i2,0) o3 = F(i3,0) o4 = F(i4,s1) o5 = F(i5,s1) . . .
♦ ✇❤❡♥ ❝❧♦❝❦◆ o1 o4 . . .
✈s s1 = S(o1) s2 = S(o4) . . .

Fig. 3 Behaviour of a multi-rate LUSTRE/SCADE program

program that “❙ is n times slower than ❋”. For more complex periods, the construction of the

clocks becomes tedious. More importantly, for the compiler clocks are arbitrary complex

Boolean expressions, thus it cannot analyze the program to deduce that “❙ is n times slower

than ❋”. This effectively prevents an implementation of the program as a set of real-time

tasks.

2.2 Synchronous Real-time

PRELUDE adds real-time primitives to the synchronous data-flow model. For this, we modify

the synchronous model to relate instants to real-time and we define a small set of high-level

real-time primitives based on a specific class of clocks called strictly periodic clocks, which

represent the real-time rate of a flow.

2.2.1 Relating Instants and Real-time

The synchronous hypothesis states that as long as computations performed during an instant

complete before the beginning of the next instant, we can completely abstract from real-time

(i.e. from considering at which point of time computations take place). Thus the temporal

behaviour of the system is described on a logical time scale: we are only interested in the

order in which computations are performed inside an instant and in which computations

occur at which instant.

PRELUDE follows a relaxed synchronous hypothesis (introduced by Curic (2005)), which

states that computations must end before their next activation, instead of before the next in-

stant (defined by the base clock of the program, i.e. the clock of the inputs of the program).

Indeed, a multi-rate system can be considered as a set of locally mono-periodic processes

assembled together to form a globally multi-periodic system. Applied to the synchronous

model, this means that locally each process has its own logical time scale, where instants

are associated with a given real-time duration. When we assemble processes of different

rates, we assemble processes of different logical time scales so we use the real-time scale to

compare different logical time scales. For instance, in the previous program if we assume a

base rate equal to 10ms and take n = 3, ❋ has a period of 10ms and ❙ has a period of 30ms.

The execution represented in Figure 4 is correct with respect to the relaxed synchronous

hypothesis, while it is not for the simple synchronous one.

Our model is derived from the Tagged-Signal Model of Lee and Sangiovanni-Vincentelli

(1996). Given a set of values V , we define a flow as a sequence of pairs (vi, ti)i∈N where vi

is a value in V and ti is a tag in Q, such that for all i, ti < ti+1. The clock of a flow is

its projection on Q. A tag represents an amount of time elapsed since the beginning of the

execution of the program. Two flows are synchronous if they have the same clock (which

10

time

F F F F F F F F

S S

scale 1: instant=10ms

scale 2: instant=30ms

Fig. 4 Logical time scales in a multi-periodic system

implies that the durations of their instants are the same). With this model, we can easily

express the relaxed synchronous hypothesis: each flow has its own notion of instant and the

duration of the instant ti is ti+1 − ti.

2.2.2 Real-time Primitives

PRELUDE aims at integrating functions that have been programmed in another language.

These imported functions must first be declared in the program. The programmer must

specify the inputs and the outputs of the function, along with its duration. For instance,

the following declaration specifies that the worst case execution time of ❙ is 10 time units.

imported node S (i : i n t) r e t u r n s (o : i n t) wcet 1 0 ;

Imported node calls follow the usual data-flow semantics: an imported node cannot start its

execution before all its inputs are available and produces all its outputs simultaneously at

the end of its execution.

We define rate transition operators that decelerate or accelerate flows. These operators

enable the definition of user-specified communication patterns between nodes of different

rates. The programmer can over-sample or under-sample a flow periodically as follows:

node m u l t i _ r a t e (i : i n t) r e t u r n s (o : i n t)

var vs : i n t ;

l e t
vs=S (o / ^ 3) ;

o=F (i , (0 fby vs)∗ ^ 3) ;

t e l

The behaviour of the node is equivalent to that of the node defined in LUSTRE in Section 2.1.

e/ˆk only keeps the first value out of each k successive values of e. On the opposite, e ∗ˆk

duplicates each value of e, k times.

Following the data-driven approach of the language, real-time constraints are specified

on the inputs/outputs of a node. The rates of the sub-nodes instantiated inside the node

are deduced by the compiler from the rates of the node inputs and from the rate transition

operators used to implement multi-rate communications. For instance, we can specify the

real-time characteristics of the previous example as follows:

node m u l t i _ r a t e (i : i n t r a t e 10) r e t u r n s (o : i n t r a t e 10 due 8)

In this example, ✐ and ♦ have period 10. Furthermore, ♦ has a relative deadline of 8.

2.2.3 Strictly Periodic Clocks

Real-time operators are defined formally using strictly periodic clocks. A clock is a sequence

of tags and the class of strictly periodic clocks is defined as follows:

11

Definition 1 (Strictly periodic clock). A clock ck = (ti)i∈N, ti ∈Q, is strictly periodic if and

only if:

∃n ∈Q+∗, ∀i ∈ N, ti+1 − ti = n

n is the period of ck, denoted π(ck) and t0 = 0.

For simplification, in the following, we will only consider strictly periodic clocks ck

the tags of which are in N (as scheduling theory usually considers dates in N, not in Q). A

strictly periodic clock defines the real-time rate of a flow and it is uniquely characterized by

its period. Thus, the “strictly periodic clock of period n” will simply be referred to as “clock

n”.

We then define clock transformations, which produce new strictly periodic clocks by

increasing or reducing the rate of an existing strictly periodic clock:

Definition 2 Let α be a strictly periodic clock, operations /. and ∗. are periodic clock trans-

formations, that produce strictly periodic clocks satisfying the following properties:

π(α/.k) = k ∗π(α)

π(α ∗. k) = π(α)/k,k ∈ N⋆

Strictly periodic clocks are actually a subset of the usual clocks of synchronous lan-

guages, which are defined using Boolean activation conditions. However, by restricting to

this particular class of clocks, we are able to specify the real-time properties of a system

more explicitly and to compile a program efficiently into a set of real-time tasks.

2.3 Syntax and Formal Semantics

2.3.1 Syntax

This section details the syntax of the restriction of PRELUDE we will consider in the rest

of the paper. It is close to LUSTRE, however we do not impose to declare types and clocks,

which are computed automatically, similarly to LUCID SYNCHRONE. The language gram-

mar is given below:

cst ::= tr✉❡ | ❢❛❧s❡ | 0 | ...
var ::= x | var,var

e ::= cst | x | (e,e) | cst ❢❜② e | N(e) | e/ˆk | e∗ˆk

eq ::= var = e | eq;eq

typ ::= ✐♥t | ❜♦♦❧
in ::= x [: [typ] [r❛t❡ n]] | in; in

out ::= x [: [typ] [r❛t❡ n] [❞✉❡ n′]] | out;out

decl ::= ♥♦❞❡ N(in) r❡t✉r♥s (out) [✈❛r var;] ❧❡t eq t❡❧

| ✐♠♣♦rt❡❞ ♥♦❞❡ N(in) r❡t✉r♥s (out) ✇❝❡t n;

A program consists of a list of declarations (decl). A declaration can either be a node

defined in the program (♥♦❞❡) or a function implemented outside (✐♠♣♦rt❡❞ ♥♦❞❡), for

instance in C. Node durations must be provided for each imported node, more precisely the

worst case execution times (wcet).

The clock of an input/output parameter (in/out) can be declared strictly periodic (x :

r❛t❡ n, x then has clock (n)) or left unspecified. The type of an input/output parameter can

12

be integer (int), Boolean (bool) or unspecified. A deadline constraint can be imposed on

output parameters (x : ❞✉❡ n, the deadline is n, relatively to the beginning of the period of

the flow).

The body of a node consists of an optional list of local variables (var) and a list of

equations (eq). Each equation defines the value of one or several variables using an expres-

sion on flows (var = e). Expressions can be immediate constants (cst), variables (x), pairs

((e,e)), initialised delays (cst ❢❜② e), applications (N(e)) or expressions using strictly peri-

odic clocks. e/ˆk under-samples e using a periodic clock division and e∗ˆk over-samples e

using a periodic clock multiplication (k ∈ N∗). Value k must be statically evaluable.

2.3.2 Kahn’s semantics

We provide a semantics based on Kahn’s semantics on sequences (Kahn (1974)). It is a

direct adaptation of the synchronous semantics presented in Colaço and Pouzet (2003) to the

Tagged-Signal model. For any operator ⋄, ⋄#(s1, ...,sn)= s′ means that the operator ⋄ applied

to sequences s1, ..., sn produces the sequence s′. Term (v, t).s denotes the flow whose head

has value v and tag t and whose tail is sequence s. Operator semantics is defined inductively

on the argument sequences. We omit rules on empty flows, which all return an empty flow.

In the following, if e is an expression such that e# = (vi, ti)i∈N, we will write ei to denote

vi, i.e. the ith value produced by e. The semantics of the operators of PRELUDE is given in

Figure 5.

❢❜② #(v,(v′, t).s) = (v, t). ❢❜② #(v′,s)
τ

#((v, t).s) = (τ(v), t).τ#(s)(where τ is an imported node)

∗̂ #((v, t).s,k) = ∏
k
i=1(v, t

′
i).∗̂

#(s,k)(where t ′1 = t and t ′i+1 − t ′i = π(s)/k)

/ˆ
#(s,k) = /ˆ′

#(1,s,k)

/ˆ′
#(n,(v, t).s,k) =

{

(v, t)./ˆ
#(k,s,k) if n = 1

/ˆ
#(n−1,s,k) otherwise

Fig. 5 Kahn’s semantics

– x ❢❜② y concatenates the head of x to y, delaying the values of y by one tag;

– for an imported node τ , τ(x) applies τ to each value of x;

– x ∗ˆk produces a flow k times faster than x. Each value of x is duplicated k times in the

result. The time interval between two successive duplicated values is k times shorter

than the interval between two successive values in x;

– x/ˆk produces a flow k times slower than x, dropping parts of the values of x.

To complete the definition of the semantics, we need to define how a program behaves

when flow values (i.e. sequences of pairs (vi, ti)) are assigned to flow variables. To this intent,

we defined a denotational semantics (Reynolds (1998)) for the rest of the constructions of

the language. This denotational semantics is fairly standard and can be found in Forget et al

(2008).

Example 1 Let us illustrate the Kahn’s semantics and in particular the data dependencies

through a quite simple PRELUDE program:

13

imported node t a u _ k (i : i n t) r e t u r n s (j : i n t) wcet 2 ;

node conso (i1 , i2 , i3 , i 4) r e t u r n s (o1 , o2 , o3 , o4)

l e t
o1= t a u _ 1 (i 1) ;

o2=0 fby t a u _ 2 (i 2) ;

o3= t a u _ 3 (i 3)∗^ 4 ;

o4= t a u _ 4 (i 4) / ^ 3 ;

t e l

For the first equation ♦❴✶❂t❛✉❴✶✭✐✶✮, if the input sequence of values is (i11, t1),(i
2
1, t2), . . .,

we obtain the output sequence of values (o1
1, t

′
1),(o

2
1, t

′
2), . . . such that:

(o1
1, t

′
1),(o

2
1, t

′
2), . . .= tau_1#((i11, t1),(i

2
1, t2), . . .)

According to the semantics, it is equivalent to:

∀n ∈ N∗,

{

on
1 = tau_1(in1)

t ′n = tn

In the same way, we can deduce the relation between the sequences involved in the other

equations.

o2 = 0 ❢❜② tau_2(i2) o3 = tau_3(i3)∗ˆ4 o4 = tau_4(i4)/ˆ3
{

o1
2 = 0

∀n ∈ N∗,on+1
2 = tau_2(in2)

∀n ∈ N∗,on
3 = tau_3(i

⌈ n
4 ⌉

3) ∀n ∈ N∗,on
4 = tau_4(i

3(n−1)+1

4)

2.4 Example

We are now able to define the PRELUDE program for the system of Figure 1. Each operation

(laws, acquisitions, filters) is first declared as an imported node:

imported node SF (i : i n t) r e t u r n s (o : i n t) wcet 5 ;

imported node SL (i1 , i 2 : i n t) r e t u r n s (o : i n t) wcet 5 ;

. . .

We then describe the communication between the multi-periodic nodes. The program

is defined as a set of modular and hierarchical nodes. There are several possible implemen-

tations, depending on the communication patterns the programmer wants to implement for

communicating nodes. We propose the following assembly solution.

node f c s (ang le , acc , pos : r a t e (3 0) ; r _ p o s : r a t e (7 0))

r e t u r n s (o r d r e)

var r_acc , r _ a n g l e , pos_ i , a c c _ i ;

l e t
(pos_ i , a c c _ i) = GNA(pos , acc) ;

o r d r e = SL (SF (a n g l e) , ((0 fby r _ a n g l e)∗ ^ 4) / ^ 3) ;

r _ a n g l e = PL (PF (a c c _ i ∗ ^ 3 / ^ 4) , ((0 fby r _ a c c)∗ ^ 7) / ^ 4) ;

r _ a c c = GL(GF(p o s _ i ∗ ^ 3 / ^ 7) , r _ p o s) ;

t e l

3 Translation into a Dependent Task Set

This section details how the PRELUDE compiler translates a program into a dependent task

set, that is to say a set of tasks related by data-dependencies. The tasks correspond to the

imported nodes. The main contribution of this section is to define a compact data structure,

called data dependency word , that represents the data dependency imposed by the semantics

between two tasks.

14

3.1 Data Dependency Words

The PRELUDE semantics gives the rules for computing output flows from input flows. The

semantics, detailed in Section 2.3.2, applies on inputs described as an infinite sequence of

pairs (value,tag) and provides outputs also represented by an infinite sequence of such pairs.

The clock calculus computes the clock, and thus the tags, of each flow of the program.

In this section, we describe how to compute the sequences of values of the flows using

data dependency words . A data dependency word explains how to construct the sequence of

outputs values o from sequence of input values i for the expression o = oprs(i) where oprs

is a combination of the three operators /ˆ, ∗̂ an ❢❜② . As we only consider multi-periodic

systems, data dependency words are finite words.

To simplify the presentation, let us define the set of terms t over PRELUDE operators as

follows:
opr ::= ❢❜② | /ˆk | ∗ˆk

t ::= opr | t.t | oprn | t∗ | (t|t)

– The sequence oprs = opr1.opr2. · · · .oprn denotes the composition oprn ◦ · · · ◦ opr2 ◦
opr1, i.e. oprs(i) = oprn(...(opr2(opr1(i))))

– oprn corresponds to n compositions of the operator opr;

– t∗ corresponds to an arbitrary number of repetitions of t (possibly 0);

– (t1|t2) corresponds to either t1 or t2.

In the following we assume that only operator combinations of the following form are al-

lowed: ❢❜② ∗.(/ˆk|∗ˆk)∗ (i.e. ❢❜② operators are applied first). This constraint does not seem

too restrictive in practice, as in most cases programs can easily be rewritten to fulfill this

requirement, and significantly simplifies the precedence encoding presented in Section 4.12.

Definition 3 (Data dependency word) A data dependency word w is defined by the fol-

lowing grammar:

w ::= (−1,d0).(k,d).u
u ::= (k,d)|u.u

with d0 ∈ N, k,d ∈ N⋆.

Let i a sequence of values and w = (−1,d0)(k1,d1)(k2,d2) . . . (kn,dn) a data dependency

word. The application of w to i produces a sequence of values o = w(i) defined as follows,

∀p ∈ N⋆:

op =

init if p ∈ [1,d0]
ik1 if p ∈ [d0 +1,d0 +d1]
ik1+k2 if p ∈ [d0 +d1 +1,d0 +d1 +d2]
. . .

i
q·(Σ j∈[2,n] k j)+Σ j≤l k j if p ∈

[q · (Σ j∈[2,n] d j)+Σ j≤l−1 d j +1,q · (Σ j∈[2,n] d j)+Σ j≤l d j] with q ∈ N, l ∈ [1,n]

The first two letters (−1,d0)(k1,d1) correspond to the prefix of the word: the d0 first

values of o equal the initial value (init), k1 is the index of the first value of i actually used

to produce o and d1 tells how many values of o equal this value ik1 . Then, the sequence

(k2,d2) . . .(kn,dn) is the repetitive pattern of the word: the d2 next values of o equal ik1+k2 ,

then the d3 next values of o equal ik1+k2+k3 . The pattern is repetitive, thus when we reach

2 Thanks to this constraint, deadlines adjustment can be performed by a simple topological sort, instead of

requiring the computation of a fixed-point. See Forget (2009) Section 10.2.3 for details.

15

the last pair of the pattern ((kn,dn)), we loop back to the first pair of the pattern ((k2,d2)).
So, after using the value ik1+k2+...+kn , dn times, the d2 next values of o equal ik1+k2+...+kn+k2 ,

then the d3 next values of o equal ik1+k2+...+kn+k2+k3 , and so on.

Example 2 Let w1 = (−1,0)(1,1)(1,1) and o = w1(i). This is the simplest data dependency

word. If we apply the previous definition, we obtain: o1 = i1 since d0 = 0,d1 = 1,k1 = 1;

o2 = i2 since d2 = 1,k2 = 1. Thus, op = ip with p ∈ N⋆.

If o1 = w1(tau_1(i1)). We obtain ∀p ∈ N⋆

o
p
1 = tau_1(i1)

p = tau_1(ip
1)

w1 is the word computed for the PRELUDE expression o1 = tau_1(i1).
Let w2 = (−1,1)(1,1)(1,1) and o2 = w2(tau_2(i2)), we have

{

o1
2 = 0 since d0 = 1

o
p+1
2 = tau_2(ip

2) with p ∈ N⋆

w2 is the word computed for the PRELUDE expression o2 = 0 ❢❜② tau_2(i2).
Let w3 = (−1,0)(1,4)(1,4) and o3 = w3(tau_3(i3)), we have o1

3 = tau_3(i13), o2
3 =

tau_3(i13), o3
3 = tau_3(i13), o4

3 = tau_3(i13), o5
3 = tau_3(i23), . . . this can be summarized as

o
p
3 = tau_3(i

⌈ p
4 ⌉

3) with p ∈ N⋆

w3 is the word computed for the PRELUDE expression o3 = tau_3(i3)∗ˆ4.

Let w4 = (−1,0)(1,1)(3,1) and o4 = w4(tau_4(i4)), we have o1
4 = tau_4(i14), o2

4 =
tau_4(i44), . . . this can be summarized as

o
p
4 = tau_4(i

3(p−1)+1

4) with p ∈ N⋆

w4 is the word computed for the PRELUDE to the expression o4 = tau_4(i4)/ˆ3. Notice that

this exactly corresponds to the semantics of the PRELUDE program given in the example 1

p. 12.

This example illustrates that the sequence of values produced by the application of a

single rate transition operator can be represented by a data dependency word. This can be

generalized for complex combinations of rate transition operators.

Proposition 1 Let oprs be of the form ❢❜② ∗.(/ˆ k| ∗ˆ k)∗. For any sequence of values i, the

sequence of values produced by o = oprs(i) can be represented as o = w(i), where w is a

data dependency word the length of which is less than ∏(/ˆki)∈oprs ki +2.

Proof For a word w = (−1,d0)(j1,d1)(j2,d2)...(jn,dn), let l(w) = n− 1 denote the length

of w (we do not take into account the prefix of constant length 2) and let nd(w) = Σ2≤i≤n di.

The proof is done by induction on the sequence of operators oprs. The base of the induction

is when oprs= [], in which case the word is (−1,0)(1,1)(1,1) (see example above) with

l(w) = 1 ≤ ∏ /0 ki = 1 and nd(w) = 1.

Now, for the induction step, let us assume that the word associated to oprs is w =
(−1,d0)(j1, d1)(j2,d2)...(jn,dn). We compute the word w′ for oprs.op. In the following, if

w is the word computed for a sequence of operators oprs and if op is an operator, w′ = op(w)
denotes the data dependency word that corresponds to the sequence of operators oprs.op.

16

1. if op= ❢❜② , then oprs is necessarily of the form ❢❜② d0 because of the assumption to ap-

ply the delays at the beginning. It entails that w=(−1,d0)(1,1)(1,1) and w′ = ❢❜② (w)=
(−1,d0 +1)(1,1)(1,1) with l(w′) = l(w) = 1 and nd(w′) = 1;

2. if op=∗̂ k, then w′ = ∗̂ k(w) = (−1,k · d0)(j1,k · d1)(j2,k · d2)...(jn,k · dn). Indeed, the

flow obtained by oprs(i) is (init, t1) . . .(init, td0
),(i j1 , td0+1), . . . ,(i

j1 , td0+d1
), We know

the dates tk because of the clock calculus and the values because of the data dependency

word w. If we apply the Kahn’s semantics on this flow for the operator ∗̂ k, we have:

∗̂ #((init, t1) . . .(init, td0
),(i j1 , td0+1), . . . ,(i

j1 , td0+d1
), . . . ,k) =

∏
k−1
i=0 (init, t i

1).∏
k−1
i=0 (init, t i

d0
).∏k−1

i=0 (i
j1 , t i

d0+1). . . .∏
k−1
i=0 (i

j1 , t i
d0+d1

).∗̂ #(. . . ,k)

This entails that each data is consumed k times more than for w. Thus l(w′) = l(w) ≤

∏(/ˆki)∈oprs ki by induction hypothesis. Furthermore, nd(w′) = nd(w) · k;

3. if op=/ˆk, then the computation of w′ is a little bit tricky. We must remove k− 1 con-

sumptions every k in w. This obviously decreases d j but this may also imply that some

instances are not consumed anymore, thus changing some jl . We must first compute the

new prefix (−1,⌈d0/k⌉)(j′1,d
′
1). If d0 mod k = 0 then j′1 = j1 and d′

1 = ⌈d1/k⌉. Other-

wise j′1 = Σl≤p jl with p = min j{(d0 mod k+Σl≤ j dl) ≥ k} and d′
1 = ⌈(d0 +Σl≤p jl −

k)/k⌉. Indeed, by an Euclidean division, d0 = k ·q+ r with q,r ∈ N and r < k. The flow

oprs(i) is (init, t1) . . .(init, tk) . . .(init, tk·q) . . .(init, tk·q+r),(i
j1 , td0+1), . . . ,(i

j1 , td0+d1
),

If we apply the Kahn’s semantics on this flow for the operator /ˆk, we have:

/ˆ
#(1,(init, t1) . . .(init, tk) . . .(init, tk·q) . . .(init, tk·q+r)(i

j1 , td0+1) . . . ,(i
j1 , td0+d1

) . . . ,k) =

(init, t1).(init, tk) . . .(init, tk·q)./ˆ
#(r,(i j1 , td0+1) . . . ,(i

j1 , td0+d1
) . . . ,k)

We then have to copy r times the sub-word (jp+1,dp+1) . . .(jp+l(w)−1,dp+l(w)−1) into

the word wi such that nd(wi) is divisible by k. We take a consumption every k times on

the word wi and we obtain the word w′ such that l(w′)≤ l(wi) and nd(w′) = nd(wi)/k.

We have the length l(wi) = lcm(nd(w),k)/nd(w) · l(w)≤ k · l(w)≤ k ·∏(/ˆki)∈oprs ki.

To compute the word w′, we make an argument similar to the calculation of the prefix:

we move forward in the word wi as long as Σ jd j ≤ k and we keep the instances where

this sum is > k. We then have j′ = jprec+Σl jl and d′ = ⌈(d+Σl dl +(dprec mod k)−k)⌉.

We continue the move by resetting Σl dl and Σl jl . Note also that dn = d1, because it is

the repetition of the first instance. This ensures the periodicity of the calculus.

Data dependency words provide a factorised representation of data dependency between

expression and therefore a compact representation of tasks precedences. They are the basis

for our buffering communication protocol.

3.2 Task Extraction

The PRELUDE compiler first checks the correctness of the program to compile thanks to

a series of static analyses: a standard type-checking (using classic techniques described in

Pierce (2002)), a causality analysis similar to that of LUSTRE (see Halbwachs et al (1991b))

and more importantly a clock calculus (defined in Forget et al (2008)) that computes a clock

for every expression of the program, from which we deduce the period of the expression

and therefore the period of each imported node (i.e. task). Once static analyses succeed, the

compiler can translate the program into a set of tasks.

17

We consider a classical task model derived from the fundamental work of Liu and Lay-

land (1973). A task τi has a set of real-time attributes (Ti,Ci,Di). τi is instantiated periodi-

cally with period Ti. For all p ∈ N⋆, τi[p] denotes the pth iteration of task τi. Ci is the worst

case execution time (WCET) of the task. Di is the relative deadline of the task. For all p∈N∗,

let di[p] denote the absolute deadline of the instance p of τi, we have di[p] = (p−1)Ti +Di.

These definitions are illustrated in Figure 6. The restriction of PRELUDE we consider in this

paper does not include phase offset operators, thus offsets (i.e. the release time of the first

instance of a task) are all equal to zero.

Ci

di[1]Di

Ci

di[2]Di

0

Ti Ti

Fig. 6 Real-time characteristics of task τi

Each imported node call of the program is translated into a task. Each input/output of the

main node of the program is also translated into a task (sensor/actuator task). The real-time

attributes of each task are computed as follows:

– the WCET is specified by the corresponding imported node declaration;

– the period is defined by the clock of the task, which is computed by the clock calculus;

– by default, the relative deadline of a task is its period. Deadline constraints can also be

specified (eg ♦✿ ❞✉❡ ♥), then the deadline of the task is the minimum of the deadlines

of its outputs.

3.3 Dependencies between Tasks

The program - a set of equations - is not transformed into a simple task set, but instead into a

task graph where tasks are related by dependencies. The generated graph (V,E) consists of

a set of nodes V corresponding to the tasks extracted as detailed in the previous section and

of a set of edges E corresponding to task dependencies. Each dependence e ∈ E ⊆V ×V is

labeled by the list of rate transition operators applied between the two communicating tasks.

Dependencies imply precedences, and thus define a partial order for the execution of the

tasks, as well as detailed communications patterns. For instance, if an imported node A is

applied to an output flow of another imported node B then the node B must execute before

A. There are two types of communications: direct when the label of the dependence is a

sequence of operators ∗̂ k, /ˆ or a direct call; indirect when there are some ❢❜② .

The task graph for the flight control is given in the Figure 7. It is a fairly straightforward

translation of the program given in Section 2.4.

Proposition 2 A dependence τ1 →
oprs

τ2 can be represented by the data dependency word

w = (−1,d0)(k1,d1) . . .(kn,dn) associated to oprs. Indeed, we have

∀q, l ∈ N2, l ∈ [1,n],τ1[q · (Σ j∈[2,n] i j)+Σ j≤l i j]→ τ2[q · (Σ j∈[2,n] d j)+Σ j≤l d j]

Proof τ1 →
oprs

τ2 is the precedence resulting from an expression of the form τ2(. . . ,oprs(
τ1(. . .)), . . .). Thus our proposition is a straightforward consequence of Proposition 1.

18

r_pos GL PL SL

GF

PF SF angle

order

GNA

pos

acc

fby,∗̂ 7, /ˆ4 fby,∗̂ 4,/ˆ3

∗̂ 3,/ˆ4

∗̂ 3,/ˆ7

Fig. 7 Task graph of the Flight Control System

Example 3 Let us illustrate the computation of data dependency words on the flight control

example. Let us consider the precedence GNA →∗̂ 3,/ˆ4 PF . It can be represented by the

word (−1,0)(1,1)(1,1)(1,1)(2,1). Indeed, as shown in Example 2, the data dependency

word associated to the operator ∗̂ 3 is w1 = (−1,0)(1,3)(1,3). There is no initial value, so

the prefix for /ˆ4(w1) is (−1,0)(1,⌈3/4⌉) = (−1,0)(1,1).
Then, 4−3 = 1 consumer instance needs to be removed. We have nd(w1) = 3. We copy

4 times the pattern (1,3). We obtain wi = (1,3)(1,3)(1,3) (1,3). In wi[1] = (1,3), 1 among

3 is used to complete the required instance from the prefix. Then /ˆ4(wi[1]) = (1,⌈2/4⌉) =
(1,1) and 4− 2 consumer instances need to be removed. In wi[2] = (1,3) we remove the

missing 2 and /ˆ4(wi[2]) = (1,⌈1/4⌉) = (1,1). 3 remain, thus all the consumer instances of

wi[3] = (1,3) are used to complete the computation. /ˆ4(wi[3]) = (2,⌈3/4⌉). And we find

the same state as the one from the prefix. To summarize, the dependent task set associated

to the flight control system is:

Tasks Dependencies Data dependency words

GNA=(30,5,30) GNA →∗̂ 3,/ˆ4 PF (−1,0)(1,1)(1,1)(1,1)(2,1)

SF=(30,5,30) GNA →∗̂ 3,/ˆ7 GF (−1,0)(1,1)(2,1)(2,1)(3,1)

SL=(30,5,30) SF → SL (−1,0)(1,1)(1,1)

PF=(40,5,40) PF → PL (−1,0)(1,1)(1,1)

PL=(40,5,40) GF → GL (−1,0)(1,1)(1,1)

GF=(70,7,70) GL → ❢❜② ,∗̂ 7,/ˆ4 PL (−1,2)(1,2)(1,2)(1,1)(1,2)(1,2)

GL=(70,7,70) PL → ❢❜② ,∗̂ 4,/ˆ3 SL (−1,2)(1,1)(1,1)(1,2)(1,1)

4 Multitask Implementation of the System

We present in this section the multitask implementation of a PRELUDE program. The com-

piler has generated a set of dependent real-time tasks whose precedences are expressed by

a set of data dependency words. The objective is then to generate a multithreaded imple-

mentation of the tasks that can be managed by an on-line scheduler such that the execution

respects the semantics of the PRELUDE program. This requires two steps:

1. ensure the respect of the precedences: As we briefly mentioned in the introduction,

there are mainly two different approaches available for handling precedences. The first

approach relies on the use of (binary) semaphore synchronizations: a semaphore is allo-

cated for each precedence and the destination task of the precedence must wait for the

source task of the precedence to release the semaphore before it can start its execution.

In the second approach, the respect of precedence constraints is simply ensured by the

19

way priorities and release times are assigned to tasks. We are interested in the second

approach, because it provides necessary and sufficient feasibility conditions (while only

sufficient conditions are available for the first approach) and does not require to certify

semaphore synchronization mechanisms;

2. provide a semantics-preserving communication protocol: The respect of the prece-

dences is not sufficient to ensure the semantics preservation. As an example, if the first

instance of a task τ1 consumes the data produced by the first instance of a quicker task

τ2, it may that in a multithreaded execution, the first instance of τ1 occurs after the sec-

ond instance of τ2. Thus, if we do not store the data, τ1 will access to the data produced

by τ2[2], that does not correspond to the semantics. A communication protocol is thus

required for the multithreaded execution to respect the initial semantics of the program.

We show how to compute this optimal protocol and how to generate a static wrapping

code for each task. This wrapping code details when and where a task must write and

read its data.

4.1 Precedence Encoding

We propose to encode precedences in task real-time attributes. Chetto et al (1990) have

defined an encoding that transforms a dependent task set into an equivalent independent

task set. The independent task set is then scheduled with the classic Earliest-Deadline-First

(EDF) policy. This approach (encoding+EDF) is optimal in the class of dynamic-priority

schedulers (where priorities are assigned at run-time), in the sense that if there exists a dy-

namic priority assignment that respects all task real-time attributes and precedences, this

approach finds one such assignment. This work only supports precedences between non-

repeated jobs (a periodic task is a periodic repetition of jobs) but can easily be extended to

precedences between tasks of the same period (called simple precedences). Using a similar

approach, Forget et al (2010) have defined optimal encodings for several static priority poli-

cies (where priorities are assigned before run-time), including deadline monotonic (DM). In

both cases (static or dynamic priority), the encoding consists in:

1. adjusting the release dates so that for any precedence τ1 → τ2, the start time of τ2 is

always after the start time of τ1;

2. assigning priorities so that for any precedence τ1 → τ2, the task τ1 has a higher priority

than τ2.

In our context all the offsets are equal to zero, thus we do not need to adjust release

dates. Furthermore, precedences can relate two tasks with different periods, in which case

only a subset of the instances of the two tasks are related by a precedence constraint. The

assignment of task priorities for both DM (static priority) and EDF (dynamic priority) is

based on task deadlines, thus to ensure that priorities are assigned to tasks in a way that

respects precedences, we simply have to adjust task deadlines. The precedence encoding

technique is formalized as follows:

Proposition 3 The dependent task set {τ1 =(T1,C1,D1), . . . ,τp =(Tp,Cp,Dp)} constrained

by a set of precedences expressed by a set of data dependency words {wi, j}i, j∈P⊆[1,p]2 is

equivalent to the independent task set {τ1 = (T1,C1,D
⋆
1), . . . ,τn = (Tp,Cp,D

⋆
p)} whose data

consumption is described by the set of data dependency words {wi, j}i, j∈P⊆[1,p]2 where

D⋆(τi) = min j | wi, j=(−1,d0)(i1,d1)...(in,dn) mink≤n
{

D⋆(τ j)+(Σl≤k−1dl +1)T (τ j)− max(0,(Σl≤kil −1))T (τi)−C(τ j)
}

20

Proof The algorithm (Chetto et al (1990); Forget et al (2010)) modifies the absolute deadline

of a task τ to be d⋆ = min j | τ→τ j
(d,d⋆

j −C j). In our context, we do not only consider simple

precedences τ → τ j, which correspond to oprs = [], but more general precedences. Let

τ1 →oprs
τ2, we compute the associated dependency word w = (−1,d0)(i1,d1) . . .(in,dn).

We deduce all the constraints on the deadlines of τ1. The instance τ1[Σ j≤ki j] must end before

the beginning of the first instance of τ2 that consumes the data produced by τ1[Σ j≤ki j],
that is τ2[Σ≤k−1d j + 1] (by definition of the dependency word). This provides the absolute

constraints for k= 1, . . . ,n: d⋆(τ1[Σ j≤ki j])≤ d(τ⋆2 [Σ j≤k−1d j+1])−C(τ2). As we manipulate

relative deadlines, we adapt this formula by modifying the relative deadlines. Note that it

is sufficient to reason on the first n instances because of the periodic pattern of the word w.

Hence:

D⋆(τ1)≤ mink≤n

{

D⋆(τ2)+(Σ j≤k−1d j +1)T (τ2)− max(0,(Σ j≤ki j −1))T (τ1)−C(τ2)
}

We deduce the relative deadline of τ1 to be the greatest value respecting these constraints.

Because of the hypothesis on the delays (❢❜② at the beginning of the operators list), there is

no loop in the constraints.

Example 4 The task set for the simplified flight control becomes after encoding SL = (30,5,
30), SF =(30,5,25), GNA=(30,5,30), PF =(40,5,35), PL=(40,5,40), GF =(70,7,63)
and GL = (70,7,70).

To summarize, our scheduling algorithm works as follows:

1. Encode precedences using Proposition 3;

2. Perform a schedulability analysis. As encoded tasks are independent, we can reuse clas-

sic schedulability tests Cottet et al (2002). For instance, we used Cheddar [Singhoff et al

(2004)] to verify that our previous example is schedulable for EDF but not schedulable

for DM.

3. Schedule tasks either using DM (static priority) or EDF (dynamic priority).

4.2 Communication protocol

Problems due to the Interleaving In order to preserve the PRELUDE semantics, consum-

ing task instances must use data produced by the correct producing task instance. Due to

the multi-rate aspects of the systems, precedence encoding is not sufficient and additional

communication mechanisms are required.

SF GNA SL SF GNA SL SF GNA SL

30 ms 60 ms

PF PL PF PL

40 ms 80 ms

GF GF GL

70 ms

Fig. 8 Example of an execution

21

To illustrate this problem, let us consider data produced by GNA in the flight control

example, which is consumed by PF and GF . Figure 8 shows that data produced by the

first instance of GNA must be stored over several periods. We have two choices: either we

consider that data must remain available over the complete period of GF that is 70 ms, or

we decide that data must remain available for the worst response time of the consumers.

We choose the first solution because the second solution is not necessarily efficient and it is

more complex. The task SL requires data produced by PL with a delay. This requires two

cells to store the data produced by PL: one for the previous value and one for the current.

Sofronis et al. Method The authors of Sofronis et al (2006) consider a real-time task set

obtained from a LUSTRE program (the construction of the task set from the code is assumed

to be out of the scope of their work). The authors first study the mechanism to implement

a communication protocol based on the use of buffers. Then, they propose to optimise the

number of buffers required for multi-periodic tasks. Their algorithm consider a set of com-

munications τ → τ1, . . . ,τ → τn and for each data produced during the hyperperiod:

1. test whether data is consumed or not;

2. if it is the case, test if it possible to reuse an existing buffer cell to store the data. If no

cell can be reused, add a new buffer cell and increase the number of cells by one.

Communication Protocol In order to apply this algorithm on the communications described

in the precedence graph, we must determine whether a cell can be reused or not. A cell can

be reused at date t, if the previous stored data was used until at most t ′ ≤ t. This information

is already stored within the data dependency words. The lemma gives the formula:

Lemma 1 Let us consider the precedence τ1 →oprs
τ2 represented as a data dependency

word w1,2 = (−1,d0)(i1,d1)(i2,d2) . . .(in,dn). The instance h of τ1 is consumed iff ∃q, l ∈
N2, l ∈ [1,n] such that h = q · (Σ j∈[2,n] i j)+Σ j≤l i j. The maximal date of use of instance

h = q · (Σ j∈[2,n] i j)+Σ j≤l i j is

T (τ2) · (q · (Σ j∈[2,n] d j)+Σ j≤l d j −1)+D(τ2)

Proof The lemma is a simple transcription of the definition of data dependency words. The

first instance to be consumed i1, is consumed by the jobs d0 + 1, . . . ,d0 + d1 of τ2. The

data must be available till the end of the execution of the last job to consume it, which is

T (τ2) · (d0 +d1 −1)+D(τ2). This can be generalised to any consumed instance.

Example 5 The simple precedence SF → SL is coded by (−1,0)(1,1)(1,1). Each data must

be available exactly one period of 30.

GNA →∗̂ 3,/ˆ4 PF is coded by (−1,0)(1,1)(1,1)(1,1)(2,1). The first third data must be

available 40 ms, the fourth is not consumed and the fifth must be available 40 ms as well.

The scheme repeats following the data dependency word definition.

For each task, we add a buffer where the task writes the data that will be consumed by

some other task. We can now apply the algorithm for using a minimal number of cells for

each of these buffers.

Proposition 4 The task set {τ1 = (T1,C1,D1), . . . ,τp = (Tp,Cp,Dp)} whose data consump-

tion is described by a set of data dependency words {wi, j = (−1,di, j
0)(ii, j1 ,di, j

1)(ii, j2 ,di, j
2) . . .

(ii, j
ni, j ,d

i, j
ni, j)}i, j∈P⊆[1,p]2 is equivalent to the task set {τ1 = (T1,C1,D1), . . . ,τp = (Tp,Cp,Dp)}

22

whose data consumption is described by the communication vectors {V1, . . . ,Vp} where

Vk[h] = [b,Lk] with

h ∈ [1, lcm j(Σl≤nk, j
i
k, j
l)]

b is the buffer cell where the data h is stored

Lk = concat{(τ j,q · (Σl∈[2,nk, j] d
k, j
l)+Σl≤m−1 d

k, j
l −1, . . . ,q · (Σl∈[2,nk, j] d

k, j
l)+Σl≤m d

k, j
l

| q · (Σl∈[2,nk, j] i
k, j
l)+Σl≤m i

k, j
l = h}

Proof For all the consumptions of τ1, τ1 →oprs
τ j, j = 2, . . . ,m, we have the m data de-

pendency words w1, j = (−1,d1, j
0)(i1, j1 ,d1, j

1)(i1, j2 ,d1, j
2) . . .(i1, j

n1, j ,d
1, j

n1, j). The data dependency

words describe the communication on different instances and each pattern restarts at some

point, which is not necessary common. We have to reason on the hyperperiod of these in-

stances, that is lcm j(Σl≤n1, j
i
1, j
l). We unfold the data dependency words so that we describe

the consumptions until the lcm. The communication is represented by a vector of length lcm.

Each element of the vector V [h] describes for the data h ≤ lcm j(Σl≤n1, j
i
1, j
l) the buffer cell

where it is stored and the list of consumers and instance numbers.

The list of consumers can directly be found from the unfolded data dependency words.

Indeed h is consumed by τ j if and only if ∃q,m such that q · (Σl∈[2,nk, j] i
k, j
l)+Σl≤m i

k, j
l =

h. If h is consumed, we know exactly the consumer jobs which are q · (Σl∈[2,nk, j] d
k, j
l) +

Σl≤m−1 d
k, j
l −1, . . . ,q · (Σl∈[2,nk, j] d

k, j
l)+Σl≤m d

k, j
l . The last date of consumption of data h is

a direct application of lemma 1. We take the maximal consumption date of each consumer.

The value of b can be written as an algorithm. Let us denote by nb the number of cells

of the buffer associated to τ1. Let us instantiate nb = 0. For all h, we test if h is consumed

which is equivalent to ∃ j,q,m such that q · (Σl∈[2,nk, j] i
k, j
l)+Σl≤m i

k, j
l = h. Then

1. if h is not consumed, V1[h] = (0, []);

2. if h is the first data to be consumed, i.e. h = min(i1, j1). Then h is stored in the first cell.

Thus nb = 1 and V1[h] = (1, . . .). The cell is locked within the interval [(h−1) ·T (τ1),d]

where d = max{T (τ j) · (q · (Σl∈[2,nk, j] d
k, j
l)+Σl≤m dm −1)+D(τ j) | q · (Σl∈[2,nk, j] i

k, j
l)+

Σl≤m i
k, j
l = h};

3. if h is not the first data to be consumed, we test if a buffer b ∈ [1,nb] is available in the

interval [(h−1) ·T (τ1),d] where d = max{T (τ j) · (q · (Σl∈[2,nk, j] d
k, j
l)+Σl≤m dm −1)+

D(τ j) | q · (Σl∈[2,nk, j] i
k, j
l) +Σl≤m i

k, j
l = h}. If so, we reuse the buffer b, otherwise we

increment nb = nb+1 and use the buffer b = nb.

Example 6 Let consider the buffer associated to GNA, it requires 3 cells. There two read-

ers GNA →∗̂ 3,/ˆ4 PF and GNA →∗̂ 3,/ˆ7 GF . The dependency words are respectively (−1,0)
(1,1)(1,1)(1,1)(2,1) and (−1,0)(1,1)(2,1)(2,1)(3,1). We have lcm(∑(1+1+1+2),∑(1+
2+2+3)) = lcm(5,8) = 40. The vector is described until the instance 40 of GNA.

The first instance of GNA is consumed by the first instances of PF and GF. The last

date of consumption is max{40,63}= 63. Hence, V [1] = (1, [(PF,1);(GF,1)]). The second

instance GNA[2] is only consumed by PF between [30,65], hence V [2] = (2, [(PF,2)]). The

third instance is consumed by both PF and GF between [60,126] Hence V [3] = (3, [(PF,3);
(GF,2)]). And so on until V reaches the instance 40 of GNA.

Finally, the independent task set associated to the flight control system is:

23

Tasks Number of cells Communication vector

GNA=(30,5,30) 3 VGNA = [(1, [(PF,1);(GF,1)]);(2, [(PF,2)]) . . .]

SF=(30,5,25) 1 VSF = [(1, [(SL,1)]);(2, [(SL,2)])]

SL=(30,5,30) 0

PF=(40,5,35) 1 VPF = [(1, [(PL,1)]);(2, [(PL,2)])]

PL=(40,5,40) 3 VPL = [(1, [(SL,3)]);(2, [(SL,4,5)]) . . .]

GF=(70,7,63) 1 VGF = [(1, [(GL,1)]);(2, [(GL,2)])]

GL=(70,7,70) 3 VGL = [(1, [(PL,3,4)]);(2, [(PL,5,6)]) . . .]

Code Generation From such vectors V , it is quite easy to deduce wrapping codes for each

task, which describes in which cell data must be read or written. In contrast to Sofronis et al

(2006), we do not use pointers but instead a static description of the buffers to access for

each instance of the tasks.

Example 7 We explain an extract of the code generated for Flight Control System for the

data produced by ●◆❆. The initial function is wrapped by a code for the communication

protocol:

1. Communication buffers are declared as global variables (here ●◆❆❴♦❬✸❪ for the 3 cells);

2. A function pointer is generated for each task (here ●◆❆❴❢✉♥). It corresponds to the body

of the task, executed by each instance of the task. The structure of each function is as

follows:

(a) Communication protocols are declared. In this example, ✇r✐t❡❴♣❛t specifies when

●◆❆ must write in the communication buffer;

(b) The function calls the external function provided by the user for the task (i.e. the

function describing the functional behaviour of the task);

(c) Outputs are copied to the communication buffer according to the “write pattern”.

i n t GNA_o [3] ; / / b u f f e r f o r GNA −> GF, 3 c e l l s

void∗ GNA_fun (void∗ a r g s) / / wrap t h e e x t e r n a l f u n c t i o n GNA w i t h com p r o t o c o l

{

s t r u c t w r i t e _ p r o t o _ t o _ w r i t e ; / / v e c t o r V , t e l l s when GNA must w r i t e

o _ w r i t e . w r i t e _ p a t [0] = 1 ; o _ w r i t e . w r i t e _ p a t [1] = 1 ;

. . .

GNA(pos_GNA , acc_GNA,& GNA_fun_outs) ; / / c a l l t o t h e e x t e r n a l GNA f u n c t i o n

i f (o _ w r i t e . w r i t e _ p a t [i n s t a n c e]) { / / t e s t i f da ta must be s t o r e d

GNA_o[o _ w c e l l]= GNA_fun_outs . o ; / / w r i t e i n t h e communica t ion b u f f e r

o _ w c e l l =(o _ w c e l l +1)%3; / / up da t e c e l l i n d e x

}

. . .

(i n s t a n c e ++)%40; / / up da t e number o f i n s t a n c e s

}

5 Experimental results

The theoretical results have been implemented in a compiler prototype. It takes a PRELUDE

program and produces C code. The approach, and the prototype, have been applied on sev-

eral examples and two representative case studies which are detailed below.

24

5.1 Prototype implementation

A prototype of the compiler has been implemented in OCAML (Leroy (2006)) and is avail-

able for download3. It supports the language defined in Sec. 2 and implements the complete

compilation chain, with proper error handling, in approximately 4000 lines of code. The

prototype generates C code independent from the target OS.

The sequence of computations performed by the compiler is given below and the number

of lines of code for each part of the compiler is given in Fig. 9).

Syntax analysis 300

Typing 400

Clock calculus and clock data types 1000

Causality analysis 100

Task graph extraction 600

Precedence encoding 400

Communication protocol 200

C code generation 400

Base data types and utility functions 600

Command line processing and main file 100

Total 4100

Fig. 9 The different parts of the prototype

For a given PRELUDE program, the user can obtain several outputs:

1. the first result is whether the static analyses, in particular the clock calculus, succeed

or not: this ensures that the semantics of the program is well defined. The result of the

typing and of the clock calculus can also be printed, which is mostly useful in case the

user left the clock/type of some inputs/outputs unspecified. He/she can verify that the

result corresponds to what he expected;

2. a Cheddar [Singhoff et al (2004)] model of the independent task set. This way, he/she

can verify the schedulability of the program;

3. the generated C code.

The generated C code is independent of the target OS. A simple integration code, spe-

cific to the target OS (but generic for the different systems written by the programmer),

must be written. This integration code must declare one thread for each task described by

the generated C code and run all the threads concurrently.

The distribution of the compiler provides all the code required to compile and exe-

cute the generated C code (generic integration code+EDF scheduler) using MARTE OS (Ri-

vas and Harbour (2002)). This Operating System was designed to ease the implementation

of application-specific schedulers while remaining close to the POSIX extensions for real-

time (POSIX.13 (1998)). This RTOS also has the advantage of being executable on top of a

standard LINUX station, which simplifies the debugging and test phases. We are currently

working on the support of a standard C POSIX OS.

5.2 Case Study 1: Partial ATV Navigation Function

The full description of this case study can be found in Forget (2009).

3 ❤tt♣✿✴✴✇✇✇✳❧✐❢❧✳❢r✴∼❢♦r❣❡t✴♣r❡❧✉❞❡✳❤t♠❧

25

General Presentation of the FAS The control system of the Automated Transfer Vehicle has

been developed by EADS Astrium Space Transportation. The control system is made up of

two parts: the Flight Application Software (FAS) and the Mission Safing Unit (MSU). The

FAS is the main part of the system, it handles all the software functionalities of the system

as long as no fault is detected. The MSU watches the FAS to detect if it is faulty. If a fault

occurs, the MSU disables the FAS and starts a safety procedure, which stops the current

ATV actions and moves it to a safe orbit, with respect to the station, waiting for further

instructions from the ground station.

When applying our approach, the designer does not need to compute these three se-

quences statically. We have described the behaviour of the system at the service level and

generated the corresponding multithreaded code.

Current implementation The software is composed of 240 periodic operations, also called

services. There are also sporadic services which are not considered in the following. In the

current implementation by EADS Astrium Space Transportation, the services are first been

developped separately in ADA (but could also be developped using LUSTRE for instance).

Their integration into the global multi-periodic system is then mostly done by hand. The

numerous services are manually distributed between 3 tasks of frequencies 0.1Hz, 1Hz and

10Hz. The services inside each task have then been sequenced manually. The 10Hz task

does not only contain services activated with a frequency of 10Hz, it also contains slower

services, for instance services with a frequency of 1Hz, which are activated only one out of

10 successive instances of the 10Hz task. A RM scheduler is then used for to execute the

tasks concurrently.

Prelude programming Our implementation is mainly based on two design documents pro-

vided by EADS Astrium Space Transportation. The first one specifies the real-time con-

straints of the different services of the FAS. We kept 180 services out of the 240 periodic

services specified in this document, discarding services for which neither bus transfers nor

precedences with other services were specified. The main node has 70 inputs and 9 outputs.

The complete program is about 500 lines of code long. On a current PC (Intel Code 2 Duo

@ 3GHz with 2Go of RAM), the compilation of the program takes about 50ms to complete.

The code generated for the program is about 8000 lines long.

The generated task set was proved to be schedulable using CHEDDAR. We also ran a

simulation of the system with MARTE OS. This case study proves the feasibility of our

approach. Compared to the current implementation, our implementation has two importants

benefits. First, the integration level can be specified formally. Second, it completely avoids

the tedious and time-consuming manual scheduling of services.

5.3 Case Study 2: Avionics Function

The second case study is an avionics function specification extracted from Boniol et al

(2008). The authors take as an input a partial specification, meaning the data-flow between

the tasks are not fully expressed, and compute a multiprocessor implementation respect-

ing the initial constraints. Since the initial specification is not complete, there are several

PRELUDE programs that respond to the constraints, as there were several multiprocessor

allocations.

The application is made up of 762 tasks, 4 periods (10, 20, 40 and 120ms) and 236

imposed simple precedences. We have imposed a choice of data-flow for the communication

26

which were not precised. This leads to 1415 precedences. The compilation of the program

takes about 1s.

From this specification, we derived a larger example, where the PRELUDE program is

generated by a semi-random generator. The PRELUDE program consists of about 3000 tasks

and is over 1Mo large. The compilation takes about 4.5s.

This shows the scalability of our approach, as we can see that programs larger than

real-life examples can easily be supported by the PRELUDE compiler.

6 Conclusion

We described a complete code generation process, which starts from the description of the

real-time software architecture of a multi-periodic systems and translates it into a multi-

threaded code executable with an on-line priority based scheduler. The framework is ded-

icated to the integration of several locally mono-periodic functions developed separately

into a globally multi-periodic system. We first showed the feasibility of the approach and

then showed that we can automatically generate an implementation that respects both the

functional and the temporal semantics of the original program.

When studying the real case study, we noticed that the granularity of the imported nodes,

which are each translated into a separate real-time task, is not adapted to an actual RTOS.

Indeed, most RTOS accept at most one hundred tasks, while our case study produces 750

tasks. In the future, we will try to find some clustering techniques to group several imported

nodes into the same task, in order to reduce the overall number of tasks.

A second conclusion when applying PRELUDE to the case study is that an additional

layer of abstraction might still be required on top of PRELUDE. Indeed, combinations of

rate transition operators are not always easy to write. Thus, we are planning to develop a

graphical editor in a framework such as TopCased, which would provide automated com-

munication pattern generation (ie generation of sequences of rate transition operators).

References

ARINC (2005) ARINC Specification 653: Avionics Application Software Standard Inter-

face. Aeronautical Radio INC

Aubry P, Le Guernic P, Machard S (1996) Synchronous distribution of Signal programs. In:

Proceedings of the 29th Hawaii International Conference on System Sciences (HICSS’96)

Volume 1: Software Technology and Architecture, pp 656–665

Baruah SK, Burns A (2006) Sustainable scheduling analysis. In: Proceedings of the 27th

IEEE International Real-Time Systems Symposium (RTSS’06), IEEE Computer Society,

pp 159–168

Benveniste A, Le Guernic P, Jacquemot C (1991) Synchronous programming with events

and relations: the Signal language and its semantics. Science of Computer Programming

16(2):103–149

Benveniste A, Caspi P, Edwards SA, Halbwachs N, Le Guernic P, de Simone R (2003) The

synchronous languages 12 years later. Proceedings of the IEEE 91(1):64–83

Boniol F, Hladik PE, Pagetti C, Aspro F, Jégu V (2008) A framework for distributing real-

time functions. In: Proceedings of the 6th International Conference on Formal Modeling

and Analysis of Timed Systems (FORMATS’08), Springer, Lecture Notes in Computer

Science, vol 5215, pp 155–169

27

Cervin A (2003) Integrated control and real-time scheduling. PhD thesis, Department of

Automatic Control, Lund University, Sweden

Chetto H, Silly M, Bouchentouf T (1990) Dynamic scheduling of real-time tasks under

precedence constraints. Real-Time Systems 2(3):181–194

Cohen A, Duranton M, Eisenbeis C, Pagetti C, Plateau F, Pouzet M (2006) N-Synchronous

Kahn Networks: a relaxed model of synchrony for real-time systems. In: ACM Interna-

tional Conference on Principles of Programming Languages (POPL’06), Charleston, USA

Colaço JL, Pouzet M (2003) Clocks as first class abstract types. In: Proceedings of the

3rd International Conference on Embedded Software (EMSOFT’03), Philadelphia, USA,

Lecture Notes in Computer Science, vol 2855, pp 134–155

Cottet F, Delacroix J, Kaiser C, Mammeri Z (2002) Scheduling in real-time systems. John

Wiley & Sons

Curic A (2005) Implementing Lustre programs on distributed platforms with real-time con-

straints. PhD thesis, Université Joseph Fourier, Grenoble

Faucou S, Déplanche AM, Trinquet Y (2004) An ADL centric approach for the formal

design of real-time systems. In: Architecture Description Language Workshop at IFIP

World Computer Congress (WADL’04), vol 176, pp 67–82

Feiler PH, Gluch DP, Hudak JJ (2006) The architecture analysis & design language (AADL):

An introduction. Tech. Rep. CMU/SEI-2006-TN-011, Carnegie Mellon University

Forget J (2009) A synchronous language for critical embedded systems with multiple real-

time constraints. PhD thesis, Université de Toulouse - ISAE/ONERA, Toulouse, France

Forget J, Boniol F, Lesens D, Pagetti C (2008) A multi-periodic synchronous data-flow

language. In: Proceedings of the 11th IEEE High Assurance Systems Engineering Sym-

posium (HASE’08), IEEE Computer Society, Nanjing, China, pp 251–260

Forget J, Boniol F, Grolleau E, Lesens D, Pagetti C (2010) Scheduling dependent periodic

tasks without synchronization mechanisms (submitted). In: Proceedings of the 16th IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS’10), Stock-

holm, Sweden, pp 301–310

Girault A, Nicollin X (2003) Clock-driven automatic distribution of Lustre programs. In:

Proceedings of the 3rd International Conference on Embedded Software (EMSOFT’03),

Philadelphia, USA, Lecture Notes in Computer Science, vol 2855, pp 206–222

Girault A, Nicollin X, Pouzet M (2006) Automatic rate desynchronization of embedded

reactive programs. ACM Trans Embedded Comput Syst 5(3):687–717

Graham RL (1969) Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics 17(2):416–429

Halbwachs N (1993) Synchronous programming of reactive systems. Kluwer Academic

Publisher

Halbwachs N, Caspi P, Raymond P, Pilaud D (1991a) The synchronous data-flow program-

ming language LUSTRE. Proceedings of the IEEE 79(9):1305–1320

Halbwachs N, Raymond P, Ratel C (1991b) Generating efficient code from data-flow pro-

grams. In: Proceedings of the 3rd International Symposium on Programming Language

Implementation and Logic Programming (PLILP ’91), Passau, Germany, pp 207–218

Henzinger TA, Horowitz B, Kirsch CM (2003) Giotto: A time-triggered language for em-

bedded programming. Proceedings of the IEEE 91(1):84–99

Kahn G (1974) The semantics of simple language for parallel programming. In: Proceedings

of the International Federation for Information Processing (IFIP’74) Congress, New York,

USA, pp 471–475

Lee EA, Sangiovanni-Vincentelli AL (1996) Comparing models of computation. In: Pro-

ceedings of the 1996 IEEE/ACM International Conference on Computer-aided design

28

(ICCAD’96), IEEE Computer Society, San Jose, USA, pp 234–241

Leroy X (2006) The Objective Caml system release 3.09, Documentation and user’s manual.

INRIA

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-

time environment. Journal of the ACM 20(1):46–61

OSEK (2003) OSEX/VDX Operating System Specification 2.2.1. OSEK Group, www.osek-

vdx.org

Pierce BC (2002) Types and programming languages. MIT Press, Cambridge, USA

POSIX13 (1998) IEEE Std. 1003.13-1998. POSIX Realtime Application Support (AEP).

The Institute of Electrical and Electronics Engineers

Pouzet M (2006) Lucid Synchrone, version 3. Tutorial and reference manual. Université

Paris-Sud, LRI

Reynolds JC (1998) Theories of Programming Languages. Cambridge University Press

Rivas MA, Harbour MG (2002) POSIX-Compatible Application-Defined Scheduling in

MaRTE OS. In: Proceedings of the 14th Euromicro Conference on Real-Time Systems

(ECRTS’02), Washington, USA, pp 67–75

Sename O, Simon D, Ben Gaïd MEM (2008) A LPV approach to control and real-time

scheduling codesign: application to a robot-arm control. In: Proceedings of the 47th IEEE

Conference on Decision and Control (CDC’08), Cancun Mexique, pp 4891–4897

Singhoff F, Legrand J, Nana L, Marcé L (2004) Cheddar: a flexible real time scheduling

framework. Ada Lett XXIV(4):1–8

Smarandache I, Le Guernic P (1997) A canonical form for affine relations in signal. Tech.

Rep. RR-3097, INRIA

Sofronis C, Tripakis S, Caspi P (2006) A memory-optimal buffering protocol for preserva-

tion of synchronous semantics under preemptive scheduling. In: Proceedings of the 6th

International Conference on Embedded Software (EMSOFT’06), Seoul, South Korea, pp

21–33

The Mathworks (2009) Simulink: User’s Guide. The Mathworks

Tripakis S, Sofronis C, Caspi P, Curic A (2005) Translating discrete-time Simulink to Lustre.

ACM Trans Embed Comput Syst 4(4):779–818

