
HAL Id: hal-00639289
https://hal.inria.fr/hal-00639289

Submitted on 10 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxed Synchronization with Ordered Read-Write
Locks

Jens Gustedt, Emmanuel Jeanvoine

To cite this version:
Jens Gustedt, Emmanuel Jeanvoine. Relaxed Synchronization with Ordered Read-Write Locks. Euro-
Par 2011: Parallel Processing Workshops, Aug 2011, Bordeaux, France. pp.387-397. �hal-00639289�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49947857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00639289
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
7

9
0

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7790
November 2011

Project-Team AlGorille

Relaxed Synchronization

with Ordered

Read-Write Locks

Jens Gustedt, Emmanuel Jeanvoine

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Relaxed Synchronization with Ordered
Read-Write Locks∗

Jens Gustedt, Emmanuel Jeanvoine

Project-Team AlGorille

Research Report n➦ 7790 — November 2011 — 12 pages

Abstract: This paper promotes the first stand-alone implementation of our adaptive tool
for synchronization ordered read-write locks, ORWL. It provides new synchronization methods for
resource oriented parallel or distributed algorithms for which it allows an implicit deadlock-free
and equitable control of a protected resource and provides means to couple lock objects and data
tightly. A typical application that uses this framework will run a number of loosely coupled tasks
that are exclusively regulated by the data flow. We conducted experiments to prove the validity,
efficiency and scalability of our implementation.

Key-words: synchronization, iterative algorithms, read-write locks, experiments

∗ This article is accepted for publication in the post-proceedings of the Workshop on
Algorithms and Programming Tools for Next-Generation High-Performance Scientific Software
(HPSS) 2011, held in the context of Euro-Par 2011, August 29, 2011, Bordeaux, France.

Synchronisation à contraintes reduites avec des
verrous lecture/écriture ordonnés

Résumé : Ce papier prsente la premire implantation directe de notre outil
adaptatif de synchronisation, ordered read-write locks (ORWL). Il fournit des
mthodes nouvelles de synchronisation pour des algorithmes parallle ou reparties
orients ressources. Il permet un contrle implicite d’une ressource protge qui
est quitable et sans interblocage et fournit des moyens de coupler des objets
de verrou et des donnes de faon stricte. Une application typique qui utilise ce
cadre va effectuer un nombre de tches couples de faon relche et qui seraient
exclusivement rguls par le flot des donnes. Nous avons conduit des expriences
qui prouvent la validit, l’efficacit et le passage l’chelle de notre implantation.

Mots-clés : synchronisation, algorithmes itératifs, verrous lecture/écriture,
expériences

Relaxed Synchronization with Ordered Read-Write Locks 3

1 Introduction

Lock or token based mechanisms to protect shared resources have a long tradi-
tion in parallel distributed computing. They are closely integrated into nowa-
days operating systems (POSIX mutex, semaphores and read-write locks), run
times (OpenMP), and higher level languages (Java). They act on shared objects
(POSIX rwlock), file ranges, or distributed entities (Corba, Chord, read-write
locks [8]).

In contrast to implicit methods such as atomic snapshots or transactional
approaches, see [7, 1, 6], they require an explicit action by the programmer or
algorithm designer to mark the parts of her/his code that is judged critical.
This paper is based on the assumption that such a labeling of critical parts will
be provided. On a longer time scale the tool presented here might be a good
basis to do such annotations automatically, but such an automatic annotation
is not the subject of this paper.

Many parallel or distributed computations follow data dependency patterns
between their different computation tasks [2]. Usually the output of one task
(producer) is taken as input of other tasks (consumers), but write access (of
the producer) and read access (of the consumer) to that data cannot be done
atomically. This can occur in a shared memory setting where the data is too
large to be accessible in one atomic read or in a distributed setting where data
is sent and received in slices.

Algorithmically, the commonly implemented tools that we mention above
are unsatisfactory with respect to at least one of the following three properties:

Liveness: Guarantees for liveness can in general not be given easily. Usually it
needs supplementary tools such as barriers that come with an important
cost whence they inhibit dynamic optimizations by the run time. Sporadic
deadlocks are common software bugs that are quite costly to debug.

Equity: In case of contention, tools such as POSIX’ reader-writer lock or sema-
phores voluntarily leave the order of lock acquisition either to the system
implementation (in the simplest cases) or to the scheduling policy. If the
order of treatment by different subtasks is fixed by the algorithm designer
and may even be cyclic, guaranteeing equity and a precise flow of control
can be challenging.

Efficiency: Using a lock structure (a mutex in the simplest case) introduces
fixed points in the program between which a resource needs to be accessi-
ble. It usually gives no explicit indication to the run-time which resource
is targeted and also what could be done proactively to represent the re-
source in the address space of the program. Possibilities of overlapping
computation and communication (in a broad sense) are easily lost by that,
exploiting such possibilities can become tedious to implement. Again in
the simplest case of a mutex, a resource is only fetched and pushed when
it is accessed where usually the transfer from one task P1 to another P2

could be done as soon as P1 unlocks the mutex.

To target the three criteria from above, in [3, 4] we introduced the frame-
work of ordered read write locks, ORWL, that are designed to favor algorithmic
control and data consistency. This framework for inter-task synchronization is

RR n➦ 7790

4 Jens Gustedt and Emmanuel Jeanvoine

conceptually independent of the execution context and can be implemented in
both shared memory or distributed environments.

A first adhoc implementation of this tool was integrated as part of the
parXXL library and is only fully available for shared memory. This paper
here presents a new implementation that is only based on standard languages
and interfaces (C and POSIX) and that can be used in shared, distributed or
mixed contexts.

The basics of our model and the designs of the underlying tool for iterative
parallel algorithms are briefly reviewed in Section 2, in particular we remind
the features that guarantee liveness and equity for iterative settings. Then,
in Section 3, we present the three different features that distinguish the use
of ORWL from other tools: the possibility to announce the future use of a
resource, a comfortable interface for iterative computations and a tight binding
between control structures and data. In Section 4, we present benchmarks that
address the potential overhead that our implementation introduces. Finally, we
conclude and discuss our next steps in Section 5.

2 Ordered Read-Write Locks, an Adaptive Tool

for Synchronization

We call the building block of our model Ordered Read-Write Locks (ORWL),
a special kind of read-write locks. All proofs on properties of the model have
been presented in [4]. ORWL have the following features:

1. A waiting queue with FIFO-policy.

2. An explicit association of a lock with application data.

3. A distinction between request and acquire operations that replace a clas-
sical one-step lock operation. So the typical sequence for an access is
request, acquire and then release.

4. A distinction between locks (as opaque objects) and lock-handles (as user
interfaces acting on locks).

5. A distinction into exclusive or write locks and inclusive or read locks.

All of these features have been used previously for lock data structures, see
e.g [5]. But to the best of our knowledge their intentional combination in a
single framework is original.

Property 1 and 2 together ensure a controlled access order of the application
to its data. For an important class of applications that will iterate over their
data, we must be able to control when and what data is accessed. In addition,
Property 2 restricts the access to the data to the time that a lock is held, pointers
become invalid outside that time window. We thus enforce data consistency:
no thread may write to data that it has not locked and if a read is granted to
data it is guaranteed to be invariant while the lock is held.

Property 3 allows us to reserve resources pro-actively. At first, this gives
the application programmer the possibility to issue some sort of hint (a request
operation) that a resource will be used in the future with a require operation.
Such a hint is non-blocking and incurs only negligible cost by itself. This is

Inria

Relaxed Synchronization with Ordered Read-Write Locks 5

a big advantage for the programming logic of iterative algorithms which access
data in a cyclical pattern. They may insert their request for the next iteration
in the FIFO while holding a lock for the current one. The other advantage lies
in performance issues. The run time system then may use this information to
anticipate the access, e.g by doing a data prefetch.

When doing such a pro-active locking the Property 4 comes into play: a
thread or process may define several handles (usually two in our case) on the
same lock and thereby newly request a lock by means of one handle while still
actively holding a lock via another handle. The type of request in view of
Property 5, namely if the access will be just for reading (and thus potentially
shared) or for writing must be specified when the lock is requested and that
type is kept track via the handle.

Property 5 ensures that we may easily handle the case that the output of
a task is read by several others. It allows for important optimizations: buffer
space with read-only data can be shared among threads and processes; data
that is only presented for reading may be thrown away once the lock is released
and thus costly updates (or just checks for consistency) may be avoided.

2.0.1 Recurring tasks.

To model a recurring task of an iterative process we proceed as follows. When-
ever all the lock requests that such a task has requested have been acquired, the
task is said to be active and can perform its job.

After finishing the computation of the job itself, before releasing any of the
locks, a second set of lock handles is used to posts copies of its requests for the
next iteration, first. These guarantee the reservation of the resources for the
next iteration. The task then releases the acquired locks to pass the control
over to other tasks that operate on the same data. This procedure guarantees
that access to the resources is given in a cyclic pattern and thus that all tasks
iteratively get access to the data in an equitable way, see [4]. Ensuring liveness
of such system needs an additional effort. It has been shown that for this
property the initialization order of the lock handles in the FIFO is crucial. Any
initialization that doesn’t contain certain types of cyclic dependencies never will
run into a deadlock and that such an initialization is always possible.

3 User interfaces

This section will introduce a handful of data types and functions that compose
the user interface of ORWL. There are three data types:

orwl mirror a representation of a local or remote resource.

orwl handle a lock handle to queue up for that resource, and

orwl handle2 a pair of lock handles used for recurrent locking requests.

The function interfaces can be classified in three different sets:

❼ orwl read request (or orwl write request), orwl acquire (or orwl test)
and orwl release that form a lock sequence on the resource.

RR n➦ 7790

6 Jens Gustedt and Emmanuel Jeanvoine

❼ orwl truncate, orwl write map and orwl read map that allow to control
and access the data that is eventually associated to a resource.

❼ A set of analog functions with a “2” appended to the name that operate
on pairs orwl handle2, such as orwl read request2 or orwl write map2.
They suit particularly the needs for iterative tasks.

3.1 Resource protection

Simple resource protection that is analogous to a protection of a critical section
through a mutex can be implemented in a straight forward manner.

Listing 1: Simple exclusive protection of a resource loc through a handle
handle.
✞

o rw l w r i t e r e qu e s t (&loc , &handle) ; /✯ announ c e f u t u r e a c c e s s ✯/
/✯ some o p e r a t i o n w i t h o u t t h e r e s o u r c e ✯/
o rw l acqu i r e (&handle) ; /✯ B l o c k u n t i l g r a n t e d ✯/
/✯ some c r i t i c a l o p e r a t i o n w i t h l o c k e d r e s o u r c e ✯/
o rw l r e l e a s e (&handle) ; /✯ Fr e e t h e r e s o u r c e ✯/

✝ ✆

Here the first call to orwl write request binds handle to resource loc and
announces the intent to access it. Until the time we call orwl acquire the
system may

❼ satisfy other demands to the resource that have higher priority,

❼ route the corresponding data to our host

❼ allocate space in our address space or

❼ perform other operations that are needed to satisfy the demand.

During that time the application can perform any type of operation that doesn’t
need access to the resource.

Then, once the application comes to a point it can’t proceed further without
the resource, orwl acquire ensures that it is blocked until the request can be
fulfilled. The critical section then ends by calling orwl release.

If the application has a variety of tasks to perform before access to the
resource can’t be avoided further, orwl test can be used to query for the lock
acquisition and allows to adapt the application at run time, see Listing 2.

Listing 2: Adapted protection of a resource loc through a handle handle.
✞

o rw l r ead r eque s t (&loc , &handle) ; /✯ announ c e f u t u r e r e a d ✯/
while (! o rw l t e s t (&handle)) { /✯ c h e c k i f p r o d u c e d ✯/

/✯ Do some o p e r a t i o n w h i l e t h e r e s o u r c e i s p r o d u c e d ✯/
}
o rw l acqu i r e (&handle) ; /✯ b l o c k u n t i l g r a n t e d ✯/
/✯ Do some o p e r a t i o n w h i l e t h e r e s o u r c e i s s t a b l e ✯/
o rw l r e l e a s e (&handle) ; /✯ f r e e t h e r e s o u r c e ✯/

✝ ✆

3.2 Associating data

Up to now we have introduced a use of ORWL that only uses its controlling as-
pect, analogous to POSIX’ pthread mutex t or pthread rwlock t. In addition
to that ORWL allows one to associate data to the resource directly, Listing 3.

Inria

Relaxed Synchronization with Ordered Read-Write Locks 7

Listing 3: Associate data to loc and initialize it properly.
✞

o rw l w r i t e r e qu e s t (&loc , &handle) ; /✯ r e s e r v e t h e r e s o u r c e f o r m a i n t e n a n c e ✯/
o rw l acqu i r e (&handle) ;
o rw l r e s i z e (&handle , 168 ✯ s izeo f (u in t64 t)) ; /✯ w r i t e a c c e s s i s n e e d e d t o ✯/
s i z e t s i z e ; /✯ g e t a p o i n t e r t o t h e d a t a ✯/
u in t64 t ✯ data = orwl write map(&handle , &s i z e) ; /✯ i n o u r a d d r e s s s p a c e ✯/
a s s e r t (s i z e == 168 ✯ s izeo f (u in t64 t)) ; /✯ c h e c k t h e s i z e ✯/
my s p e c i a l i n i t i a l i z a t i o n (data) ; /✯ i n i t i a l i z e d t h e d a t a ✯/
o rw l r e l e a s e (&handle) ; /✯ f r e e t h e r e s o u r c e ✯/
data = 0 ; /✯ i n v a l i d a t e t h e p o i n t e r ✯/

✝ ✆

To associate data to a resource we just have to assign a non-zero size to the data
(here 168 units for the type uint64 t). Per default the data is initialized to all
zero values, in the example it is initialized by a special function. Data is viewed
as untyped bytes (void*) and the size returned by orwl write map accounts the
number of bytes in the data. To ease the underlying communication routines,
data sizes are always multiples of sizeof(uint64 t), usually 8 bytes.

Another task or process may then modify the data without changing its size,
Listing 4, and any number of readers may inspect the results of that modification
simultaneously, see Listing 5.

Listing 4: Modify the data.
✞

o rw l w r i t e r e qu e s t (&loc , &handle) ; /✯ r e s e r v e t h e r e s o u r c e f o r m o d i f i c a t i o n ✯/
o rw l acqu i r e (&handle) ;
s i z e t s i z e ; /✯ g e t a p o i n t e r t o t h e d a t a ✯/
u in t64 t ✯ data = orwl write map(&handle , &s i z e) ; /✯ i n o u r a d d r e s s s p a c e ✯/
s i z e /= s izeo f (✯ data) ;
for (s i z e t i = 0 ; i < s i z e ; ++i) { /✯ do some o p e r a t i o n w i t h ✯/

data [i] ✯= i ; /✯ e x c l u s i v e a c c e s s ✯/
}
o rw l r e l e a s e (&handle) ; /✯ f r e e t h e r e s o u r c e ✯/
data = 0 ; /✯ i n v a l i d a t e t h e p o i n t e r ✯/

✝ ✆

Listing 5: Access the associated data.
✞

o rw l r ead r eque s t (&loc , &handle) ; /✯ r e s e r v e t h e r e s o u r c e f o r r e a d i n g ✯/
o rw l acqu i r e (&handle) ;
s i z e t s i z e ; /✯ g e t a p o i n t e r t o t h e d a t a ✯/
u in t64 t const✯ data = orwl read map(&handle , &s i z e) ; /✯ i n o u r a d d r e s s s p a c e ✯/
s i z e /= s izeo f (✯ data) ;
for (s i z e t i = 0 ; i < s i z e ; ++i) { /✯ some o p e r a t i o n w h i l e ✯/

p r i n t f (s tder r , ” item %zu i s %” PRIu64 ”\n” , /✯ t h e r e s o u r c e ✯/
i , data [i]) ; /✯ i s s t a b l e ✯/

}
o rw l r e l e a s e (&handle) ; /✯ f r e e t h e r e s o u r c e ✯/
data = 0 ; /✯ i n v a l i d a t e t h e p o i n t e r ✯/

✝ ✆

3.3 Recurrent access to resources

Iterative computations need to be implemented with a lot of care if we want
to guarantee liveness for all processes and equity among them. As introduced
above ORWL, as an abstract tool can guarantee these properties if we issue a
lock request on a resource for the next iteration before we abandon a current
lock that we hold. This is facilitated by our library with the type orwl handle2.
It represents a pair of orwl handle that are used in alternation for even and
odd numbered iterations.

Listing 6: A simple iterative procedure with one resource and one orwl handle2.
✞

o rw l wr i t e r e que s t 2 (&loc , &handle2) ; /✯ b i n d t h e p a i r ✯/
while (! done) { /✯ do u n t i l some e x t e r n a l e v e n t ✯/

orw l acqu i r e2 (&handle2) ; /✯ b l o c k u n t i l o u r t u r n comes ✯/
/✯ work e x c l u s i v e l y w i t h t h e r e s o u r c e ✯/

/✯ i n s e r t o u r s e l v e s i n t h e q u e u e ✯/
o rw l r e l e a s e 2 (&handle2) ; /✯ f o r t h e n e x t i t e r a t i o n ✯/

/✯ f r e e t h e r e s o u r c e ✯/
/✯ p a s s c o n t r o l t o s ome b od y e l s e ✯/

}
o rw l cance l 2 (&handle2) ; /✯ w i t h d r a w f r om t h e q u e u e ✯/

✝ ✆

Here, before entering into the iteration, we bind the first handle of the pair to
the resource. Then, at the start of each iteration the handle in the pair with the

RR n➦ 7790

8 Jens Gustedt and Emmanuel Jeanvoine

request pending is acquired and we gain exclusive access to the resource. At the
end of the iteration orwl release2 first issues a new request on the handle that
is currently inactive and then releases the lock on the resource. When going
out of the iteration, orwl cancel2 has to be called since otherwise one of the
handles in the pair would be left with a pending lock request.

Listing 7: An iterative procedure with two resources and two orwl handle2.
✞

o rw l wr i t e r e que s t 2 (&hereResource , &here) ; /✯ b i n d t h e two p a i r s ✯/
o rw l r ead r eque s t2 (&thereResource , &there) ;
while (! done) { /✯ u n t i l some e x t e r n a l e v e n t ✯/

orw l acqu i r e2 (&here) ; o rw l acqu i r e2 (&there) ; /✯ b l o c k t w i c e ✯/
s i z e t s i z e ; /✯ t h e d a t a a c c e s s i s ✯/
u in t64 t ✯ hereData = orwl write map2(&here , &s i z e) ; /✯ e x c l u s i v e h e r e ✯/
u in t64 t const✯ thereData = orwl read map2(&there , &s i z e) ; /✯ i n c l u s i v e t h e r e ✯/

s i z e /= s izeo f (✯ thereData) ; /✯ application code: ✯/
for (s i z e t i =0; i<s i z e ; ++i) { /✯ a v e r a g e c om p o n e n t w i s e ✯/

hereData [i]=(hereData [i]+ thereData [i]) / 2 ; /✯ s t o r e i n h e r e R e s o u r c e ✯/
}

/✯ i n s e r t o u r s e l v e s i n t h e q u e u e s ✯/
o rw l r e l e a s e 2 (&here) ; /✯ f o r t h e n e x t i t e r a t i o n ✯/
o rw l r e l e a s e 2 (&there) ; /✯ f r e e t h e r e s o u r c e s ✯/

/✯ p a s s c o n t r o l t o t h e o t h e r s ✯/
}
o rw l cance l 2 (&here) ; o rw l cance l 2 (&there) ; /✯ w i t h d r a w f r om t h e q u e u e s ✯/

✝ ✆

Finally, with Listing 7, let us look into a more complicated pattern, namely
with two resources and two pairs of handles that act on them. This can be seen
as each process “owning” one resource (called hereResource) that he will up-
date and “inspecting” one resource of a “neighboring” process (thereResource).
The access pattern between different processes could then be any collection of
directed circles or trees. The basic scheme is similar, only that always two
calls to orwl acquire2 and orwl release2 are issued in the iteration, one for
each resource. Using the mapping feature of ORWL we see how we easily can
implement an iterative vector averaging on the associated data.

4 Experiments

4.1 Benchmark application

4.1.1 Livermoore Loops Kernel 23

To benchmark the library, we use the Livermoore Loops Kernel 23 (LLK23)
benchmark (see http://www.netlib.org/benchmark/livermorec).

Listing 8: Core computation of the Livermoore Loops Kernel 23 benchmark.
✞
for (i = 2 ; i < (N − 1) ; ++i) {

for (j = 2 ; j < (M − 1) ; ++j) {
q = data [i −1][j] · zb [i] [j] + data [i] [j −1] · zv [i] [j]

+ data [i] [j +1] · zu [i] [j] + data [i +1] [j] · zr [i] [j]
+ zz [i] [j] − data [i] [j] ;

data [i] [j] += 0.175 · q ;
}

}
✝ ✆

The core computation of the benchmark is given in Listing 8. To simplify, each
element of a matrix called data is computed using four neighbors elements (N,
S, E and W) and five coefficient matrices (zb, zr, zu, zv, zz).

This application has significant characteristics to test our approach. It is
an iterative computation of which the different parts can be executed asyn-
chronously and where each part shows constant progress. Furthermore, for a
parallelization, some data exchange is required between the frontiers. This can
be done transparently with ORWL; the nested for loops of Listing 8 would go
in the place marked “application code” in Listing 7.

Inria

Relaxed Synchronization with Ordered Read-Write Locks 9

���
���
���
���

������ ������ ������ ����

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
������������������������������� ����������������������������

��
��
��
��
��
��

��
��
��
��
��
�����

���
���

���
���
���

��������������
��������������
��������������

��������������
��������������
��������������

���
���
���

���
���
���

���
���
���

���
���
���

��������������
��������������
��������������

��������������
��������������
��������������

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
���

������

���
���
���
���

���
���
���
���

����

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��������������
��������������
��������������
��������������

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��������������
��������������
��������������
��������������

��
��
��

��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

���
���
���

���
���
���

���
���
���

���
���
���

��������������
��������������
��������������

��������������
��������������
��������������

E0W0 E1W1Main task 0 Main task 1

NE1N1NE0N0NW0 NW1

SE1S1SE0SW0 SW1

E2W2 E3W3 Main task 3Main task 2

SE2 S3 SE3S2SW2 SW3

S0

N2 N3NW3NE2 NE3NW2

Figure 1: A four block decomposition example. The gray parts represent the
MT parts that require some frontier data to be computed. Hatched parts are
constant boundary conditions or unused.

4.1.2 Parallelization with ORWL

An intuitive method to parallelize the problem is to decompose data into several
blocks. For each block, the inner computation is independent from the other
blocks whereas the computation of the edges and the corners depends on some
neighboring blocks.

Thus, for each block, we define a main task (MT) that performs the compu-
tation and eight sub-tasks (ST) that are used to export the frontier data (edges
and corners) to the neighboring MT. Figure 1 shows an example of a simple
decomposition into four blocks. The four MT are numbered from 0 to 3 and the
associated ST are prefixed with their direction.

4.2 Experimental Results

The experiments have been conducted on the graphene cluster of the Grid’5000
experimental testbed. Each node is composed of 4 cores at 2.53 GHz and 16 GiB
of memory, and a Gigabit Ethernet interconnection network. All the following
results are obtained after running 100 iterations of the LLK23 computation.

4.2.1 Average execution time per matrix element

In this experiment, the goal is to evaluate the average execution time per data
element. First, we divide data in 4, 16, 36, 64 and 100 blocks. Then, for each
division, we increase the global problem size by varying the size (in number of
elements) of a block. One node is reserved for each block, such that we can
reach the limit of a maximum block size that fits into RAM.

In Figure 2(a) we see that the computation cost per element decreases when
the problem size increases, and that it tends to a lower limit. We note that
the times corresponding to the 4 block division are below the others. This is
due to the simplified connection pattern (see Figure 1) where half of the block
boundaries don’t participate in communication. The other running times are
not distinguishable, which proves that for subdivisions into more parts this effect
is already negligible.

RR n➦ 7790

10 Jens Gustedt and Emmanuel Jeanvoine

4.2.2 Computation efficiency

Because our parallelization of LLK23 requires frontiers of neighboring regions,
not all parallel tasks can compute simultaneously. In this experiment, see Fig-
ure 2(b), the goal is to relate the time that MT spends either to compute or to
wait for some frontier data. The setup is the same as in the previous experi-
ment. We see that for small problems, almost all the time is spent to wait. For
larger problems, the computation time increases and finally reaches about 55 %
of the total time. Actually, the absolute wait time itself (not shown) is basically
spent in orwl acquire2 and does not vary much, but the computation partially
overlaps with these waiting periods.

4.2.3 Overcommitting

In this experiment the global problem size is constant, 4000×4000 elements per
blocks with a division into 64 blocks. We launch the computation successively
on 64, 32, 16, 8 and 4 nodes; thus commit 1, 2, 4, 8 and 16 MT per quad-core
node. The average time to compute an iteration is shown in Figure 2(c). We
can see that the overcommitment of several tasks per cores allows to take full
advantage of the four cores of each node. The time per iteration only increases
slightly when we have much more MT per core.

So, even if the parallelization induces long waiting times for the tasks, ORWL
is able to hide this cost: tasks that have received their data autonomously start
their execution while other tasks are waiting for theirs.

4.2.4 Scalability

In this last experiment we study the impact of increasing the global problem
size. We place 16 MT per quad-core node on 4 to 64 nodes. Each MT computes
a 3000x3000 element block. The average time to compute an iteration is shown
in Figure 2(d). We see that increasing the problem size does not increase the
average computation time much. Thus, ORWL is suitable for the construction
of scalable applications.

5 Conclusion and future work

In this paper we introduced a new library that implements the ordered read-
write lock (ORWL) paradigm to control access to shared or distributed re-
sources. We presented the basic use patterns for that library that ranges from
simple implementations of critical sections that allow a pro-active announcement
to more involved patterns of alternating resource allocation in iterative compu-
tations. Macro-benchmarks show that the library behaves well on multi-core
machines and clusters; it realizes almost perfect computation/communication
overlap and weak scaling properties.

A forthcoming article will describe the implementation of the library in more
detail and present micro-benchmarks of the individual functions and compo-
nents. Future plans with ORWL include application to other types of applica-
tions and architectures. Namely we are currently implementing an application
that uses ORWL to control computations on compute cluster equipped with

Inria

Relaxed Synchronization with Ordered Read-Write Locks 11

 0.01

 0.1

 1

1 4 9 16 25 36 49 64 81 100 121 144

C
o
m

p
u
ta

ti
o
n
 t
im

e
 f
o
r

o
n
e
 m

a
tr

ix
 e

le
m

e
n
t
(u

s
)

Size of a block’s side (x 10
6
)

2x2 blocks
4x4 blocks
6x6 blocks
8x8 blocks

10x10 blocks

(a) Average computation time for an ele-
ment

 0

 20

 40

 60

 80

 100

1 4 9 16 25 36 49 64 81 100 121 144

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
u
ta

ti
o
n
 t
im

e

Sub−matrix size (x 10
6
)

2x2 blocks
4x4 blocks
6x6 blocks
8x8 blocks

10x10 blocks

(b) Percentage of wait time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

64 32 16 8 4

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 p

e
r

it
e
ra

ti
o
n
 (

s
)

Number of nodes used

(c) Average computation time with over-
commitment

 0

 0.5

 1

 1.5

 2

4 9 16 25 36 49 64

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t
im

e
 p

e
r

it
e
ra

ti
o
n
 (

s
)

Number of nodes used

(d) Overcommitment and problem size up

Figure 2: Experimental results

GPU co-processors. Other future work includes improvements to use ORWL as
simple and efficient locking features in a shared memory context.

Acknowledgment

Experiments presented in this paper were carried out using the Grid’5000 experimental
testbed, being developed under the INRIA ALADDIN development action with sup-
port from CNRS, RENATER and several Universities as well as other funding bodies
(see https://www.grid5000.fr).

References

[1] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snap-
shots of shared memory. J. ACM 40(4), 873–890 (1993)

[2] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA (1994)

[3] Clauss, P.N., Gustedt, J.: Experimenting Iterative Computations with Or-
dered Read-Write Locks. In: Danelutto, M., Gross, T., Bourgeois, J. (eds.)
18th Euromicro International Conference on Parallel, Distributed and network-
based Processing. pp. 155–162. IEEE, Pisa, Italy (2010), http://hal.inria.fr/
inria-00436417/en

RR n➦ 7790

12 Jens Gustedt and Emmanuel Jeanvoine

[4] Clauss, P.N., Gustedt, J.: Iterative Computations with Ordered Read-Write Locks.
Journal of Parallel and Distributed Computing 70(5), 496–504 (2010), http://hal.
inria.fr/inria-00330024/en

[5] Danek, R., Golab, W.M.: Closing the complexity gap between FCFS mutual ex-
clusion and mutual exclusion. In: Taubenfeld, G. (ed.) DISC. Lecture Notes in
Computer Science, vol. 5218, pp. 93–108. Springer (2008)

[6] Herlihy, M., Eliot, J., Moss, B.: Transactional memory: Architectural support
for lock-free data structures. In: Proceedings of the 20th Annual International
Symposium on Computer Architecture. pp. 289–300 (1993)

[7] Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous
hardware (detailed abstract). In: FOCS. pp. 233–243. IEEE (1986)

[8] Wagner, C., Mueller, F.: Token-based read/write-locks for distributed mutual ex-
clusion. In: Proceedings from the 6th International Euro-Par Conference on Par-
allel Processing. pp. 1185–1195. Springer-Verlag, London, UK (2000)

Inria

RESEARCH CENTRE

NANCY – GRAND EST

615 rue du Jardin Botanique

CS20101

54603 Villers-lès-Nancy Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

