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Abstract: Convolutive source separation is often done in two stages: 1) estimation of the
mixing filters and 2) estimation of the sources. Traditional approaches suffer from the ambiguities of
arbitrary permutations and scaling in each frequency bin of the estimated filters and/or the sources,
and they are usually corrected by taking into account some special properties of the filters/sources.
This paper focusses on the filter permutation problem in the absence of scaling, investigating the
possible use of the temporal sparsity of the filters as a property enabling permutation correction.
Theoretical and experimental results highlight the potential as well as the limits of sparsity as an
hypothesis to obtain a well-posed permutation problem.

Key-words: sparse filter, convolutive blind source separation, permutation ambiguity, ℓp mini-
mization, Hall’s Marriage Theorem, bi-stochastic matrix



Caractère bien posé du problème de

permutation pour l’estimation des filtres

parcimonieux par minimisation ℓp

Résumé : La séparation de source des mélanges convolutifs se fait sou-
vent en deux étapes : 1) estimation des filtres de mélange et 2) estimation des
sources. Les approches classiques souffrent d’ambigüıtés de permutation et de
facteur d’échelle arbitraire pour chaque fréquence des filtres et/ou des sources
estimés. Ces ambigüıtés sont habituellement corrigées en prenant en compte
des propriétés particulières des filtres/sources. Cet article se concentre sur le
problème de permutation des filtres en l’absence de facteur d’échelle, en explo-
rant l’utilisation potentielle de la parcimonie temporelle des filtres pour résoudre
le problème de permutation. Les résultats théoriques et expérimentaux soulig-
nent tant le potentiel que les limites de l’hypothèse de parcimonie pour obtenir
un problème bien posé.

Mots-clés : Filtres parcimonieux, séparation aveugle de sources, mélange
convolutif, ambigüıté de permutation, théorème de mariage de Hall, matrice
bi-stochastique
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1 Introduction

Blind source separation and blind source localization are ubiquitous problems in
signal processing, with applications ranging from wireless telecommunications
to underwater acoustics and sound enhancement.

These problems can be considered as reasonably well understood and solved
in simple linear instantaneous settings, where tools such as Independent Compo-
nent Analysis, as well as techniques exploiting source sparsity, are now mature.
However, the convolutive source localization / separation problem remains much
more challenging. In particular, without further assumption than statistical in-
dependence between sources, the problem is known to be ill-posed because of
the so-called frequency permutation (and scaling) problem: at best, one can
hope to estimate for each frequency (up to a source and frequency dependent
scaling factor) the collection of frequency components of all sources (and of the
associated mixing filters); but one cannot match the estimated frequency com-
ponents from different subbands to globally identify the sources (and mixing
filters).

Several practical approaches have been proposed to solve the permutation
and scaling problems in practice, by exploiting various properties of either the
mixing filters or the sources to match different frequency subbands. While some
of these methods may succeed in practice for certain types of sources / filters,
there is no known theory guaranteeing the well-posedness of the permutation
and scaling problem under appropriate assumptions.

This paper contributes to fill this gap, by providing well-posedness guar-
antees for the permutation problem under sparsity assumptions on the mixing
filters. Sparse filters, associated to impulse responses corresponding to a limited
set of echoes, are typically encountered in a number of underwater communi-
cation channels [1] or wireless telecommunications scenarios [2, 3] which are
relevant for blind source localization and separation, and the theoretical results
achieved in this paper indicate that this property can potentially be exploited
for blind estimation in this context.

1.1 Problem formulation and notations

Let xi[t], 1 ≤ i ≤ M be M mixtures of N source signals sj [t], resulting from
the convolution with filters aij [t] of length L such that:

xi[t] =

N∑

j=1

(aij ⋆ sj)[t], 1 ≤ i ≤ M, (1)

where ⋆ denotes convolution. The filter aij [t] typically models the impulse
response between the jth source and the ith sensor. By abuse of notation,
Faij = {aij[ω]}0≤ω<L denotes the discrete Fourier transform of the filter seen
as a vector aij = {aij [t]}0≤t<L ∈ C

L. Also, the mixing equation (1) can be
rewritten as X = A ⋆ S, with A the matrix of filters

A := ({aij [t]}0≤t<L)1≤i≤M, 1≤j≤N ,

X the observation matrix and S the source matrix.
In this context, blind filter estimation refers to the problem of obtaining

estimates of the filters A from the mixtures X, without any explicit knowledge
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about the sources S. Mixing filters estimation is relevant for several purposes
such as deconvolution, source localization, etc. [4]. It also has a relationship with
the problem of Multiple-Input-Multiple-Output (MIMO) system identification
in communications engineering [5].

1.2 Frequency domain filter estimation

Estimating the mixing parameters is made easier when all filters are instan-
taneous, that is to say of length L = 1, as the convolution product in (1) is
replaced by the usual product. However, things get complicated in the general
setting of convolutive mixtures.

A common approach for filter estimation then relies on the transformation
of the mixing model in Eq. (1) into the time-frequency domain, converting a
single convolutive filter estimation problem into several complex instantaneous
filter estimation problems. Using standard techniques for instantaneous mixing
parameter estimation [6], complex mixing filter coefficients

Ã[ω] = {ãij[ω]}1≤i≤M, 1≤j≤N

are estimated for each frequency bin 0 ≤ ω < L.

1.3 Permutation and scaling ambiguities

Without further assumption on either the filters aij [t] or the sources sj[t], one

can at best hope to find an estimation Ã = (ãij) where for every frequency ω
we have

ãij [ω] = λj [ω]aiσω(j)[ω], (2)

with λj [ω] a scaling ambiguity and σω ∈ SN a permutation ambiguity, where
SN is the set of permutations of the integers between one and N . Several
methods [7] attempt to solve for these ambiguities by exploiting properties of
either the sources S or the filters A [8, 9, 10].

1.4 Exploiting sparsity to solve the permutation ambigu-

ity

The focus of this article is the use of the sparsity of A in the time domain to
find σ0 . . . σL−1 ∈ SN , assuming the scaling is solved, i.e., λj [ω] = 1.

Assuming that A is sparse means that each filter aij has few nonzero coef-
ficients, as measured by the ℓ0 pseudo-norm

‖aij‖0 := ♯{0 ≤ t < L, aij [t] 6= 0} =
∑

t

|aij [t]|0.

The approach considered in this article is to to seek permutations σ̂0, . . . σ̂L−1

yielding the sparsest estimated time-domain matrix of filters Â = (âij) where

âij [ω] := ãiσ̂ω(j)[ω]. Besides the ℓ0 pseudo-norm ‖Â‖0 :=
∑

ij ‖âij‖0, the fol-

lowing ℓp quasi-norms will be used to quantify the sparsity of Â:

‖Â‖pp :=
∑

ij

‖âij‖pp =
∑

ijt

|âij [t]|p, 0 < p ≤ 1.

Inria
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1.5 Main results

Our main result (Theorem 2) is a theoretical guarantee that when the filter
length L is prime, k-sparse filters (i.e., such that ‖aij‖0 ≤ k) uniquely minimize
the ℓ0 norm of A (up to a global permutation) if k

L ≤ α(N), where N is the
number of sources. To reach this bound we exploit uncertainty principles as
well as the bistochastic structure of the problem through an apparently new
quantitative result on bistochastic matrices (Lemma 2).

1.6 Structure of the paper

The main theorems are stated in Section 2, and the main ingredients of their
proofs are described in Section 3. In Section 4 we discuss the strength of the
assumptions used in the theorems, and how much these could be relaxed. In
Sec. 5, a naive combinatorial ℓp minimization algorithm is proposed to resolve
filter permutations and used for Monte-Carlo simulations. We conclude with a
discussion of the potential, as well as the limits, of sparsity as a hypothesis to
solve permutation problems, in connection with the theoretical and empirical
results. All proofs are gathered in the appendix.

2 Theoretical guarantees

Given an M × N filter matrix A, made of filters of length L, and an L-tuple
(σ0, . . . σL−1) ∈ SN of permutations, we let Ã be the matrix obtained from
A by applying the permutations in the frequency domain, as in (2), without
scaling (λj [ω] = 1).

The effect of the permutations is said to coincide with that of a global per-
mutation π ∈ SN of the columns of A if ãij = aiπ(j), ∀i, j, or equivalently in
the frequency domain:

ãij [ω] := aiσω(j)[ω] = aiπ(j)[ω], 0 ≤ ω < L, ∀i, j.

This is denoted A ≡ Ã. First, we show that for filters with disjoint time-domain
supports, permutations cannot decrease the ℓp norm, 0 ≤ p ≤ 1:

Theorem 1 Let Γij ⊂ {0, . . . , L − 1} be the time-domain support of aij . Sup-
pose that for all i and j1 6= j2 we have

Γi,j1 ∩ Γi,j2 = ∅. (3)

Then, for 0 ≤ p ≤ 1, we have ‖Ã‖p ≥ ‖A‖p.

Note that filters with disjoint supports need not be very sparse: M filters
of length L can have disjoint supports provided that maxj ‖aij‖0 ≤ L/M . Yet,
disjointness of filter supports is a strong assumption, and Theorem 1 only in-
dicates that frequency permutations cannot decrease the ℓp norm. Thus, the
minimum value of the ℓp norm might not be uniquely achieved (up to a global
permutation). In our main result, we consider k-sparse filters of prime length,
and p = 0:
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Theorem 2 Let A be an M ×N matrix of filters of prime length L. Assume
that

max
ij

‖aij‖0 ≤ k, (4)

where

k

L
≤ α(N) :=

{
2

N(N+2) if N is even,
2

(N+1)2 if N is odd.
(5)

Then, up to a global permutation, A uniquely minimises the ℓ0 pseudo-norm
among all possible frequency permutations.

3 Main elements of the proof of Theorem 2

The proof of Theorem 2 relies on a measure of the “amount” of incurred per-
mutation, on uncertainty principles, and on combinatorial arguments related to
bi-stochastic matrices, involving Hall’s Marriage Theorem.

3.1 Measures of the amount of incurred permutations

To measure the “amount” of incurred permutation, one can count the number
of frequency bands where a non-trivial permutation is incurred, with respect
to the best matching reference global permutation π, i.e., minπ ♯{ω, σω 6= π}.
However, this generally yields the maximum count L− 1.

An alternative is to count the “size” of the incurred permutations, given a
reference global permutation π, as the maximum number of frequencies where
each estimated filter actually differs from the (globally permuted) original filters,
yielding:

∆(Ã,A|π) := max
i,j

‖F(ãij − aiπ(j))‖0 (6)

∆(Ã,A) := min
π∈SN

∆(Ã,A|π). (7)

Note that ∆(Ã,A) = 0 iff Ã ≡ A.

3.2 Exploitation of an uncertainty principle

With this notation, we have the following Lemma:

Lemma 1 Assume that Ã 6≡ A, that L is a prime integer, and that (4) holds
with

2k +∆ ≤ L. (8)

Then ‖Ã‖0 > ‖A‖0 and ‖ãij‖0 ≥ ‖aij‖0, ∀i, j. The latter inequality is strict
when ãij 6= aij. For a general L (not necessarily prime), the same conclusions
hold when the assumption (8) is replaced with

2k ·∆ < L. (9)

The skilled reader will rightly sense the role of uncertainty principles [11, 12,
13, Theorem 1] in the above lemma.

Inria
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3.3 Combinatorial arguments

Using Lemma 1 with prime L, a simple combinatorial argument can be used to
obtain a weakened version of Theorem 2, with the more conservative constant
α′(N) := 1/2N !: by the pigeonhole principle, for any L-tuple of frequency
permutations among N sources, at least L/N ! permutations are identical; as
a result, ∆(Ã,A) is universally bounded from above by L − L/N !; hence if
k ≤ L/2N ! we obtain 2k +∆ ≤ L and we can conclude thanks to Lemma 1.

The proof of Theorem 2 with the constant α(N) exploits a stronger uni-
versal upper bound ∆(Ã,A) ≤ L(1− 2α(N)), obtained through an apparently
new quantitative application of Hall’s Marriage Theorem [14] to bi-stochastic
matrices.

Definition 1 (Bi-stochastic matrix) An N×N matrix B is called bi-stochastic
if all its entries are non-negative, and the sum of the entries over each row as
well as the sum of the entries over each column is one.

Lemma 2 Let B be an N ×N bi-stochastic matrix: there exists a permutation
matrix P such that all the entries of B on the support of P exceed the threshold

2α(N) =

{
4

N(N+2) if N is even,
4

(N+1)2 if N is odd.
(10)

Corollary 1 Let σ0, . . . , σL−1 ∈ SN be L permutations. There exists a global
permutation π such that

Cjπ(j) = ♯{ℓ : σℓ(j) = π(j)} ≥ 2Lα(N), ∀1 ≤ j ≤ N.

4 Discussion

The reader may have noticed that Theorem 2, while dropping the disjoint sup-
port assumption from Theorem 1, introduces new restrictions: the assumption
that L is prime, and the restriction to p = 0 compared to 0 ≤ p ≤ 1 in The-
orem 1. How important are these restrictions ? Could they be relaxed while
exploiting sparsity together with the disjoint support assumption ? This is dis-
cussed in this section.

4.1 Extending Theorem 2 to non-prime filter length L?

As indicated by Lemma 3 below, for even L ≥ 4, there exists sparse matrices
of filters that are the sparsest but not unique (even up to a global permutation)
solution of the considered problem: certain frequency permutations provide an
equally sparse but not equivalent solution.

Lemma 3 For any integer k such that 2k divides L, there exists a matrix of
k-sparse filters A and a set of L/2k frequency permutations resulting in Ã 6≡ A
such that for all 0 ≤ p ≤ ∞: ‖Ã‖p = ‖A‖p, and

‖ãij‖p = ‖aij‖p, ∀i, j. (11)

We have 2k ·∆(Ã,A) = L.

RR n° 7782
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The fact that the filter matrices A and Ã satisfy 2k ·∆(Ã,A) = L shows the
sharpness of Lemma 1 for the case when L is even: the strict inequality in (9)
cannot be improved.

Specializing Lemma 3 to k = 1 for even L ≥ 4 yields ideally 1-sparse filters
aij and a set of L/2 frequency permutations such that: ãij are 1-sparse; Ã is
not equivalent to A and cannot be discriminated from it by any ℓp norm.

4.2 Stronger guarantees with disjoint supports and spar-

sity ?

Could one get improved results by combining the disjoint support assumptions
from Theorem 1 and the sparsity assumption from Theorem 2 ? For even L ≥ 4,
Lemma 4 below indicates the existence of sparse matrices of filters with disjoint
supports that are the sparsest but not unique (even up to a global permutation)
solution of the considered problem: certain frequency permutations of “size”
∆ = L/2k provide an equally good but not equivalent solution.

Lemma 4 For any integers k′ < k ≤ L/2 such that 2k′ divides L, there exist
a matrix of k-sparse filters A with disjoint supports (3), and a set of L/2k′

frequency permutations resulting in Ã 6≡ A, such that for all 0 ≤ p ≤ ∞:
‖Ã‖p = ‖A‖p and

‖ãij‖p = ‖aij‖p, ∀i, j. (12)

We have 2k′ ·∆(Ã,A) = L.

Specializing Lemma 4 to k′ = 1 and k = 2 for even L ≥ 4 yields 2-sparse
filters aij and a set of L/2 frequency permutations such that: ãij are 2-sparse;

Ã is not equivalent to A and cannot be discriminated from it by any ℓp norm.

This shows that even by adding the disjoint support assumption, for even
L ≥ 4, there is little margin to improve Lemma 1: at best, one can hope to
replace the strict inequality in (9) with a large one. Can this actually be done
? This is partially answered by the following results:

Lemma 5 Assume that Ã 6≡ A, that (4) holds with

2k ·∆(Ã,A) = L (13)

and that the filters in A have disjoint supports (3). Then, either ‖Ã‖0 > ‖A‖0,
or each row of Ã is obtained by permuting pairs of distinct filters aij , aij′ from
the corresponding row of A such that aij − aij′ is proportional to a modulated
and translated Dirac comb with 2k spikes.

For filter matrices with a single row, since Ã 6≡ A means that the filters ã1j
are permuted versions of a1j , we obtain

Corollary 2 Consider A with a single row (M = 1). Assume that Ã 6≡ A,
that (4) holds with

2k ·∆(Ã,A) = L (14)

and that the filters in A have disjoint supports (3). Then ‖Ã‖0 > ‖A‖0.

Inria
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4.3 Excessive pessimism?

The counter-examples built in Lemmata 3-4, which are associated to Dirac
combs, are highly structured. They provide worst case well-posedness bounds,
but existing probabilistic versions of uncertainty principles (see, e.g., the nice
survey [15]) lead us to conjecture that if the sparse filters in A are drawn at
random (e.g. from Bernoulli-Gaussian distribution), the uniqueness guarantee
of Theorem 2 will hold except with small probability O(L−β), provided that
k < c(β)L/ logL, for large L. This is left to further theoretical investigation.

5 Numerical experiments

The results achieved so far are theoretical well-posedness guarantee, but do not
quite provide algorithms to compute the potentially unique (up to global permu-
tation) solution of the frequency permutation problem. We conclude this paper
with the description of a relatively naive optimization algorithm, an empirical
assessment of its performance with Monte-Carlo simulations, and a discussion of
how this compares with the theoretical uniqueness guarantees achieved above.

5.1 Proposed combinatorial algorithm

Given a “permuted” matrix Ã, one wishes to find a set of frequency permuta-
tions yielding a new matrix Â with minimum ℓp norm.

The proposed algorithm starts from Â0 = Ã. Given Ân, a candidate
matrix Ân+1,π can be obtained by applying a permutation π at frequency
ωn ≡ n [mod L]. Testing each possible permutation π and retaining the one

πn which minimises ‖Ân+1,π‖p yields the next iterate Ân+1 := Ân+1,πn . The

procedure is repeated until the ℓp norm Ân ceases to change. Since there is a
finite number of permutations to try, the stopping criterion is met after suffi-
ciently many iterations.

5.2 Choice of the ℓp criterion

In theory, it could happen that the stopping criterion is only met after a combi-
natorially large number of iterations. However, the algorithm stops much sooner
in practice. In fact, if we were to use the ℓ0 norm, the algorithm would typically
stop after just one iteration, because the ℓ0 norm attains its maximum value
M ×N ×L for most frequency permutations except a few very special ones. For
this reason, we chose to test the algorithm using ℓp norms p > 0, which are not
as “locally constant” as the ℓ0 norm. To our surprise, the experiments below
will show that the best performance is not achieved for small p, but rather for
p = 2 − ǫ with small ǫ > 0. For p = 0 and for p ≥ 2, the algorithm indeed
completely fails.

5.3 Monte-Carlo simulations

For various filter length L, sparsity levels k and dimensions M , N , random
sparse filter matrices A made of independent random k-sparse filters were gen-
erated. Each filter was drawn by choosing: a) a support of size k uniformly at
random; b) i.i.d. Gaussian coefficients on this support.

RR n° 7782
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−50 0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7
x 10

4

SNR in decibels

Histogram of SNR in decibels

Figure 1: Histogram of SNR between best permutation of Â and original A

For each configuration (L, k,M,N), 200 such randommatricesA were drawn.
For each A, independent random frequency permutations were applied to ob-
tain Ã. The algorithm was then applied to obtain Â. The performance was
measured using the SNR between A and the best permutation of Â.

Figure 1 shows the histogram of SNR values achieved for L = 31, 1 ≤
k ≤ L, M ∈ {1, 2}, N ∈ {2, 3, 4}, p = 1. It shows that the algorithm either
completely succeeds up to machine precision (SNR above 300 dB) or completely
fails (SNR of the order of 0 dB). For this reason, in the rest of the experiments
the estimation was considered a success when the SNR exceeded 100 dB.

5.4 Role of the ℓp norm

Figure 2 displays the success rate as a function of the relative sparsity k/L, for
various choices of the ℓp criterion, with filters of prime length L = 131, N = 2
sources and M = 5 channels. The vertical dashed line indicates the threshold
k/L ≤ α(2) associated with the well-posedness guarantee (using an ℓ0 criterion)
of Theorem 2. Surprisingly, one can observe that the success rate increases when
0 < p < 2 is increased. The maximum success rate is achieved when p = 2 − ǫ
with small ǫ > 0.

Beyond the well-posedness regime suggested by the theory (i.e., to the right
of the vertical dashed line) the algorithm can succeed, but at a rate that rapidly
decreases when the relative sparsity k/L increases. In the regime where the
problem is proved to be well-posed, the proposed algorithm is often successful
but can still fail to perfectly recover the filters, especially –and surprisingly– for
small values of k. This phenomenon is strongly marked for p < 1 and essentially
disappears for p > 1. It remains an open question to determine the respective
roles of the ℓp criterion and of the naive greedy optimization algorithm in this
limited performance when the problem is well-posed with respect to the ℓ0 norm.
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Figure 2: Filter recovery success as a function of p, 0 ≤ p ≤ 1.9
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Figure 3: Filter recovery success as a function of L, for p = 1.9

5.5 Role of the filter length L

Figure 3 shows the results for different L values with p = 1.9, M = N = 2.
One can see that the average performance does not seem to depend on whether
L is prime or not. As L increases, the performance for “small” k/L slightly
increases, but the success rate degrades for “large” k/L close to α(2).

5.6 Role of the number of channels M

Figure 4 shows the results for increasing numbers of channels M , with a filter
length L = 512, N = 2 sources, p = 1.9. One can observe that the success rate
substantially increases when M is increased from M = 1 to M = 2, and slightly
increases as M further increases. Although the worst-case well-posedness guar-
antees are the same, the algorithm seems to benefit from added filter diversity
across channels.
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Figure 4: Filter recovery success as a function of M , for p = 1.9
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Figure 5: Filter recovery success as a function of N , for p = 1.9

5.7 Role of the number of sources N

Figure 5 shows the success rate as a function of the relative sparsity k/L, forN ∈
{2, 3, 4}, with L = 31, M = 5 with p = 1.9. The well-posedness limits k/L ≤
α(N) associated to Theorem 2 are indicated with vertical dashed lines. The
empirical curves confirm that the algorithm can still succeeed beyond the worst-
case well-posedness guarantees, but with a rapidly decreasing rate of success.
When the well-posedness guarantees hold, the algorithm can fail, but its rate of
success is high when the relative sparsity is sufficiently small compared to the
bound provided by Theorem 2.

5.8 Computation time

The algorithm evaluates the ℓp norm of the N ! permutations of the sources for
each of the L frequencies.
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Figure 6: Computation time of the permutation solving algorithm depending
on the length L of the filter

To evaluate the ℓp norm of the filters, the permuted frequency coefficients
have to be transformed back into the time domain by inverse Discrete Fourier
transform. For each filter, the cost of the Discrete Fourier Transform through a
Fast Fourier Transform is O(L log2 L). There are MN filters and hence the cost
of ℓp norm evaluation for a given configuration of sub-bands is O(MNL log2 L).

Hence, the complexity of each sweep through the set of all frequencies is
O(N !MNL2 log2 L). This is rather expensive because the computational cost
grows in factorial with the number of sources and in square with the filter
length, but it is tractable for small problem sizes and very efficient compared to
the brute force approach that would require O((N !)L−1MNL log2 L) operations
to test all (N !)L−1 possible permutations up to a global permutation.

Figure 6 shows the average computation time over 200 trials for various filter
length. The red dashed line corresponds to its prediction using the theoretical
cost estimation as C × L2 log2 L with C ≈ 40 nanoseconds.

6 Conclusions

It is now well known that a sufficient sparsity assumption can be used to make
under-determined linear inverse problems well-posed: without the sparsity as-
sumption, the problem admits an affine set of solutions, which intersects at only
one point with the set of sparse vectors. Besides this well-posedness property, a
key factor that has lead to the large deployment of sparse models and methods
in various fields of science is the fact that a convex relaxation of the NP-hard
ℓ0 minimization problem can be guaranteed to find this unique solution under
certain sparsity assumptions. The availability of efficient convex solvers then
really makes the problem tractable.

The problem considered in this paper is not a linear inverse problem. Even
though it is a simplification of the original permutation and scaling problem
arising from signal processing, it remains a priori a much harder problem than
linear inverse problems in terms of the structure of the solution set: each solution
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14 Alexis Benichoux, Prasad Sudhakar, Frédéric Bimbot, and Rémi Gribonval

comes with a herd of solutions that are equivalent up to a global permutation.
The fact that we managed to obtain well-posedness results in this context is

encouraging, but this is at best the beginning of the story: even if the solution is
unique, how do we efficiently compute it? Can one hope to extend these results
to the original permutation and scaling problem? Why does the proposed naive
algorithm perform better for p > 1? Answers to these questions are likely to
have an impact in fields such as blind source separation with sparse multipath
channels.

A Proof of Theorem 1

First, notice that for each frequency ω and channel i, permutations preserve
the equality

∑
j aij [ω] =

∑
j ãij [ω]. Thus, the same holds in the time-domain

:
∑

j aij =
∑

j ãij . By the disjoint supports hypothesis and the quasi-triangle
inequality for ℓp quasi-norms we have

∑

j

‖aij‖pp = ‖
∑

j

aij‖pp = ‖
∑

j

ãij‖pp ≤
∑

j

‖ãij‖pp. (15)

We conclude by summing over all channels i.

B Proof of Lemma 2 and Corollary 1

Let us consider the matching count matrix C with entries

Cjn := ♯{0 ≤ ℓ < L : σℓ(j) = n}, 1 ≤ j, n ≤ N.

Since
∑

j Cjn =
∑

n Cjn = L we have C = L ·B where B is bi-stochastic.

A weakened version of Lemma 2, with 2α′′(N) = 1
1+(N−1)2 , can be obtained

by combining the Birckhoff - Von Neumann theorem and Carathéodory theorem.

Theorem 3 (Birkhoff - Von Neumann Theorem, [16, 17]) Every bi-stochastic
matrix is in the convex hull of permutation matrices.

Theorem 4 (Carathéodory Theorem [18]) Let X be a non empty subset
of an affine space of dimension n ≥ 1. Then every element of the convex hull
of X is a convex combination of p elements of X, with p ≤ n+ 1.

The set of bi-stochastic matrices is an affine subspace of RN2

. It is defined by
2N equations, but these equations are linearly dependent since the sum of the
sum over rows is the sum of the sum over columns. Hence its affine dimension
is n ≤ N2 − (2N − 1) = (N − 1)2, and we conclude from Carathéodory’s
theorem that every bi-stochastic matrix is a convex combination of at most
(N − 1)2 + 1 permutation matrices. One of the coefficients of this combination
must therefore exceed 1/(1+ (N − 1)2), and this leads to a version of Lemma 2
with 2α′′(N) = 1

1+(N−1)2 , as claimed.

Yet, this bound is suboptimal. The optimal bound in Lemma 2 follows from
Hall’s Marriage Theorem, which by the way is also a key ingredient in the proof
of the Birkhoff-Von Neumann theorem.
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Theorem 5 (Hall’s Marriage Theorem [14, 19] ) Let (Aj)j∈J be a family
of subsets of a set finite S. There exists a bijection π : J → S such that
π(j) ∈ Aj for all J if, and only if, for all E ⊂ J

♯ ∪j∈E Aj ≥ ♯E

The bijection π is often referred to as a transversal for S.

Proof (Lemma 2) For shortness of notation we write α for α(N). Define the
sets J = S = J1, NK, and Aj := {n : Bjn ≥ 2α}, j ∈ J , and consider the
property

Pk : ∀E ⊂ J, ♯E ≤ k ⇒ ♯ ∪j∈E Aj ≥ ♯E.

We wish to prove that Pk holds true for all 1 ≤ k ≤ N : then, by Hall’s Marriage
Theorem, there exists a bijection π : j → π(j) such that π(j) ∈ Aj for all j,
yielding in turn the permutation matrix P with ones at the entries (j, π(j)). We
proceed by contradiction: assume that PN does not hold true. Since P1 holds
true, without loss of generality, for some 1 ≤ k0 < N :

♯ ∪1≤j≤k0 Aj ≥ k0, and ♯ ∪1≤k≤k0+1 Aj ≤ k0.

Hence, without loss of generality:

∪1≤k≤k0Aj = J1 k0K ⊃ Ak0+1.

It follows that for n > k0 and j ≤ k0+1, we have n /∈ Aj , hence Bjn < 2α. Now
we use the bi-stochasticity of B (

∑
j Bjn =

∑
n Bjn = 1, Bjn ≥ 0) to obtain

k0 ≥
∑

n≤k0

∑

j≤k0+1

Bjn =
∑

j≤k0+1

∑

n≤k0

Bjn

=
∑

j≤k0+1

(
1−

∑

n>k0

Bjn

)
>

∑

j≤k0+1

(1− (N − k0)2α)

= (k0 + 1)(1− (N − k0)2α)

= k0 +
(
1− (k0 + 1)(N − k0)2α

)
.

This implies 2α > 1/(k0 + 1)(N − k0). However, this yields a contradiction,
since a simple functional study shows that

max
1≤k0<N

1

(k0 + 1)(N − k0)
= 2α.

Equipped with Lemma 2, we can now prove Corollary 1.

Proof (Corollary 1) Since C = L · B where B is bi-stochastic, there is a
permutation π such that Cjπ(j) ≥ 2Lα(N).

We conclude this section by showing the sharpness of Corollary 1 through
the construction of permutations that reach the bound. Consider N an integer,
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16 Alexis Benichoux, Prasad Sudhakar, Frédéric Bimbot, and Rémi Gribonval

and k0 := N/2 (N even) or k0 := (N − 1)/2 (N odd). Let L be a multiple of
(k0 + 1)(N − k0). Consider the L×N matrix:

Σ :=




1 U k0 . . . 2 × . . . ×
2 1 U

. . .
. . .

...
...

...
. . .

. . .
. . .

. . .
...

...

k0

. . .
. . .

. . . U
...

...
U k0 . . . 2 1 × . . . ×




where: a) the left part, of size L × (k0 + 1), is filled with the column vectors
i ∈ R

L/(k0+1) made of constant entries equal to the integer 1 ≤ i ≤ k0 and
the vector U ∈ RL/(k0+1) made of the vertical concatenation of the N − k0
column vectors j ∈ RL/(k0+1)(N−k0) with constant entries k0 + 1 ≤ j ≤ N ; b)
the rows of the the right part, of size L× (N−k0−1), include exactly once each
integer 1 ≤ ℓ ≤ N which does not already appear in the corresponding row of
the left part. By construction, the L rows of the matrix Σ are associated to L
permutations σℓ. We now show that, for any global permutation π, there is at
least one column 1 ≤ j ≤ k0 + 1 such that

♯{ℓ : σℓ(j) = π(j)} ≤ L/(k0 + 1)(N − k0) = L2α(N).

Applying again the pigeonhole principle yields: among the k0 + 1 indices j to
consider, at least one, j⋆, must be mapped to an integer π(j⋆) ≥ k0 + 1. By
construction, the columns of Σ are such that column j⋆ contains at most (in
fact: exactly) L/(k0 + 1)(N − k0) instances of the value π(j⋆).

C Proof of Theorem 2

We can now conclude the proof of Theorem 2. By Corollary 1, there is a permu-
tation π such that for each j, we have ‖F(ãij − aiπ(j))‖0 ≤ L(1− 2α(N)), hence

∆(Ã,A|π) ≤ L(1 − 2α(N)) and finally ∆(Ã,A) ≤ L(1 − 2α(N)). Combined
with the assumption k ≤ Lα(N), we obtain 2k+∆ ≤ L, and we conclude thanks
to Lemma 1.

D Proof of Lemmata 1 3 4 5

We prove Lemma 1 first, then the statements of Lemma 3 in the following order:
1), 3), 2). We begin by some notations and fact regarding Dirac combs.

D.1 Dirac combs

Let p, q ≥ 1 be two integers and L = pq their product. The unit Dirac comb with
q spikes and of step p, denoted xp, is the vector of CL defined by xq[t] = 1/

√
q

if t ≡ 0[p], xq[t] = 0 otherwise. Its Fourier transform is the unit Dirac comb
with p spikes and of step q: Fxq = xp. For 0 ≤ n < p an integer translation
index and 0 ≤ m < q an integer modulation index, one can define the translated
and modulated Dirac comb xq,n,m = TnMmxq where Tn is the circular shift
by n samples, and Mm is the frequency modulation (Mmu)[t] := u[t] · e2iπmt/L.
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One can check that the collection {xq,n,m}0≤n<p,0≤m<q is an orthonormal basis
of CL.

D.2 Proof of Lemma 1

Let π0 be the permutation such that ∆0(A, Ã) = minπ∈SN ∆0(A, Ã|π). By
abuse of notation we still denote A the matrix obtained by applying π0 to
permute the columns of the original filter matrix. For each channel i and a
source index j such that aij = ãij we obviously have ‖aij‖0 ≤ ‖ãij‖0. Now,

since ∆0 ≥ 1 we have Ã 6≡ A hence there exists a pair i, j such that ãij 6= aij .
By the ℓ0 Dirac-Fourier uncertainty principle [12, Theorem 1], for any vector
u ∈ CL we have ‖u‖0‖Fu‖0 ≥ L. Hence, by the hypothesis k < L/(2∆0) we
have

‖aij‖0 + ‖ãij‖0 ≥ ‖ãij − aij‖0 (16)

≥ L/‖F(ãij − aij)‖0 (17)

≥ L/∆0 > 2k (18)

≥ ‖aij‖0 + ‖aij′‖0 (19)

where j′ is an arbitrary source index. Hence for every i, j such that ãij 6= aij
and any j′, ‖ãij‖0 > ‖aij′‖0, and we obtain

‖ãij‖0 > max
j′

‖aij′‖0 ≥ ‖aij‖0.

Overall, we have shown that ‖Ã‖0 > ‖A‖0.
When L is prime, a stronger uncertainty principle ‖u‖0 + ‖Fu‖0 ≥ L + 1

holds [13]. Hence, under the assumption 2k +∆0 ≤ L we can replace (17)-(18)
with

. . . ≥ L+ 1− ‖F(ãij − aij)‖0 ≥ L+ 1−∆0 > 2k

to reach the same conclusion.

D.3 Proof of Lemma 3

We shall simply build an example where A = [α, β] is a 1× 2 matrix of filters.
Extensions to A an M×N matrix are trivial by adding mutually distinct sparse
columns that are distinct from α and β, and duplicating the first row.

We exploit Dirac combs as described in Appendix D.1. Define a = xk,0,0,
b = −xk,L/2k,0. The filters a and b have disjoint support and satisfy ‖a‖0 =

‖b‖0 = k. Since a − b =
√
2 x2k,0,0 we have a[ω] = b[ω] whenever ω 6≡ 0[2k].

Hence, permuting the Fourier transforms of a and b on the L/2k frequencies
{ω = 2kr, 0 ≤ r < L/2k} yields ã = b and b̃ = a. Given any u ∈ CL we define
perturbations α and β of a and b

{
α := a+ u

β := b+ TL/2u

with TL/2 a circular shift. Noticing that for ω = 2kr

(TL/2u)[ω] = e
2iπ(L/2)ω

L u[ω] = e2iπkru[ω] = u[ω]
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we obtain that, after permuting the Fourier transforms of α and β at the fre-
quencies ω = 2kr, 0 ≤ r < L/2k,

{
α̃ = b+ u

β̃ = a+ TL/2u

We choose the vector u to be zero everywhere with two exceptions u[0] := −a[0],
u[ L2k ] := −b[ L2k ]. Since TL/2u 6= u and a 6= b, we have {α, β} 6= {α̃, β̃} and

Ã 6≡ A. Moreover, ∆0(Ã,A) = ∆1(Ã,A) = L/2k.

Lastly, all considered vectors have k entries of equal magnitude, hence ‖α‖0 =
‖β‖0 = ‖α̃‖0 = ‖β̃‖0 = k, and for any 0 < p ≤ ∞ ‖α‖p = ‖β‖p = ‖α̃‖p = ‖β̃‖p.
In particular, ‖Ã‖p = ‖A‖p, 0 ≤ p ≤ ∞.

D.4 Proof of Lemma 5

We repeat the construction of the proof of Lemma 3 starting from the Dirac
combs a = xk′,0,0, b = −xk′,L/2k′,0. Since k′ < k ≤ L/2, we have ℓ := k − k′ ≤
L/2 − k′ hence we can choose an ℓ-sparse vector u which support is outside
the support of x2k′ and such that TL/2u and u have disjoint supports. The
four vectors {a, b, u, TL/2u} have mutually disjoint supports, hence α and β

have disjoint supports, {α, β} 6= {α̃, β̃} and Ã 6≡ A. Moreover, ∆0(Ã,A) =
∆1(Ã,A) = L/2k. Lastly, we have ‖α‖0 = ‖β‖0 = ‖α̃‖0 = ‖β̃‖0 = k′ + ℓ = k,
and the ℓp norms of these vectors are also equal, hence ‖Ã‖p = ‖A‖p, 0 ≤ p ≤
∞.

D.5 Proof of Lemma 4

As in the proof of Lemma 1 we consider A the permuted matrix associated to
the optimal permutation π0. Using the inequality 2k ≤ L/∆1 ≤ L/2∆0 instead
of 2k < L/∆0 we repeat the steps (16)-(19) to obtain ‖ãij‖0 ≥ ‖aij′‖0 for any
j ∈ Ei := {j, aij 6= ãij} and any j′. As a result ‖ãij‖0 ≥ ‖aij‖0 for all i, j. The

assumption that ‖Ã‖0 = ‖A‖0 implies that ‖ãij‖0 = ‖aij‖0 for all i, j.

By assumption, Ã 6≡ A hence there are indices i, j such that aij 6= ãij .
For such i, j, since ‖aij‖0 = ‖ãij‖0, each inequality in (16)-(19) (the inequality
L/∆0 > 2k being replaced with L/∆1 ≥ 2k) must be indeed an equality. This
implies that: ‖aij‖0 = ‖ãij‖0 = k; 2k divides L and ∆1 = L/2k; the nonzero
vector bij := ãij − aij must be an equality case of the ℓ0 uncertainty principle
with ‖bij‖0 = 2k and ‖Fbij‖0 = L/2k. As a result [13] bij is a scaled, modulated
and translated version of the Dirac comb x2k made of 2k Diracs spaced every
L/2k samples: there exists a scalar γij 6= 0, and two integers 0 ≤ nij < L/2k,
0 ≤ mij < 2k such that

bij = γij ·x2k,nij ,mij .

Moreover since ‖aij‖0 = ‖ãij‖0 = k and ‖ãij − aij‖0 = 2k, the filters ãij and
aij have disjoint supports of size k. Hence, they are the restriction of bij (resp.
of −bij) to their respective supports.

Now, define

Ei,n,m := {j ∈ Ei, nij = n,mij = m}.
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As observed in the proof of Theorem 1, the equality
∑

j aij =
∑

j ãij holds,
implying

∑
j∈Ei

bij =
∑

j bij = 0. Taking inner products with the Dirac comb
orthonormal basis x2k,n,m, 0 ≤ n < L/2k, 0 ≤ m < 2k, yields

∑

j∈Ei,n,m

γij = 0, (20)

Since γij 6= 0, whenever Ei,n,m is not empty it contains at least two distinct
indices.

By the disjoint support assumption: for j, j′ ∈ Ei,n,m, j 6= j′, the original
filters aij and aij′ have disjoint supports. Moreover, we know that these supports
are subsets of the support of x2k,n,m which is of size 2k, hence

♯Ei,n,m · k = ‖
∑

j∈Ei,n,m

aij‖0 ≤ 2k.

Hence, whenever Ei,n,m is not empty, it contains exactly two distinct elements:
Ei,n,m = {j, j′} where j 6= j′.

Further, observe that: a) aij and aij′ have disjoint supports of size k which
are subsets of the support of size 2k of x2k,n,m; b) aij and ãij have the same
property. As a result, ãij and aij′ have the same support, which is disjoint
from that of aij . Similarly, aij has the same support as ãij′ . Finally, Eq. (20)
can be rewritten γij + γij′ = 0, and implies bij + bij′ = 0, that is to say
ãij + ãij′ = aij′ + aij . We conclude that ãij = aij′ and ãij′ = aij .
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