
HAL Id: inria-00565343
https://hal.inria.fr/inria-00565343v2

Submitted on 14 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Key Reduction of McEliece’s Cryptosystem Using List
Decoding

Morgan Barbier, Paulo Barreto

To cite this version:
Morgan Barbier, Paulo Barreto. Key Reduction of McEliece’s Cryptosystem Using List Decoding.
International Symposium of Information Theory (ISIT), Aug 2011, Saint-Peterburg, Russia. pp.2657-
2661. �inria-00565343v2�

https://hal.inria.fr/inria-00565343v2
https://hal.archives-ouvertes.fr


Key Reduction of McEliece’s Cryptosystem

Using List Decoding

Morgan Barbier∗ Paulo S. L. M. Barreto†

Abstract

Different variants of the code-based McEliece cryptosystem were pro-

posed to reduce the size of the public key. All these variants use very

structured codes, which open the door to new attacks exploiting the un-

derlying structure. In this paper, we show that the dyadic variant can

be designed to resist all known attacks. In light of a new study on list

decoding algorithms for binary Goppa codes, we explain how to increase

the security level for given public keysizes. Using the state-of-the-art list

decoding algorithm instead of unique decoding, we exhibit a keysize gain

of about 4% for the standard McEliece cryptosystem and up to 21% for

the adjusted dyadic variant.

1 Introduction

The past few years have seen a renewed interest in code-based cryptosystems
due to their resistance to known quantum attacks [9]. The famous McEliece
asymmetric cryptosystem [19] is perhaps the most studied of them. The private
key is the generator matrix of a code C and the public key is obtained from this
generator matrix by a permutation of its columns followed by a multiplication
by an random invertible matrix. This public key is thus a generator matrix of
a code C′ equivalent to C. The encryption consists in encoding the plaintext
into a codeword c′ ∈ C′ using the public key and randomly adding as many
errors as made possible by the decoding algorithm of C. The decryption step
consists in decoding the cyphertext over C, thanks to the private key.

The McEliece cryptosystem delivers high encryption and decryption speeds
compared to other systems like RSA [20] but suffers from the large size of the
associated keys which makes it unpractical. Lately, a lot of effort has been put
into the design of variants based on different code families in order to reduce
the size of the keys. For example, in 2008, a solution was proposed for signature
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schemes using double-circulant matrices [1]. In [4], the authors proposed a key
reduction for the McEliece cryptosystem using quasi-cyclic alternant codes.
The same year, a method using the sub-family of classical binary Goppa codes,
called quasi-dyadic codes, was introduced in [20], adapting the idea from [4].
Another key reduction technique formulated in [5] hides the structure of a
subcode of generalized Reed-Solomon codes. Generally speaking, all of these
key reduction techniques involve the introduction of some kind of additional
structure. As a cryptographic rule of thumb, the presence of unneeded structure
is often seen as a potential angle of attack. Indeed, cryptanalysts quickly
proposed new structural attacks against the aforementioned variants [14,23,27].

Roughly speaking, we can distinguish between two types of attacks. The
first type tries to recover the plaintext from the cyphertext, without the
knowledge of the private key. It is clear that increasing the number of errors
during the encryption step will make this kind of attacks more difficult.
Bernstein, Lange and Peters contributed to assess the effectiveness of such
attacks in [11] by giving asymptotic analysis of different decoding algorithms
for code-based cryptography. Moreover, working within a strict complexity
model, Finiasz and Sendrier exhibited lower bounds for system designers [15]
by taking into account the costs of the best decoding attacks [27].

The second type of attacks consists in retrieving the private key from the
available public one. Such an attack was recently introduced in [14] and boils
down to computing a Groebner basis to find the structure of an alternant code.
The McEliece variant with the parameters proposed in [4] is considered to be
broken by this attack. While the dyadic instance from [20] is also vulnerable,
this variant can be made more robust as shown in Section 3.

This paper is organised as follows. Section 2 is devoted to the decoding
of binary Goppa codes, most precisely on the correction radius of different
decoding algorithms. In Section 3 we show how the dyadic variant can be made
more secure against [14] and present our results on keysize reduction obtained
using the best known list decoding algorithm for the classical and modified,
hardened variants of the McEliece cryptosystem.

2 List decoding of binary Goppa Codes

Since a major part of the cryptanalysis of code-based cryptography is intimately
linked to error correction, a natural idea is to add as many errors as possible
during the encryption step, provided that the recipient is still able to correct
them. Decoding a random code is a hard problem; indeed it was shown
that decoding general codes is NP-complete [6]. The McEliece cryptosystem
originally used binary Goppa codes. Some variants are based on different
types of codes (e.g. [5]), but most of them have been broken (e.g. [23]). In
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the following, we briefly recall the state of the art of the decoding of binary
Goppa codes, which are perhaps the most promising for McEliece cryptosystems.

The first algebraic decoding algorithm for classical Goppa codes was
proposed by Patterson in 1975 [25]. This algorithm, basically a variation
of the Berlekamp-Massey algorithm [7], runs in quadratic time in the code
length. Patterson’s method performs an unambiguous decoding, up to the
error capacity t of the code. Since classical Goppa codes are alternant, that
is they are subfield subcodes of generalised Reed-Solomon codes [18], we are
able to perform the well-known Guruswami-Sudan list decoding (GS-LD)
algorithm [16]. This method makes it possible to correct up to the generic

Johnson bound given by n
(

1−
√

1− 2t

n

)

errors, which is larger than t (see

Figure 1). Consequently, this type of decoding does not ensure the uniqueness
of the returned codewords anymore. The GS-LD algorithm is originally not
tailored to the binary Goppa codes. Using specific properties of binary Goppa
codes, Bernstein was able to extend Patterson’s algorithm to perform a list

decoding up to n
(

1−
√

1− 2t+2

n

)

[8], which is larger than the generic Johnson

bound. Recently, a technical report [2] revisits previous works to exhibit a
list decoding algorithm for square-free binary Goppa codes which decodes

up to the binary Johnson bound given by τ2 , n

2

(

1−
√

1− 4t+2

n

)

, which

is larger than the two former bounds. As shown in Figure 1, the closer the
normalized distance is to 0.5, the better the binary Johnson bound is compared
to the others. We will show in Section 3 that using binary Goppa codes with
normalized minimum distances closer to 0.5 makes it possible to correct more
errors and ultimately, to reduce the size of the keys.

List decoding algorithms basically involve two steps. The first stage finds,
by interpolation, a bivariate polynomial connecting the received word with
the support of the code. The second step consists in finding the roots of
this polynomial. The cost of the algorithm from [2] is dominated by the
interpolation step. This algorithm has an overall complexity of O(n2ǫ−5) and
corrects up to (1− ǫ)τ2 errors, where τ2 is the binary Johnson bound. Decoding
τ2 errors is obviously prohibitively expensive but trade-offs between running
time and number of corrected errors are easily achieved, making it possible to
keep the cost of list decoding under control.

The classical McEliece or equivalently the Niederreiter cryptosystems [17,21]
suffer from chosen cyphertext attacks [28]. Indeed, since a given plaintext can
be encrypted to give different cyphertexts, an attacker could compare these
different cyphertexts to extract the original plaintext. Different methods were
proposed to make these cryptosystems more robust to chosen cyphertext at-
tacks [13,24,26] leading to so-called CCA2-secure variants. When adding more
errors than can be uniquely corrected, the decryption step will return a list of
potential plaintexts. As already remarked in [10], CCA2-secure variants make

3



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5

e/
n 

: n
or

m
al

iz
ed

 c
ap

ac
ity

 c
or

re
ct

io
n

d/n : normalized distance

Binary Johnson bound
General Johnson bound
Unique decoding bound

Figure 1: Comparison between the unambiguous decoding, generic and binary
Johnson’s bounds.

it possible to distinguish the original plaintext between all candidates returned
by the list decoding algorithm used in the decryption process. Consequently,
it is possible to make the task for an attacker much more difficult by adding
more errors than the correction capacity. Using CCA2-secure variants and
state-of-the-art list decoding algorithm, these extra-errors only add a small
burden on the recipient to find the original plaintext.

3 Key reduction

Encrypting and decrypting with the McEliece cryptosystem is significantly
faster than with more widespread cryptosystems based on number theory such
as the ubiquitous RSA [20]. The main and perhaps only handicap holding back
the McEliece cryptosystem is the substantially larger size of the public keys.
We propose to address this problem not by using a well structured code as is
often the case, but by adding as many errors as permitted by the best known
list decoding algorithm [2]. For a given keysize, this increases the security
level. Symmetrically, this makes it possible to use shorter keys while keeping a
similar security level. Using a list decoding algorithm can thus lead to shorter
keys at the expense of a moderately increased decryption time.

We focus on the family of square-free binary Goppa codes, which includes
the traditionally used family of irreducible binary Goppa codes. In this case the
error capacity t is equal to r the degree of Goppa polynomial. The algorithm
decoding the largest number of errors for these codes is studied in [2]. This
list decoding algorithm works for all alternant codes, but using proposition 1
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improves the correction radius and leads to even shorter keys. We numerically
searched for codes parameters yielding short keys and correcting up to ⌈τ2⌉− 1.
We illustrate the benefits of list decoding by presenting examples for both the
generic and dyadic variants.

3.1 Generic variant

Tables 1, 2 and 3 show the keysize reduction obtained using the best known list
decoding algorithm [2], for workfactors (WF) equal to 280, 2112, 2192 and 2256.
For each workfactors, McEliece keysizes are given for Unambiguous Decoding
(U.D.) and List Decoding (L.D.). The involved codes are defined by m, the
degree of the extension where G and L are defined, the length n, the dimension
k, the degree r of the Goppa polynomial G, and τ2 is the binary Johnson bound
reached by the list decoding algorithm. The workfactors have been estimated
using the complexity model and the lower bounds given in [15].

Table 1: Comparison between the public keysize of generic McEliece cryptosys-
tem using unambiguous and list decoding for given workfactors.

Method m n k r τ2 WF Keysize gain (%)

U.D. 11 1893 1431 42 80.025 661122
L.D. 11 1876 1436 40 41 80.043 631840 4.43

U.D. 12 2887 2191 58 112.002 1524936
L.D. 12 2868 2196 58 59 112.026 1475712 3.23

U.D. 12 3307 2515 66 128.007 1991880
L.D. 12 3262 2482 65 66 128.021 1935960 2.81

U.D. 13 5397 4136 97 192.003 5215496
L.D. 13 5269 4021 96 98 192.052 5018208 3.78

U.D. 13 7150 5447 131 256.002 9276241
L.D. 13 7008 5318 130 133 257.471 8987420 3.11

Table 1 refers to the generic McEliece system where the size of the public
keys is given by (n − k) × k = mkr. As shown in figure 1, using a list decod-
ing algorithm is all the more interesting as the normalized minimum distance
(2r + 1)/n gets closer to 0.5, which has apparently an adverse effect on the
keysize. However, even in this unfavorable case, we were still able to exhibit a
keysize reduction of about 4%.

3.2 Dyadic case

The attack proposed by Faugère, Otmani, Perret and Tillich in [14] uses Groeb-
ner basis computations to recover the private key from the only knowledge on
the public one. It was specifically designed to break the compact key McEliece
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variants proposed in [4, 20], which use the structure of alternant codes. The
variant proposed in [20] uses binary Goppa codes in dyadic form, which are also
alternant codes. The attack in [14] thus applies and can recover an equivalent
private key in an alternant code form. However, this is not sufficient to break
the system when using Goppa codes. Indeed, the attack does not directly re-
trieve the Goppa polynomial G of degree r which is crucial to decode [2,25], but
finds a generator matrix of an alternant code without a Goppa structure and
with designed minimum distance r + 1. However, when using a Goppa code,
the private key is a generator matrix of a code with designed minimum distance
2r + 1 thanks to the following proposition, demonstrated in [2, 12]:

Proposition 1. Let G be a square-free polynomial in F2m and L be a list of n
elements of F2m which are not roots of G. Then

Γ(L, G) = Γ(L, G2),

where Γ(L, G) is the Goppa code generated by L and G.

The direct consequence is that the attacker won’t be able to decode.
Indeed, this attack retrieves n/r variables Y and n variables X such that
Yi = G(Xi)

−1. In order to protect against a potential interpolation of
the Goppa polynomial G of degree r, we impose that r + 1 > n

r
, that is

r(r + 1) > n. Consequently, this attack does not totally break the McEliece
variant based on dyadic forms. Moreover, as stated in [14], the attack becomes
unpractical, for the moment, when the extension degree m is greater than
16. Working with such an extension degree slightly increases the public
keysize of McEliece compared to the parameters proposed in [20], while stay-
ing drastically smaller than with the generic form, as shown in tables 1, 2 and 3.

Table 2: Comparison between the public keysize of dyadic McEliece cryptosys-
tem with r(r+1) > n using unambiguous and list decoding for given workfactors.

Method m n k r τ2 WF Keysize gain (%)

U.D. 11 1792 1088 64 82.518 11968
L.D. 11 1728 1024 64 67 82.976 11264 5.88

U.D. 12 2944 1408 128 116.735 16896
L.D. 13 2816 1280 128 134 113.896 15360 9.09
L.D. 13 7680 1024 512 552 113.084 13312 21.21

U.D. 12 3200 1664 128 131.235 19968
L.D. 12 3072 1536 128 134 129.745 18432 7.69

U.D. 13 5888 2560 256 205.804 33280
L.D. 13 5632 2304 256 269 199.473 29952 10.00

U.D. 15 11264 3584 512 279.002 53760
L.D. 15 10752 3072 512 539 258.223 46080 14.29
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Table 3: Comparison between the public keysize of dyadic McEliece cryptosys-
tem with m ≥ 16 using unambiguous and list decoding for given workfactors.

Method m n k r τ2 WF Keysize gain (%)

U.D. 16 5120 1024 256 81.765 16384
L.D. 16 5120 1024 256 134 86.216 16384 0

U.D. 16 3840 1792 128 113.785 28672
L.D. 16 5632 1536 256 269 116.400 24576 14.29

U.D. 16 5888 1792 256 132.470 28672
L.D. 16 9728 1536 512 542 133.534 24576 14.29

U.D. 16 10752 2560 512 199.067 40960
L.D. 16 10752 2560 512 539 209.414 40960 0

U.D. 16 11776 3584 512 264.846 57344
L.D. 16 19456 3072 1024 1085 267.203 49152 14.29

In table 2, we look at the case of the dyadic variant with countermeasure
r(r + 1) > n. The size of the public key now becomes mk [20], removing the
conflicting constraints on r. Key reduction up to 21% can now be achieved.
Finally, results on the dyadic variant with countermeasurem ≥ 16 are presented
in table 3. As previously discussed, we expect better reductions than in the
generic case. Indeed, our experiments showed a key reduction of more than
14%. Note that in this case, the degree r of the Goppa polynomial is the same
as the dimension k of the code. This is easily explained: the large extension
degree becomes such a strong constraint on the parameters that it removes all
freedom when choosing the code dimension.

Table 4 displays the recommended keysizes for cryptosystems based on the
Discrete Logarithm Problem over finite fields (DLP), for different security levels
[3,22]. For the sake of comparison, we also include the smallest keysizes obtained
with McEliece variants although in all impartiality, it should be stressed that we
lack sufficient perspective to correctly assess the true security level of these fairly
new variants. While the keysizes for the McEliece cryptosystem are still larger
than their discrete logarithm counterparts, the gap significantly narrows when
going at higher security levels. Moreover, the costs for McEliece encryption and
decryption rise much more slowly with the security level than they do with DLP
based or RSA systems [20].

4 Conclusion

In light of the recent study on the list decoding of binary Goppa codes [2],
we compared the size of public keys for different variants of the McEliece
cryptosystem. We showed that using list decodable codes in McEliece cryp-
tosystems deliver compelling benefits. We explained how to secure the dyadic
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Table 4: Keysize comparison between cryptosystem based on discrete logarithm
over finite fields and McEliece cryptosystem using list decoding.

Security level Discrete Logarithm McEliece ratio

80 1024 11264 11.0
112 2048 13312 6.5
128 3072 18432 6.0
192 7680 29952 3.9
256 15360 46080 3.0

variant against currently known attacks while reducing the size of the keys
using list decoding. For example, for a workfactor of 280, list decoding lowers
the public keysize from 661,122 bits for the generic variant to 11,264 bits for
the dyadic variant. It is worth mentioning that contrary to previous attempts
at reducing the McEliece keysizes, using list decoding does not introduce any
additional structure that could be used to attack the system.
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