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Résumé

La gestion des données temporelles est un problème critique pour di-
verses applications. Avec l’avènement de XML comme nouveau standard
de représentation et d’échange des données, d’importants efforts ont été
fournis pour développer des extensions temporelles de XML. Le but de
ce travail est d’explorer comment générer ou maintenir des documents és-
tampillés garantissant un stockage efficace. Pour ce faire, nous définissons
formellement la notion de compaction qui sert à comparer les documents
éstampillés. Nous présentons ensuite deux méthodes pour construire les
documents éstampillés. La première méthode est générale, elle ne fait au-
cune restriction sur l’évolution des documents XML. La deuxième méth-
ode suppose que l’évolution des documents XML est le résultat de mises à
jour. L’objectif des deux méthodes est le traitement de documents volu-
mineux, l’utilisation des moteurs existants ainsi que la conformité avec le
standard XQuery Update Facility. Nous comparons les deux méthodes en
terme de taille des documents obtenus (compaction). La méthode basée
sur les mises à jour produit des documents qui sont plus satisfaisants que
ceux obtenus par la méthode générale. Ceci montre que la méthode basée
sur les mises à jour que nous proposons exploite réellement celles-ci pour
générer des documents plus compacts en même temps qu’elle permet de
traiter des documents volumineux.

1 Introduction

The management of temporal data is a crucial issue in many applications such
as finance, banking, travel reservations, geographical information systems etc.
With the increasing use of XML for data exchange and representation, the issue
of developing temporal extensions for XML is gaining importance.

Temporal extensions have been extensively studied in the relational frame-
work. Chomiki et al. [13] pointed out the necessity of separating the abstract
model from the concrete one. The abstract model views temporal data as a
sequence of instances. Although this model facilitates the formal development
of query, update, and constraint languages, from a practical point, storing a



sequence of database instances requires a very large amount of space. The
concrete model provides a space-efficient format to store temporal data.

Current work on temporal XML concentrate on timestamped XML docu-
ments, a concrete model. Although many proposals have addressed the issue of
querying timestamped XML documents, there has been less in-depth investiga-
tion of how to efficiently build or maintain temporal XML documents, keeping
track of data evolution over time.

In this paper, we follow the approach of [13] and provide both a notion
of abstract temporal XML document and a notion of concrete temporal XML
document. This allows to study the link between abstract temporal documents
and their concrete encodings. Obviously, a given abstract temporal document
may have several concrete encodings, some being more space-saving than oth-
ers. Comparing concrete encodings wrt compactness is formally captured by
introducing a partial order.

In this paper, we study ways to generate concrete encodings of an abstract
temporal document with the following requirements. The first goal is of course to
build or maintain timestamped documents as compact as possible. The second
goal is to provide methods enabling to process very large documents. This
requirement is particularly important as the size of temporal XML documents
is expected to be much larger than the size of static ones and as we assume the
documents to be processed by in-memory engines.

We develop two methods. The first one makes no assumption on the abstract
temporal document for which an encoding is built whereas the second one
assumes that the abstract temporal document is produced by a sequence of
updates u1, . . . , un from an initial document. The update language considered
is the XQuery Update Facility (XUF) update language as described in [7, 9]. The
main feature of the first method, next called the general method, is that it can
be implemented in a streaming manner based on a SAX parsing [5] overcoming
main memory space limitations. This feature unfortunately entails that, in some
cases, the obtained encodings are not as compact as they could be.

The second method, next called the update-based method, is much more so-
phisticated. It is based on the type projection paradigm developed for XQuery
[10, 14] and XUF [8] in order to overcome the main memory limitation of in-
memory engines like Galax [2], Saxon [6], QizX [4, 3], and eXist [1]. The update-
based method relies on pruning the timestamped document over which an up-
date should be integrated in order to load only the fragment of the document
touched or needed by the update. The pruning phase is very similar to that
introduced in [8] and makes use of the schema (DTD) typing the document.

The benefit of extending the update mechanism of [8] is manifold. First, it
enables to process large timestamped documents which would not be processed
by in-memory engines due to their size. Second, any update engine can be
targeted by such a scenario. Another advantage is that no rewriting of the
updates is necessary. Last but not least, the encodings produced using the
update-based method are much more satisfactory from the point of view of
space-efficiency than the encodings produced by the general method. This goes
to show that the update-based method takes advantage of the information given
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by update in an efficient way.

Related work Temporal relational databases were extensively studied. Dif-
ferent data models and query languages were proposed (see [13] for a detailed
survey). Chomicki et al. [13] were the first to consider the abstract and the
concrete models of temporal databases. They also studied the way to encode
temporal relational databases in a compact format and addressed efficiency is-
sues wrt temporal queries [16].

Recently, important efforts have focussed on studying temporal extensions
for semi-structured data and XML in particular. For instance, Chawathe et al.
[12] extend the OEM model in order to keep track of updates. In the context
of XML, several proposals have been developed for managing the temporal
dimension (see [15] for a survey). Next, we focus more specifically on those
addressing the issue of building or maintaining encodings of temporal XML
documents.

In many proposals, the last version of the document is stored together with
deltas that encode the changes between the different versions of the document.
These deltas are often given by edit scripts. They are used for retrieving past
versions starting from the document that is stored. Buneman et al. [11] pointed
out that delta-based approaches raise practical and semantic problems. First,
the cost for recovering past versions, which is required for query evaluation, is
considerable and increases when new versions are added. Second, the informa-
tion about changes provided by the edit-scripts is syntactical and quite often
not meaningful. Timestamp approaches are more effective than delta-based
approach wrt to querying simply because temporal queries can be directly eval-
uated on timestamped documents without the need to retrieve the different
versions.

Buneman et al. [11] investigate data structures for managing scientific data.
They develop a technique for merging versions of scientific documents into a
single temporal document. Their technique is tailored to a special kind of data
which has the following characteristics: the node order is not taken into account;
each node is uniquely identified on the basis of its content (notion of key); and
finally, insertion is considered as the most frequently applied update.

In our study, as opposed to [11], we do not focus on a particular application
and node order is preserved which has a price to pay. Wrt changes, we cover both
the case where no information is available wrt the evolution of the documents (it
may not be the result of structured updates but rather be produced by editing
or any other treatment over the documents) and the case where the changes are
specified by XUF.

Our approach has some similarities with that of Rizzolo et al. [15]. They
model temporal data by a DAG and provide two mappings from their DAG
structure to XML. A specific update language is provided for specifying temporal
evolution and this language is translated into operations over the graph-based
representation. The space-efficiency issue is addressed although indirectly, as
the authors study two mapping strategies: a non-replicating strategy which
uses references to optimize the storage of subtrees shared by several nodes
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and a replicating strategy. The authors also develop several algorithms to
eliminate inconsistencies that may be introduced by the use of references. The
work presented in [15] does not consider changes other than those generated by
updates. They consider a specific update language while we cover XUF and
while our method is compatible with any XUF query engine. Although DAG
may be more space-saving than timestamped XML trees, [15] does not address
maintenance of very large temporal XML documents.

Other proposals like [18, 17] address the issue of managing and querying
historical XML databases. They present a technique for computing documents
annotated with timestamps (called H-documents) starting from a sequence of
versions. However, preserving node document-order in H-documents is not con-
sidered and updating H-documents is not fully addressed wrt update language
and scalability.

Our presentation is organized as follows. After a short preliminary section
providing the main notations, the abstract and concrete models capturing tem-
poral XML evolution are provided in Section 3 together with the compactness
order. Section 4 introduces the two methods for generating timestamped docu-
ments from a sequence of static XML documents and compares the two methods
wrt space-efficiency. Section 5 reports the results of a first bunch of experiments
for validating the update based approach. We finally conclude and discuss future
work in section 6.

2 Preliminaries

As in [9], XML documents are represented as stores. Next, I, J,K may designate
sets (id-sets) or a list (id-seq) of store-identifiers denoted i, j ...; () denotes the
empty id-seq; I ⋅I ′ denotes id-seq composition, and the intersection of I and J

preserving the order of the id-seq I is denoted by I∣J .
A store σ is a mapping from the set of store-identifiers I to constructors k

defined as follows: k ∶∶= text[s] ∣ a[J], where s is a string, a a label and J an
id-seq such that J⊆I.

We only consider stores that correspond to XML trees and forests. An XML
forest f over I is given by (J,σ, γ) where σ is a forest over I whose tree roots
are given by J . The mapping γ over I is optionally used, in some context, to
associate explicit identifiers to document nodes. The following notations are
used:
− dom(σ)=I,
− lab(i)=a if σ(i)=a[I ′], lab(i)=String if σ(i)=text[s],
− child(σ,K)={i′ ∣ ∃i∈K,σ(i)=a[I ′] and i′∈I ′},
− desc(σ,K)={i′ ∣ i′∈child(σ,K) or i′∈desc(σ, child(σ,K))},
− roots(σ)={i ∣ ¬∃i′, i∈child(σ,{i′})}, and
− f○f ′ is the concatenation of two disjoint forests f and f ′.
An XML document d over I is given by (r, σ, γ) such that roots(σ)=r and σ is
a tree.

Let σ and σ′ be two stores over I and I ′ resp. Let J and J ′ be two id-seqs
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such that J⊆I and J ′⊆I ′. The value equivalence (J,σ)∼(J ′, σ′) is recursively
defined by:
− ((), σ)∼((), σ′) always holds,
− (i⋅J,σ)∼(i′⋅J ′, σ′) iff (J,σ)∼(J ′, σ′) and
∗ σ(i)=a[K] implies σ′(i′)=a[K ′] and (K,σ)∼(K ′, σ′),
∗ σ(i)=text[s] implies σ′(i′)=text[s].
Value equivalence can be extended to a pair of forests f and f ′. We write

f∼f ′ for (roots(f), σf )∼(roots(f
′), σf ′).

Given a store σ over I, the projection on J⊆I of σ, is a store over J , denoted
ΠJ(σ), defined by: for each j∈J , if σ(j)=a[K] then ΠJ(σ)(j)=a[K∣J] otherwise
ΠJ(σ)(j)=σ(j). The reader should pay attention to the fact that the domain
and the "co-domain" of the ΠJ(σ) are equal to J and that, even if σ is a tree,
ΠJ(σ) may not be a tree.

Finally, for the purpose of capturing time, we use timestamps of the form
[t, t′[ with t < t′ and [t,Now[ where t and t′ are positive integers capturing
instants of time and Now is a variable indicating the current instant.

3 Temporal XML Models

The first part of this section follows the lines of [13] in providing two alternative
models for capturing the evolution of XML documents.

Definition 3.1 (Abstract Temporal Document)
An abstract temporal document d over the temporal domain [0, n] is a sequence
d0, . . . , dn of (static) documents such that, for each document dt=(r, σt, γt), it is
assumed that the mapping γt satisfies: ∀i, i′ ∈ dom(σt), i≠i

′⇒γt(i)≠γt(i
′).

The condition on γt enforces γt(i) to behave as an explicit identifier for the
node i. These explicit identifiers are used to trace node evolution over time in
the temporal document d.

Fig. 1 presents an abstract document d0, d1, d2. Explicit node identifiers are
prefixed with #.

As already said, in practice, storing an abstract temporal document d may
be quite inefficient because of replication of unchanged parts of the document.
The concrete model aims at coping with this by introducing timestamps over
document elements, providing their validity period. Changes are then encoded
within a single document.

Definition 3.2 (Timestamped Document)
A timestamped XML document ∆=(r, σ, γ,τ) is an XML document enriched with
a mapping τ∶ dom(σ)→Int, satisfying the following properties1:
− ∀i, j∈dom(σ)∖{r}, j∈child(σ,{i}) implies τ(j)⊆τ(i), and
− ∀i, j∈dom(σ), i≠j and γ(i)=γ(j) implies τ(i)∩τ(j)=∅.

1
Int is the set of positive integers.
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Figure 1: A temporal abstract document d

The first condition is classical and ensures that timestamps are hierarchically
consistent. The second one ensures that, two nodes i, j representing the evolution
of an element, cannot share the same validity intervals. γ(i) are abusively
called explicit identifiers, although for timestamped document, γ is no more
a bijection. Fig. 2 depicts two timestamped documents ∆ and ∆′. For the
purpose of making easier the manipulation of a timestamped document, the
explicit value of Now is registered at its root.

Temporal projection is now defined by extending XML projection already
introduced in Section 2 for (static) XML documents.

Definition 3.3 (Temporal Projection)
The temporal projection of a timestamped document ∆=(r, σ, γ,τ) on a time

point t, denoted Snap(∆, t), is the (static) XML document d=(r,ΠT (∆,t)(σ),
γ∣T (∆,t)) where T (∆, t)={i∣t∈τ(i)} if t∈τ(r)} and the undefined document � oth-
erwise.

The following definition links abstract and concrete representations in a
natural manner.

Definition 3.4 (Sound & Complete Encoding)
Given an abstract document d=d0, . . . , dn, a timestamped document ∆=(r, σ, γ,τ)
is a sound, resp. complete, encoding of d if ∀t∈τ(r), Snap(∆, t)=dt, resp. if
∀t∈[0, n], Snap(∆, t)=dt.

The two timestamped documents ∆ and ∆′ of Figure 2 are encodings of the
abstract document of Figure 1.

In the reminder, we consider sound and complete concrete encodings of ab-
stract temporal documents and the term "concrete encoding" implicitly includes
"sound and complete".

The following table summarizes the notation used throughout the article.

static XML doc. d DTD D

abstract temporal XML doc. d timestamped XML doc. ∆

Space-efficient concrete encodings

Obviously, an abstract document may have several concrete encodings. Some
of them may be more space-saving than others because they have less nodes.
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Figure 2: Two encodings of the abstract temporal document d

Next, we formalize such a notion by introducing a pre-order ⪯ that enables to
compare timestamped documents.

Given a timestamped forest f=(I, σ, γ,τ) over J , a label l and an explicit
identifier x (meaning x=γ(i) for some i∈J), Sf(l, x) denotes the set of top-level
store identifiers (∈ I) associated with nodes labeled by l and whose explicit
identifier is x: Sf(l, x)={i∈I ∣ σ(i)=l[K] and γ(i)=x}.

Definition 3.5 (Compactness Order)
Consider two timestamped forests f1=(I1, σ1,τ1, γ1) and f2=(I2, σ2,τ2, γ2).
Below, l is a label in f1 or f2 and x is an explicit identifier
i.e. x∈γ1(dom(f1))∪γ2(dom(f2)).
f1is more compact than f2 if:
(1) for each l and x, we have: ∣Sf1(l, x)∣≤∣Sf2(l, x)∣ and
(2) for each l and for each x, we have: ΠK1

(f1)⪯ΠK2
(f2) where

Ki=Sfi(l, x)∪desc(σi, Sfi(l, x))
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Our definition of compactness order is tree-based and relies on comparing
the number of subtrees rooted at matching nodes. Let us go back to the example
of Figure 2 presenting encodings of the abstract document of Figure 1: it can be
checked that ∆′ is more compact than ∆ since the subtree rooted at the node
whose label is a and explicit identifier is 2 is replicated in ∆.

It may happen that two timestamp documents are not comparable wrt com-
pactness. For instance, it is the case of ∆1 and ∆′1 in Fig. 3. In the general
case, ⪯ is a pre-order: it is reflexive, transitive but is not antisymmetric. Proving
reflexivity and transitivity is straightforward. In order to prove that ⪯ is not
antisymmetric, we exhibit a counter example. Let us consider the timestamped
documents in Figure 3: we have that ∆′1⪯∆2 and ∆2⪯∆

′
1 but ∆′1 ≠∆2.
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Figure 3: Compactness order

Note that ∆′1 and ∆2 do not encode the same abstract temporal document.
Indeed, comparing the compactness of two timestamped documents that differ
by their labels and temporal domains does not convey much information. Next,
we will be comparing pairs of timestamped documents that are concrete encod-
ing of the same abstract temporal XML document. Under such a restriction2,
we have:

Property 3.6 ⪯ is a partial order.

Sketch of proof. Reflexivity and transitivity can be proved in a straightfor-
ward manner by using Definition 3.5. In order to prove antisymmetry, we need
to prove that given two timestamped documents ∆1 and ∆2 encoding the same
abstract document d, if ∆1⪯∆2 and ∆2⪯∆1 then necessarily ∆1 and ∆2 are
value-equivalent.3 This is done by induction on ∆1 and ∆2 using the definitions
3.5 and 3.4.

Next, given an abstract temporal document d=d0, . . . , dn, we denote by
Top(d) the least compact concrete encoding of d. Obviously, given a concrete
encoding ∆ of d, we have: ∆ ⪯ Top(d).

2For sake of simplicity, we do not formally introduce this restriction in the property below.
3Value-equivalence for timestamped documents is defined in a straightforward manner by

extending value-equivalence for static documents (see Section2).
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4 Building space-efficient encodings

This section focuses on building or maintaining a concrete encoding for an ab-
stract temporal document. The issue is to ensure compactness of the encoding
and, at the same time, to treat very large documents. Two methods are in-
vestigated. The first one is developed without making any hypothesis on the
abstract documents, whereas the second one makes the assumption that the ab-
stract document is associated with a given sequence of updates. Although the
methods are not comparable in general, we show that, histories can be encoded
into timestamped document in a significantly more compact manner.

4.1 Encoding general abstract documents

Comp(Fs, F, t) =

l.1 F [t,Now] if roots(Fs) = ∅

l′.1 FNow←t
s if roots(F ) = ∅

otherwise assume Fs=∆○Φ and F=d○f

l.2 ∆ ○ Comp(Φ, f, t) if τ+∆(r∆)≠Now

otherwise assume τ
+
∆(r∆)=Now

l.3 TComp(∆, d, t) ○ Comp(Φ, f, t) if lab(r∆)=lab(rd) and γ∆(r∆)=γd(rd)

l.4 ∆ ○ Comp(Φ, f, t) if σ∆(r∆)=σd(rd)=text[st]

l.5 ∆Now←t ○ d[t,Now] ○ Comp(Φ, f, t) otherwise

Figure 4: Definition of Comp

Let us consider an abstract document d=d0, . . . , dn. The method, called
It-Comp, used to build or maintain a timestamped encoding of d, relies on an
iterative process. The initial document is trivially transformed into a times-

tamped document ∆0=d
[0,Now[
0

and then assuming that ∆t−1 is encoding of
d0, . . . , dt−1, the document dt is "added" to ∆t−1 in a specific manner to pro-
duce ∆t=Comp(∆t−1, dt, t).

Informally, Comp proceeds to a parallel and synchronized parsing of ∆t−1

and dt and attempts to merge nodes in dt with nodes in ∆t−1. The formal
specification of Comp is given in Figure 4. Its inputs are: a timestamped forest
Fs (a sub-forest of ∆t−1), a XML forest F (a sub-forest of the static XML
document dt), and t referring to the validity time of dt.
Given an interval int, the timestamped forest f int is obtained by time stamping
each node of the forest f with int. The timestamped forest Φt1←t2 is obtained
by upper bound substitution: each occurrence of the timestamp [t, t1[ in Φ is
replaced by [t, t2[ .

Let us now explain the behavior of Comp. Line 1 is the terminal case: the
forest Fs is empty (its root set is empty). For Line 2, 3, 4 and 5, the nodes
parsed by Comp are the root node r∆ of ∆ for the ∆t−1 side and the root node
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rd of d for the dt side. Line 2 deals with the case where the parsed node r∆ is
not valid at the current time. In this case, the subtree rooted at r∆ is simply
output. Line 3 deals with the case where the parsed nodes r∆ and rd "match"
an unchanged element node; then the function TComp(∆, d, t) builds the tree
whose root is r∆ and whose sub-forest is recursively built by a call to Comp

involving the sub-forest of ∆ (for ∆t−1 side) and the sub-forest d (for dt side).
Line 4 deals with the case where both parsed nodes are the same text node. Line
5 captures the case where changes are identified: either r∆ has been removed
between the instants t−1 and t or it has moved modifying the child order; r∆ is
output first (together with its sub-forest) while closing its timestamp, followed
by the node rd and its sub-forest timestamped by [t,Now[ as expected.

It can be shown that:

Property 4.1 It-Comp(d) is a concrete encoding for the abstract document d,
and It-Comp(d)⪯Top(d).

Note that the way Comp is designed allows for a streaming implementation
which ensures that large documents can be processed. Unfortunately, this also
explains why Comp is unable to reduce replication of elements, which would
require to buffer (in some case a large amount of) information. This is incom-
patible with our space-efficiency target.

4.2 Encoding Histories

This section considers a class of abstract temporal documents usually called
histories. An abstract temporal document d=d0, . . . , dn is an history when each
document dt is obtained from dt−1 by some update ut. Indeed, the history d is
equivalently specified by an initial XML document d0 and a sequence of updates
u1, . . . , un. We consider the XQuery Update Facility (XUF) update language
as described in [9]. Although renaming is part of our study, we do not present
the technical aspects of its treatment for the sake of simplicity. We also assume
that each document di is valid wrt to some known DTD Di, leaving space for
schema evolution. For the sake of simplicity, we suppose next that ∀i,Di=D.

Generating a timestamped encoding of an history d specified by d0 and
u1, . . . , un is an iterative process, called It-Update. The initial document d0

is trivially transformed into the timestamped document ∆0=d
[0,Now[
0

, and then
assuming that ∆t−1 is the timestamped document encoding the history specified
by d0 and u1, . . . , ut−1, the update ut is propagated, in a specific manner, over
∆t−1 to produce ∆t=Update(∆t−1, ut).

Recall here that our goal is to provide a compact encoding of the history d,
and also to handle timestamped documents of very large size as well as we want
to avoid for devising a new update engine. This motivates the investigation of a
method based on XML projection for specifying Update(∆t−1, ut) because such
method allows one for reducing main memory space consumption and for being
compatible with any XUF [7] query engine.
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In [8], a type-based method has been proposed for optimizing main memory
XML update processing where optimization should be understood as space
optimization4. Given an update u over a document d valid wrt a DTD D,
the idea is to determine, in a static manner, which fragments of the document
are necessary for and touched by the update u. More precisely, from u and the
DTD D, a static analysis infers a type-projector π specified by sets of labels.
Then, the update scenario is as follows. At loading time, the document d is
pruned wrt π in a streaming manner: roughly, nodes whose labels are in π are
projected. The update u is evaluated over the pruned document π(d). The
document u(π(d)) is of course missing the pruned out nodes and thus a last
step is necessary in order to reinstate the update of the projected document
u(π(d)) in the document d. This is done by merging the documents d and
u(π(d)) at writing-serializing time. The update scenario has been designed in
order to avoid any rewriting of the update and in order to be independent of
any main-memory engine.

The interested reader will find in [8] a full description of the type-projector,
its extraction, the projection and merge algorithms as well as experiments val-
idating the space and time optimization. Below, we proceed to a short intro-
duction of the type-projector. Type-projectors for updates have been devised
in order to capture update expression features and also to ensure correctness of
the merge phase. The type-projector π for an update u is specified by 3 sets
of labels: πno (the ’node only’ component) is meant to capture labels of nodes
that are traversed by u or target of deletion or existential condition; πolb (the
’one level below’ component) is meant to capture labels of mixed-content nodes
or labels of nodes that are targets of insertion or replacement; πeb (the ’every-
thing below’ component) is meant to capture labels of nodes that are roots of
extracted subtrees. Given a document d valid wrt the DTD D, the behavior
of the type-projector is as follows. If the label of a node (of d) belongs to πno,
then it is projected. If the label of a node belongs to πolb, then it is projected
together with all its children, even though their labels do not belong to the pro-
jector. If the label of a node belongs to πeb, then it is projected together with all
its descendants, even though their labels do not belong to the projector. When
a node is projected because its label belongs to π, its children are examined as
candidate for projection, according to the above rules.

We are now ready to define Update(∆t−1, ut). We use the example of Figure
5 to illustrate the presentation. The DTD D considered is depicted in Figure 5.

It is assumed that the document ∆1 is an encoding of d0, d1 of Fig. 1 and
that the update u2 applied on d1 to produce d2 is specified by the XUF expres-
sion:

for $x in /doc/a where $x/b/g
return { insert node /doc/a/e after $x;delete $x/b}.

Propagating an update ut on the timestamped document ∆t−1 relies on the

4Experiments of this method show that execution time is also improved for some engines.
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Figure 5: Illustrating the update-based encoding

update scenario of [8] and proceeds as follows:
(1) the type-projector π for the update ut is extracted as specified in [8]; for
the update u2 of our running example, the type-projector is the one of Figure
5.
(2) the timestamped document ∆t−1 is projected at loading time wrt
the temporal type-projector πNow, which combines the temporal projec-
tion over the time instant t−1 (or Now) and the type-projection π i.e.

πNow(∆t−1)
def
= π(Snap(∆t−1,Now)); the projected document is equivalent

to the type-projection of the document dt−1=ut−1(u0(d0)), i.e. we have
πNow(∆t−1)∼π(dt−1); for our example, only the node #2.1.1 is pruned out by
temporal projection wrt to Now; the type-projection prunes out the node #1.1.1

because its label f does not belong to π; note that the subtree rooted at #2.2

is projected because its label e belongs to πeb.
(3) the update ut is evaluated over the projected document πNow(∆t−1) produc-
ing ut(π

Now(∆t−1)); this can be performed by any update engine and update
rewriting is not required; Fig. 5 shows the document u2(π

Now(∆1)) for our run-
ning example.
(4) the last step integrates the document ut(π

Now(∆t−1)) into the timestamped
document ∆t−1; this phase called UMerge differs from [8] as not only it has
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to propagate the updates executed over πNow(∆t−1) but it also needs to main-
tain timestamps. Wrt our example, the result of UMerge applied over ∆1 and
u2(π

Now(∆1)) is (value equivalent to) the timestamped document ∆′ of Fig.
2(b).

The information used by UMerge are: the type-projector π, timestamps and
node identifiers as explained below. The UMerge phase proceeds by parsing
both documents in a synchronized manner. At each step, the parsed node in
∆t−1 and the parsed node in ut(π

Now(∆t−1)) are examined to decide which
one should be output and also to maintain timestamps. We stress that UMerge

does not perform changes on nodes other than timestamp maintenance. Clearly,
during parsing, the "old" nodes of ∆t−1 timestamped by [k1, k2[ where k2≠Now

are output directly: they have been pruned out by the temporal projection
and were not involved in the update. For our example, this case applies to
node #2.1.1. Nodes in ∆t−1 timestamped by [k1,Now[, corresponding to nodes
in Snap(∆t−1,Now), requires a careful analysis: some of these nodes may
have been pruned out although others may have been projected and modified.
Checking whether a node n in ut(π

Now(∆t−1)) corresponds to a node m in
∆t−1 (although the label of n may have been changed by the update ut) is
done by checking identifier equality based on the the following setting: (i) node
identifiers for ∆t−1 are node positions (see additional remarks below); (ii) new
nodes introduced by the update ut have no explicit identifiers (positions) as we
use the initial update ut without rewriting it.

Remark on node position. The reader should pay attention to the fact that, for
the sake of the example, node positions for the document ∆1 are given although,
in practice, they are not stored within the timestamed document. This would
uselessly increase space and time consumption. In practice, node positions are
generated on the fly during the time-projection and the UMerge phases. As
positions are used only for nodes in Snap(∆t−1,Now), they are generated only
for these nodes rather than for the whole timestamped document ∆t−1. Node
positions are stored, in memory, for the projection πNow(∆t−1). Moreover, in
practice, full positions are not required and child order is sufficient with the
advantage of reducing significantly space requirements.
For the sake of the example presentation, special identifiers ni have been used,
in the document u2(π

Now(∆1)), for nodes inserted by u2.

Formally:

Update(∆t−1, ut)=UMergeno(∆t−1, ut(π
Now(∆t−1)), t).

The definition of the function UMergeno is given in Figure 6(a). The func-
tions UMergeolb and UMergeeb are specified through UMergeα in Figure 6(b)
where α refers either to olb or to eb. The inputs of these three functions are:
a sub-forest Fs of ∆t−1, a sub-forest Fu of ut(π

Now(∆t−1)) and t referring to the
validity time of ut.

The three functions are distinguished based on the following pre-conditions:
− UMergeno assumes that (†) the parent node n of the forest Fs is of cat-
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egory ’node only’ which implies that, because of synchronization, i) none of
the top level trees in Fu is of type String, and ii) root identifiers of top-
level trees in Fu belong to root identifiers of top-level trees in Fs restricted
at the time point t−1 that is: roots(Fu)⊆roots

Now(Fs) where rootsNow(Fs)={i ∣
i∈roots(Fs) and τ

+(i)=Now}.
− UMergeolb assumes that (‡) the parent node n of Fs is in category ’one

level below’ which implies that, each node in rootsNow(Fs) has been projected.
− UMergeeb assumes that (‡‡) the parent node n of Fs is in category ’every-

thing below’ which implies that, each subtree whose root node is in rootsNow(Fs)
has been projected.

The function UMergeno proceeds as follows:
Line 2 takes care of the case where the parsed node of ∆ is either: (i) a

node that has been pruned out by temporal projection or (ii) a String node not
projected because of assumption (†). In both cases, the timestamped document
∆ has to be output.

Line 3 deals with the case where ∆ has been deleted by the update. This
fact is identified by the fact that the label a of the root r∆ of ∆ belongs to π

(thus at least r∆ has been projected) and r∆ does not occur in Fu: either Fu

is empty or by comparing the identifiers of the currently parsed nodes (which
are positions in Fs) we find that rdu

>r∆. Therefore, r∆ is together with its
sub-forest are output while closing their timestamps.

Line 4 takes care of the case where the parsing is synchronized over the
"same" subtrees: the positions of r∆ and of rdu

are equal and only their la-
bels may differ because of some renaming update. In this case, the output is
TreeUMergeno(∆, du, t) which is the subtree whose root is labelled with lab(r∆)
and whose sub-forest F is defined as follows:

F = UMergeno(subfor(∆), subfor(du), t) if lab(r∆)∈πno

UMergeolb(subfor(∆), subfor(du), t) if lab(r∆)∈πolb

UMergeeb(subfor(∆), subfor(du), t) if lab(r∆)∈πeb

where subfor(d) is used for denoting the sub-forest of d.
We would like to stress that, for the case where lab(r∆)∈πeb, unlike the

scenario of static documents developed in [8], UMerge performs additional pro-
cessing over subfor(∆) and subfor(du) in order to propagate the effect of the
update in a temporal fashion. Indeed, in [8] the result of the Merge phase
for the case where lab(r∆)∈πeb is simply the sub-forest of the updated partial
document subfor(du). In our case, the output is built by UMergeeb whose
explanation is given below.

Finally, line 5 deals with the case where the label of r∆ does not belong to
the projector π entailing that ∆ has not been projected. Thus, ∆ is output.

The function UMergeα in Fig. 6(b) is a shorthand for the functions
UMergeolb and UMergeeb. Recall that UMergeolb and UMergeeb are distin-
guished based of the pre-conditions (‡) and (‡‡) respectively.

Line b2 deals with the case where the parsed node of the timestamped
document ∆ is an "old" node that has to be output together with its sub-tree.
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Line b3 and b4 deal with the case where the current parsed tree of ∆ is a
String s which has been projected by temporal projection (‡ and ‡‡ entail that
String nodes are projected). Line b3 deals with the case where the String s has
not been modified by the update and has, thus, to be output. Line b4 deals
with two cases: the case where the String s has been either modified by the
update, indicated by σdu

(rdu
)=text[s′], or deleted. In both cases, the String s

is output after closing its timestamp. One should pay attention to the fact that
the subtree du will be considered by the application of the forthcoming lines.

Line b5 deals with the case where the current parsed tree du of Fu is either
of type String or a newly inserted element. This latter case is identified by
checking that the identifier of rdu

is new (∉ dom(σ∆)). Thus, the tree du is
output with the timestamp [t,Now[.

Line b6 is similar to line 3 of UMergeno. It does not require further com-
ments.

Line b7 is similar to line 4. The output is TreeUMergeα(∆, du, t) where
− TreeUMergeolb(∆, du, t)=TreeUMergeno(∆, du, t) and
− TreeUMergeeb(∆, du, t) is the subtree whose root is labelled with lab(r∆) and
whose sub-forest F=UMergeeb(subfor(∆), subfor(du), t).
In the latter case, TreeUMergeeb enforces the parsing of subfor(∆) and
subfor(du) to be performed by UMergeeb. Recall that, because of the as-
sumption (‡‡), the tree ∆ has been projected entirely. UMergeeb is designed
such that the updates performed over the projection du are propagated into ∆

while maintaining its timestamps.
Line b8 is deals with the case where the root node n of ∆ does not belong to

the projector π. In this case, although implicit, the equality r∆=rdu
holds since,

because of (‡‡) and thanks to synchronization, the node identified by r∆=rdu
is

in both forests Fs and Fu.
Let us comment on UMerge with our running example. In order to do that,

a node of a document X whose position is #i is denoted by X#i; the document
u2(π

Now(∆1)) is denoted with δ2. While merging ∆1 and δ2, nothing special
happens until after parsing ∆1#1 and δ2#1. Then, the next node to be parsed
in ∆1 is ∆1#1.1, child of ∆1#1, while δ2#1 has no subtree. Because the
timestamp of ∆1#1 is [0,N[ and its label b belongs to π, the function UMerge

detects that the subtree rooted at ∆1#1.1 has been deleted by u and thus this
subtree is output after replacing the timestamp [0,N[ by [0,2[. The two next
nodes examined are ∆1#2 and the new node δ2#n1: the new subtree of δ2 is
then output with the appropriate timestamp [2,Now[.

Property 4.2 Given an history d, we have that:
(i)ii It-Update(d) is a concrete encoding for d, and,
(ii)i It-Update(d)⪯It-Comp(d), and thus
(iii) It-Update(d)⪯Top(t)

Space limitation does not allow us to present proofs. Notice that (ii) ex-
presses that when an abstract document is an history, the projection based
method is better than the simple one in terms of compactness. This fact is
validated by the experiments.
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UMergeno(Fs, Fu, t) =

1 () if roots(Fs)=∅
otherwise assume Fs=∆○Φ

2 ∆○ UMergeno(Φ, Fu, t) if either σ∆(r∆)=text[s] or τ
+
∆
(r∆)≠Now,

otherwise assume σ∆(r∆)=a[I∆] and τ
+
∆
(r∆)=Now

3 ∆Now←t ○ UMergeno(Φ, Fu, t) if a∈π∪ and either roots(Fu)=∅ or Fu=du○fu with rdu
>r∆

4 TreeUMergeno(∆, du, t) ○ UMergeno(Φ, fu, t) if a∈π, Fu=du○fu and r∆=rdu

5 ∆ ○ UMergeno(Φ, Fu, t) if a/∈π

(a) The definition of UMergeno

UMergeα(Fs, Fu, t) =

b1 F
[t,Now[
u if roots(Fs)=∅

otherwise assume Fs=∆○Φ, Fu=du○fu

b2 ∆○UMergeα(Φ, Fu, t) if τ+
∆
(r∆) ≠ Now

otherwise assume σ∆(r∆)=text[s] , τ+
∆
(r∆)=Now

b3 ∆○UMergeα(Φ, fu, t) if σdu
(rdu
)=text[s]

b4 ∆Now←t ○ UMergeα(Φ, Fu, t) if either σdu
(rdu
)=text[s′], s ≠ s′ or σdu

(rdu
)=b[Idu

]
otherwise assume σ∆(r∆)=a[I∆],τ

+
∆
(r∆)=Now

b5 d
[t,Now[
u ○UMergeα(Fs, fu, t) if either σdu

(rdu
)=text[s] or σdu

(rdu
)=b[Idu

], new(rdu
)=true

b6 ∆Now←t ○ UMergeα(Φ, Fu, t) if a∈π and either roots(Fu)=∅ or rdu
>r∆

b7 TreeUMergeα(∆, du, t) ○ UMergeα(Φ, fu, t) if a∈π, r∆=rdu

b8 ∆ ○ UMergeα(Φ, fu, t) if a/∈π

(b) The definition of UMergeolb and UMergeeb

Figure 6: The specification of UMerge

1
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5 Experiments

To validate the effecticiency of our approach, we implemented both the It-Comp

and It-Update algorithms in Java, and made experiments on a 2.53 Ghz Intel
Core 2 Duo machine (2 GB main memory) running Mac OSX 10.6.4. The
main-memory engine used for running the It-Update is QizX [4, 3].

We generated four abstract documents, starting from four initial XMark
documents of growing size, from 45MB to 1126MB. As the goal is to compare
It-Comp and It-Update, each abstract document is an history d0, d1, d2, d3 where
d0 is the initial document, and di is obtained from di−1 by means of an update
ui. The updates used for the experiments are given below. It should be clear
that, for the purpose of evaluating It-Comp, we generated each di with adequate
explicit identifiers, while evaluating It-Update only requires the initial document
and the updates.

u1. delete node/site/regions/australia

u2. for $x in/site/closed_auctions/closed_auction

u2. where $x/annotation
u2. return insert node <amount>to be determined</amount>

u2.insert after $x/price

u3. for $x in /site/open_auctions/open_auction

u2. where $x/privacy return delete $x

d0 45.4MB 112.4MB 454.8MB 1126.8MB
∆0 55.7 138.5 563.5 1351.7
∆′

0
45.4 112.4 454.8 1126.8

∆1 76.5 190.5 774.7 1833.0
∆′

1
45.4 112.4 454.8 1126.8

gain 40.7% 41.0% 41.3% 38.5%

∆2 84.5 210.1 853.6 2027.5
∆′

2
45.6 112.9 456.4 1130.7

gain 46.0% 46.3% 46.5% 44.2%

∆3 91.7 228.6 929.0 2207.5
∆′

3
45.6 112.9 456.4 1130.7

gain 50.3% 50.6% 50.9% 48.8%

Table 1: Comparison between It-Update and It-Comp

Test results are reported in Table 1. In this table, ∆i is the result of
compacting d0 . . . di documents applying the It-Comp method while ∆′i is the
encoding obtained after executing the ui update starting from ∆′i−1 according
the It-Update method. We compared the two methods in terms of sizes of ∆i

and ∆′i with i ranging from 0 to 3. Obviously the difference in size between ∆0

and ∆′0 is explained by the presence of explicit identifiers in ∆0.
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Test results in Table 1 show that the It-Comp method is more space con-
suming than the It-Update method. While the size is increasing in the ∆i’s
sequence, the size is almost constant in the ∆′i’s sequence. This testifies that
the It-Update method succeeds in avoiding node replication under updates. The
method It-Comp instead entails a sensible amount of node replication since in-
formation coming from the update is not used.

We can also see that after each update the improvements in terms of size
is sensible, going from 38.5%, after the first update, to 50.9%, after the last
update.

In these experiments we considered abstract documents of length 4. Improve-
ments in terms of size are likely to remain sensible in other realistic scenarios,
since as the number of documents increases the probability that node replication
arises in the It-Comp method increases as well. Of course this holds for It-Update

method as well, but in a much smaller extend, since update information is used.
We postpone to future works experiments on more complex scenarios.

To conclude, we would like to highlight that both methods are able to process
temporal documents of large size. Recall that the memory limitation of QizX,
the update engine used for the experiments of It-Update, makes impossible to
process documents whose size exceeds 580MB. We plan to run our experiments
with other engines.

6 Conclusion

In this paper we developed two techniques for generating and maintaining en-
codings of abstract temporal documents. The first technique addresses the case
where no information is available on the abstract temporal document. Although
this technique is not fully satisfactory from the point of view of space efficiency, it
allows to maintain large temporal documents. The second one, called update-
based, is designed to manipulate document history. It takes advantage of a
prior technique developed in [8] and enabling the update of large XML files us-
ing in-memory engines. The first experiments validate the effectiveness of both
methods wrt to our first goal (processing large documents) and show that our
update-based method is efficient wrt space-saving.

In the future, we plan to improve both methods and develop further exper-
iments. Concerning the first one, we might investigate how to take advantage
of a description of the changes (recall that changes are not updates) in order to
develop projection-based method. For both method, we also plan to investigate
parallelization in order to improve execution time.
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