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HITTING TIME FOR BESSEL PROCESSES - WALK ON MOVING
SPHERES ALGORITHM (WOMS) ∗

By Madalina Deaconu† and Samuel Herrmann‡

INRIA Nancy Grand-Est & Institut Elie Cartan de Nancy † and Institut de Mathématiques de
Bourgogne, Université de Bourgogne ‡

In this article we investigate the hitting time of some given bound-
aries for Bessel processes. The main motivation is coming from math-
ematical finance when dealing with volatility models but the results
can also be used in optimal control problems. The aim is here to con-
struct a new and efficient algorithm in order to approach this hitting
time. As an application we will consider the hitting time of a given
level for the Cox-Ingersoll-Ross process. The main tools we use are
on one side an adaptation of the method of images to this particu-
lar situation and on the other side the connection existing between
Cox-Ingersoll-Ross processes and Bessel processes.

1. Introduction. The aim of this paper is to study the hitting time of some curved boundaries
for the Bessel process. Our main motivations come from mathematical finance, optimal control and
neurosciences. In finance Cox-Ingersoll-Ross processes are widely used to model interest rates. As
an application, in this article we will consider the simulation of the first hitting time of a given
level for the CIR by using its relation with the Bessel process. In neurosciences the firing time of a
neuron is usually modelled as the hitting time of a stochastic process associated with the membrane
potential behaviour (for introduction of noise in neuron systems see Part I Chapter 5 in [7]). The
literature proposes different continuous stochastic models like for instance the family of integrate-
and-fire models (see Chapter 10 in [6]). Most of them are related to the Ornstein-Uhlenbeck process
which appears in a natural way as extension of Stein’s model, a classical discrete model. In Feller’s
model, generalized Bessel processes appear as a more realistic alternative to the Ornstein-Uhlenbeck
process, see for instance [10] for a comparison of these models. Therefore the interspike interval,
which is interpreted as the first passage time of the membrane potential through a given threshold
is closely related to the first hitting time of a curved boundary for some Bessel processes.

Our main results and the main algorithm are obtained for the case of Bessel processes. We use
in our numerical method the particular formula that we obtain for the hitting time of some curved
boundaries for the Bessel process and the connection that exists between a Bessel process and the
Euclidean norm of a Brownian motion when calculating the hitting position. As an application
we consider the hitting time of a given level for the Cox-Ingersoll-Ross process. In order to obtain
this, we use first of all the connection that exists between CIR processes and Bessel processes and
secondly the method of images for this particular situation.

The study of Bessel processes and their hitting times occupies a huge mathematical literature.
Let us only mention few of them: A. Göing-Jaeschke and M. Yor [8] consider a particular case
of CIR processes which are connected with radial Ornstein-Uhlenbeck processes and their hitting
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times; L. Alili and P. Patie [1] investigate as a special situation the Bessel processes via some
boundary crossing identities for diffusions having the time inversion property; recently P. Salminen
and M. Yor consider the hitting time of affine boundaries for the 3-dimensional Bessel process [16].

In a recent paper Y. Hamana and H. Matsumoto [9] give explicit expressions for the distribution
functions and the densities of the first hitting time of a given level for the Bessel process. Their
results cover all the cases. Let us also mention a recent work of T. Byczkowski, J. Malecki and M.
Ryznar [2]. By using an integral formula for the density of the first hitting time of a given level of
the Bessel process, they are able to obtain uniform estimates of the hitting time density function.

In all these papers the formulas are explicit and are hard to use for a numerical purpose as
they exhibit Bessel functions. The main idea of this paper is to get rid of this difficulty by using
two important tools: first of all the method of images that allows to obtain, for some particular
boundaries, an explicit form for the density of the hitting time and secondly the connection between
δ-dimensional Bessel processes and the Euclidean norm of a δ-dimensional Brownian motion in order
to get the simulated exit position. By coupling these ingredients we are able to construct a numerical
algorithm easy to implement and very efficient which approaches the desired hitting time.

We will use here a modified version of the random walk on spheres method which was first intro-
duced by Muller [13] in 1956. This procedure allows to solve a Dirichlet boundary value problem.
The idea is to simulate iteratively, for the Brownian motion, the exit position from the largest
sphere included in the domain and centered in the starting point. This exit position becomes the
new starting point and the procedure goes on until the exit point is close enough to the boundary.
Let us notice that the simulation of the exit time from a sphere is numerically costly.

The method of images was introduced in 1969 by H.E. Daniels [4] as a tool to construct nonlinear
boundaries for which explicit calculations for the exit distribution for the Brownian motion are
possible. The method was developed also in H. R. Lerche [11]. We adapt this method for the Bessel
process by using the explicit form of its density. For some particular curved boundaries we can
explicitly evaluate the density of the Bessel hitting time.

The paper is organized as follows. First we present some new results on hitting times for Bessel
processes. Secondly we construct the new algorithm for approaching the hitting time, the so called
Walk on Moving Spheres algorithm. Finally we present some numerical results and as a particular
application the evaluation of the hitting time of a given level for the Cox-Ingersoll-Ross process.

2. Hitting time for Bessel processes.
Bessel processes play an important role both in the study of stochastic processes like Brownian

motion and in various theoretical and practical applications as for example in finance.
Let us consider the δ-dimensional Bessel process starting from y, solution of the following stochas-

tic differential equation:

(2.1)







Zδ,yt = Zδ,y0 +
δ − 1

2

∫ t

0
(Zδ,ys )−1ds+Bt,

Zδ,y0 = y, y ≥ 0,

where (Bt)t≥0 is a one dimensional Brownian motion. We denote

(2.2) ν =
δ

2
− 1

the index of this process. We call δ the dimension of the process. This terminology is coming
from the fact that, in the case of positive integer δ ∈ N, a δ-dimensional Bessel process can be
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represented as the Euclidean norm of a δ-dimensional Brownian motion. This will be a key point
in our numerical method.

The density of this process starting from y is given by:

(2.3) py(t, x) =
x

t

(

x

y

)ν

exp

(

−x
2 + y2

2t

)

Iν

(xy

t

)

, for t > 0, y > 0, x ≥ 0,

where Iν(z) is the Bessel function whose expression writes:

(2.4) Iν(z) =
∞
∑

n=0

(z

2

)ν+2n 1

n!Γ(ν + n+ 1)
.

When starting from y = 0, the density of Zδ,0t is:

(2.5) p0(t, x) =
1

2ν
1

tν+1

1

Γ(ν + 1)
xδ−1 exp

(

−x
2

2t

)

, for t > 0, x ≥ 0.

2.1. The method of images for Bessel processes. In this section, we investigate the first hitting
time of a curved boundary for the Bessel process starting from the origin. Let ψ(t) denote the
boundary, and introduce the following stopping time:

(2.6) τψ = inf{t ≥ 0; Zδ,0t ≥ ψ(t)}.

For some suitable choice of the boundary, the distribution of τψ can be explicitly computed. The
idea is given by the following remark on the method of images (see for instance [4] for the origin of
this method and [11] for a complete presentation):

Fundamental idea. Suppose that F is a positive σ-finite measure satisfying some integrability
conditions (to be specified later on) and define

(2.7) u(t, x) = p0(t, x)−
1

a

∫

R+

py(t, x)F (dy),

for some real constant a > 0. Let

ψ(t) = inf{x ∈ R;u(t, x) < 0}, for all t > 0.

Then u(t, x) is solution of the partial differential equation:

(2.8)















∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x)− δ − 1

2

∂

∂x

(

1

x
u(t, x)

)

, on R+ × R,

u(t, ψ(t)) = 0, for all t > 0,
u(0, .) = δ0(.) on (−∞, ψ(0+)].

From this remark we deduce an interesting expression for the hitting time. We can prove that:

τψ = inf{t > 0; u(t, Zδ,0t ) = 0}.

This means simply that in order to obtain informations on the hitting time it sufficies to look for
u(t, Zδ,0t ) = 0.

Let us express this in a general result
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Theorem 2.1. Let F (dy) be a positive σ-finite measure such that
∫∞
0 p0(t,

√
εy)F (dy) <∞ for

all ε > 0. Let a > 0 and define the function:

(2.9) u(t, x) = p0(t, x)−
1

a

∫

R+

py(t, x)F (dy).

Consider ψ(t) such that u(t, ψ(t)) = 0. Then the probability density function of τψ is given by

(2.10) P0(τψ ∈ dt) =

[

− 1

2

∂u

∂x
(t, x)

∣

∣

∣

∣

x=ψ(t)

+
1

2

∂u

∂x
(t, x)

∣

∣

∣

∣

x=0

− δ − 1

2x
u(t, x)

∣

∣

∣

∣

x=0

]

dt.

Proof. We will only point out the main ideas for the proof in this case as it follows mainly the
ideas introduced in [11]. A complete description of the method and this result for the Brownian
motion case can be found in [11].

Let us consider

(2.11) u(t, x) = p0(t, x)−
1

a

∫

R+

py(t, x)F (dy),

where F (dy) is a measure on R+. We consider ψ(t) the solution of u(t, ψ(t)) = 0. Let us define as

before τψ = inf{t ≥ 0;Zδ,0t ≥ ψ(t)}. Then u(t, x)dx = P(τψ > t, Zδ,0t ∈ dx) and

(2.12) P0(τψ > t) =

∫ ψ(t)

0
u(t, x)dx.

In order to get the distribution of τψ we have to evaluate the derivative of P0(τψ > t). By using the
equality (2.12) we obtain:

(2.13)

P0(τψ ∈ dt) =

(

−ψ′(t)u(t, ψ(t)) −
∫ ψ(t)

0

∂u

∂t
(t, x)dx

)

dt

=

(

−1

2

∫ ψ(t)

0

∂2u

∂x2
(t, x)dx+

δ − 1

2

∫ ψ(t)

0

∂

∂x

(

1

x
u(t, x)

)

dx

)

dt,

as u(t, x) is solution of the partial differential equation (2.8). We obtain thus:
(2.14)

P0(τψ ∈ dt) =

(

− 1

2

∂u

∂x
(t, x)

∣

∣

∣

∣

x=ψ(t)

+
δ − 1

2ψ(t)
u(t, ψ(t)) +

(

1

2

∂u

∂x
(t, x)− δ − 1

2x
u(t, x)

)∣

∣

∣

∣

x=0

)

dt.

As δ−1
2ψ(t)u(t, ψ(t)) = 0 and this ends the proof of the theorem.

The idea behind the method of images is that for some particular forms of F (dy) we can derive
explicit formulas of the hitting time distribution. More precisely:

Proposition 2.2. Let, for δ = 2ν + 2 > 0 and a > 0

(2.15) ψa(t) =

√

2t log
a

Γ(ν + 1)tν+12ν
, for t ≤

[

a

Γ(ν + 1)2ν

]
1

ν+1

.

Then the probability density of τψ is given by

(2.16) P0(τψ ∈ dt) =
1

2at

(

2t log
a

Γ(ν + 1)tν+12ν

)ν+1

dt.
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Proof. By using the expression in (2.3) we remark first that

(2.17) y2ν+1py(t, x) = x2ν+1px(t, y).

Let us consider, as in Theorem 2.1

(2.18) u(t, x) = p0(t, x)−
1

a

∫

R+

py(t, x)F (dy),

with F (dy) = y2ν+11{y>0}dy. In this situation the function u defined in (2.18) writes

(2.19)
u(t, x) = p0(t, x) −

1

a
x2ν+1

=

(

1

2ν
1

tν+1

1

Γ(ν + 1)
exp

(

−x
2

2t

)

− 1

a

)

x2ν+1.

For simplicity we will write ψ instead of ψa. Following the result in the Theorem 2.1, we are looking
for ψ(t) such that u(t, ψ(t)) = 0. This yields :

(2.20) x = ψ(t) =

√

2t log
a

Γ(ν + 1)tν+12ν

under the obvious condition tν+1 ≤ a
Γ(ν+1)2ν .

We can now notice that:

p0(t, ψ(t)) =
1

a
(ψ(t))2ν+1,

and we can prove easily that:

∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
− x

t
p0(t, x).

We obtain, after replacing in (2.10) and after applying the Theorem 2.1, for this particular case:

P0(τψ ∈ dt) =
1

2t
ψ(t)p0(t, ψ(t))dt

=
1

2at
ψ2ν+2(t)dt

=
1

2at

(

2t log
a

Γ(ν + 1)tν+12ν

)ν+1

dt,

which gives the desired result.

The second boundary which allows to express explicit results is obtained by using the Markov
property for the Bessel process.

Proposition 2.3. Let, for δ = 2ν + 2 > 0, s > 0 and a > 0 fixed,

(2.21) ψa(t) =

√

2t(t+ s)

s

[

(ν + 1) log
(

1 +
s

t

)

+ log a
]

,

for all t ≥ 0 if a ≥ 1 and for t ≤ s

( 1
a
)

1
ν+1−1

if 0 < a < 1. Then the probability density function of

the hitting time τψ is given by:
(2.22)

P0(τψ ∈ dt) =
1

Γ(ν + 1)

1

t

(

t+ s

s

)ν
[

log

(

a

(

t+ s

t

)ν+1
)]ν+1

exp

[

− t+ s

s
log

(

a

(

t+ s

t

)ν+1
)]

dt.
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Proof. We will only sketch the proof as it follows the same ideas as the one of the Theorem
2.1. Let us consider the measure F (dy) = p0(s, y)dy for s > 0 fixed. Then, when evaluating the
corresponding u(t, x) we have:

u(t, x) = p0(t, x)−
1

a

∫

R+

p0(s, y)py(t, x)dy

= p0(t, x)−
1

a
p0(t+ s, x)

=
1

2ν
1

Γ(ν + 1)
x2ν+1

[

1

tν+1
exp

(

−x
2

2t

)

− 1

a

1

(t+ s)ν+1
exp

(

− x2

2(t+ s)

)]

,

by using the Markov property. We obtain the form of ψ(t) by the condition u(t, ψ(t)) = 0 which
gives:

(2.23) ψ(t) =

√

2t(t+ s)

s

[

(ν + 1) log
(

1 +
s

t

)

+ log a
]

,

{

for t ≥ 0 if a ≥ 1
for t ≤ s

( 1
a
)

1
ν+1 −1

if a < 1.

In order to obtain the distribution of τψ one has only to evaluate:

(2.24)
∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
− s

t(t+ s)
x p0(t, x),

and u(t,x)
x for x = 0 and x = ψ(t) and replace the values in the general form (2.14). The expression

(2.22) follows.

Remark 2.4. We can notice that the function ψa(t) defined by (2.21) satisfies for large times
{

ψa(t) ≃
√
t for a = 1,

ψa(t) ≃ t for all a > 1.

In particular, we can approach large times by considering this kind of boundary.

A new boundary can be obtained by using the Laplace transform of the square of the δ -
dimensional Bessel process starting from x. More precisely:

Proposition 2.5. Let, for δ = 2ν + 2 > 0, λ > 0 and a > 0 fixed,

(2.25) ψa(t) =
λt

1 + 2λt
+ t

√

(

λ

1 + 2λt

)2

+
2

t
log

a(1 + 2λt)ν+1

2νtν+1Γ(ν + 1)

for

(2.26)



















t ≤ 1
(2νΓ(ν+1)/a)1/(ν+1)−2λ

if λ <
1

2

(

2νΓ(ν + 1)

a

)
1

ν+1

,

t ≥ 0 if λ ≥ 1

2

(

2νΓ(ν + 1)

a

)
1

ν+1

.

Then the probability density function of the hitting time is given by:

(2.27) P0(τψ ∈ dt) =

√

(

λ

1 + 2λt

)2

+
2

t
log

a(1 + 2λt)ν+1

2νtν+1Γ(ν + 1)
p0(t, ψ(t))dt.
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Proof. We present only the main ideas as the result follows as above from the general method
in Theorem 2.1 applied to the measure F (dy) = y2ν+1e−λy

21{y≥0}dy. For this measure u(t, x) takes
the form:

u(t, x) = p0(t, x)−
1

a

∫

R+

py(t, x)F (dy)

= p0(t, x)−
1

a

∫

R+

py(t, x)y
2ν+1e−λy

2
dy

= p0(t, x)−
1

a

∫

R+

x2ν+1px(t, y)e
−λy2dy

= p0(t, x)−
x2ν+1

a
E

(

e−λZ
δ,x
t

)

.

By using the expression of the Laplace transform for Zδ,xt we obtain

(2.28) u(t, x) = p0(t, x)−
x2ν+1

a

1

(1 + 2λt)δ/2
exp

(

− λx

1 + 2λt

)

.

We consider first the equality u(t, ψ(t)) = 0 in (2.28) and this gives the form of ψ(t) in (2.25).
Afterwards, we can evaluate once again in this particular situation

∂u

∂x
(t, x) = (δ − 1)

u(t, x)

x
−
(

x

t
− λt

1 + 2λt

)

p0(t, x).

For this particular case, there is only one no vanishing term in the expression (2.10) of P0(τψ∈dt),

that is the term −
(

x
t − λt

1+2λt

)

p0(t, x) of
∂u
∂x(t, x) for x = ψ(t) and this is exactly given by the right

side of the formula (2.27).

Corollary 2.6. The previous results writes for δ = 2

(1) For a > 0, t ≤ a and ψ(t) =

√

2t log
a

t
, the density of the hitting time τψ is

P0(τψ ∈ dt) =
1

2a
log

a

t
dt.

(2) For s > 0, a > 0, t ≤ sa
1−a and ψ(t) =

√

2t(t+ s)

s
log

(

a
t+ s

t

)

, the probability density

function of τψ is given by:

P0(τψ ∈ dt) =
t+ s

t
log

(

a
t+ s

t

)

exp

[

− t+ s

t
log

(

a
t+ s

t

)]

dt.

(3) For a > 0 and ψ(t) =
λt

1 + 2λt
+ t

√

(

λ

1 + 2λt

)2

+
2

t
log

a(1 + 2λt)

t
, for

(2.29)



















t ≥ 0, if λ ≥ 1

2a
,

t ≤ a

1− 2λa
if λ <

1

2a
,

the probability density function of τψ is:

P0(τψ ∈ dt) =

√

(

λ

1 + 2λt

)2

+
2

t
log

a(1 + 2λt)

t
p0(t, ψ(t))dt.
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2.2. Approximation of the first hitting time for Bessel processes starting from the origin. In
this section we will construct a stepwise procedure, the so-called random Walk on Moving Spheres
(WoMS) algorithm, which allows to approach the first time the standard Bessel process hits a

given level l > 0. Of course, this stopping time τl = inf{t > 0; Zδ,xt = l} can be characterized by its

well-known Laplace transform computed by solving an eigenvalue problem. Indeed if (Zδ,xt , t ≥ 0)
is the Bessel process starting from x, of index ν = δ

2 − 1 then, for ν > 0 and x ≤ l, we get

Ex[e
−λτl ] =

x−νIν(x
√
2λ)

l−νIν(l
√
2λ)

, x > 0, and E0

[

e−λτl
]

=
(l
√
2λ)ν

2νΓ(ν + 1)

1

Iν(l
√
2λ)

.

Here Iν denotes the modified Bessel function. This Laplace transform can be used to describe the
tail distribution: Ciesielski and Taylor [3] proved that, for δ = 2ν + 2 ∈ N

∗,

P0(τl > t) =
1

2ν−1Γ(ν + 1)

∞
∑

k=1

jν−1
ν,k

Jν+1(jν,k)
e−

j2ν,k

2l2
t.

where Jν is the Bessel function of the first kind and (jν,k)ν,k is the associated sequence of its positive
zeros.
We are looking for a numerical approach for the hitting time and these formulas are not easy
to handle and approach, in particular we can not compute the inverse cumulative function ! The
aim of this section is to construct an easy and efficient algorithm without need of inverting the
Laplace transform and without using discretization schemes since the hitting times are unbounded.
In the next step we will extend this procedure to the hitting time of time-dependent boundaries
like straight lines, useful in the description of the hitting time of a given level for the CIR process
(the Laplace transform is then unknown).

2.2.1. Hitting time of a given level for the Bessel process with positive integer dimension δ. Let

us consider δ independent one-dimensional Brownian motions (B
(k)
t , t ≥ 0), 1 ≤ k ≤ δ. Then the

Bessel process of index δ starting from 0, satisfies the following property:

(Zδ,0t , t ≥ 0) has the same distribution as

(

√

(

B
(1)
t

)2
+ . . . +

(

B
(δ)
t

)2
, t ≥ 0

)

.

Let

(2.30) τl = inf{t ≥ 0; Zδ,0t ≥ l}.

In particular, we can express τl by using the first time when the δ-dimensional Brownian motion B =
(B(1), . . . , B(δ)) exits from the Euclidean ball D centered in the origin with radius l. Approximating
the exit time and the exit position for the 2-dimensional Brownian motion of a convex domain was
already studied by Milstein [12]. He used the so-called random walk on spheres algorithm which
allows to approach the exit location and the exit time through an efficient algorithm. The exit
position is really simple to obtain (as it is uniformly distributed on the circle) while the exit time
is much more difficult to approach. That is why we will construct an adaptation of this initial
procedure in order to obtain nice and efficient results concerning the Bessel process exit time.

Let us introduce now ourWalk on Moving Spheres (WoMS) algorithm. We first define a continuous
function ρ : R2 → R+ which represents the distance to the boundary of D:

(2.31) ρ(x) = inf{‖x− y‖; y ∈ Dc} = l − ‖x‖.
8



For any small enough parameter ε > 0, we will denote by Dε the sphere centered at the origin with
radius l − ε

(2.32) Dε = {x ∈ D; ‖x‖ ≤ l − ε} = {x ∈ D; ρ(x) ≥ ε}.

Algorithm (A1) for δ = 2. Let us fix a parameter 0 < γ < 1.
Initialization: Set X(0) = (X1(0),X2(0)) = 0, θ0 = 0, Θ0 = 0, A0 = γ2l2e/2.
First step: Let (U1, V1,W1) be a vector of three independent random variables uniformly distributed
on [0, 1]. We set











θ1 = A0U1V1, Θ1 = Θ0 + θ1,

X(1)⊺ = (X1(1),X2(1))
⊺ = X(0)⊺ + ψA0(θ1)

(

cos(2πW1)
sin(2πW1)

)

,

where

(2.33) ψa(t) =

√

2t log
a

t
, t ≤ a, a > 0.

At the end of this step we set A1 = γ2ρ(X(1))2e/2.
The n-th step: While X(n−1) ∈ Dε, simulate (Un, Vn,Wn) a vector of three independent random
variables uniformly distributed on [0, 1] and define











θn = An−1UnVn, Θn = Θn−1 + θn,

X(n)⊺ = (X1(n),X2(n))
⊺ = X(n − 1)⊺ + ψAn−1(θn)

(

cos(2πWn)
sin(2πWn)

)

.
(2.34)

At the end of this step we set An = γ2ρ(X(n))2e/2.
When X(n− 1) /∈ Dε the algorithm is stopped: we set θn = 0, Θn = Θn−1 and X(n) = X(n− 1).
Outcome: The hitting time Θn and the exit position X(n).

Remark 2.7. The WoMS algorithm describes a D-valued Markov chain (X(n), n ≥ 0). Each
step corresponds to an exit problem for the 2-dimensional Brownian motion. If X(n) = x then we
focus our attention to the exit problem of the ball centered in x and of radius (ψa(t), t ≥ 0): the exit
location corresponds to X(n+1) and the exit time to θn+1. Of course the choice of the parameter a
plays a crucial role since the moving sphere has to belong to the domain D as time elapses... When
the Markov chain X is close to the boundary ∂D, we stop the algorithm and obtain therefore a good
approximation of the exit problem of D.

Comparison with the classical (WoS) algorithm: at each step, the n-th step of the classical walk
on spheres (WoS) is based on the exit location and exit time, which are mutually independent, for
the Brownian paths exiting from a ball centered in X(n−1) and with radius γρ(X(n−1)). The exit
location is uniformly distributed on the sphere while the exit time is characterized by its Laplace
transform. Therefore, if one knows X(n− 1) then the diameter of the sphere is deterministic. For
the WoMS the center of the ball should also be X(n − 1) but the radius is random, smaller than
γρ(X(n − 1)). The exit location will also be uniformly distributed on the sphere but the exit time
will be much easier to simulate: in particular, you don’t need to evaluate the Bessel functions.
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The stochastic process (X(n), n ≥ 0) is an homogeneous Markov chain stopped at the first time
it exits from Dε. In the following, we shall denote N ε this stopping time which represents in fact
the number of steps in the algorithm:

N ε = inf{n ≥ 0; X(n) /∈ Dε}.

We just notice that X(N ε) ∈ Dε by its definition.

The algorithm (A1) is presented in the 2-dimensional case. Of course we can construct a generaliza-
tion of this procedure for the δ-dimensional Bessel process when δ ∈ N

∗. For notational simplicity,
we use a slightly different method: instead of dealing with a Markov chain (X(n), n ∈ N) living in
R
δ we shall consider its squared norm, which is also (surprisingly) a Markov chain. At each step,

we shall construct a couple of random variables (ξn, χ(n)) associated to an exit problem, the first
coordinate corresponds to an exit time and the second one to the norm of the exit location.
We introduce some notations: Sδ represents the unit ball in Rδ, and π1 : R

δ → R the projection on
the first coordinate.

Algorithm (A2). Let us fix a parameter 0 < γ < 1.

Initialization: Set χ(0) = 0, ξ0 = 0, Ξ0 = 0, A0 = (γ2l2e/(ν + 1))ν+1 Γ(ν+1)
2 .

The n-th step: While
√

χ(n− 1) < l − ε, we choose Un a uniform distributed random vector on
[0, 1]⌊ν⌋+2, Gn a standard gaussian random variable and Vn an uniformly distributed random vector
on Sδ. Consider Un, Gn and Vn independent. We set







ξn =
(

An−1

Γ(ν+1)2ν Un(1) . . . Un(⌊ν⌋+ 2)
)

1
ν+1

exp
{

− ν−⌊ν⌋
ν+1 G

2
n

}

, Ξn = Ξn−1 + ξn,

χ(n) = χ(n− 1) + 2π1(Vn)
√

χ(n− 1)ψAn−1(ξn) + ψ2
An−1

(ξn),
(2.35)

where

(2.36) ψa(t) =

√

2t log
a

Γ(ν + 1)tν+12ν
, t ≤ tmax(a) :=

[

a

Γ(ν + 1)2ν

]
1

ν+1

, a > 0.

At the end of this step we set

An =
(

γ2(l −
√

χ(n))2e/(ν + 1)
)ν+1Γ(ν + 1)

2
.

When
√

χ(n) ≥ l− ε the algorithm is stopped: we then set ξn = 0, Ξn = Ξn−1 and χ(n) = χ(n−1).
Outcome: The hitting time Ξn and the value of the Markov chain χ(n).

It is obvious that for the particular dimension δ = 2, that is ν = 0, the stopping times obtained by
the algorithm (A1) and (A2) have the same distribution. Moreover, for each n, χ(n) has the same
distribution as ‖X(n)‖2. In other words, the number of steps of (A1) and (A2) are identical in law,
the number of steps will be denoted in both cases N ε.

Theorem 2.8. Set δ ∈ N
∗. The number of steps N ε of the algorithm WoMS (A2) is almost

surely finite. Moreover, there exist a constant Cδ > 0 and ε0(δ) > 0, such that

E[N ε] ≤ Cδ| log ε|, for all ε ≤ ε0(δ).
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Theorem 2.9. Set δ ∈ N
∗. As ε goes to zero, ΞNε converges in distribution towards τl the

hitting time of the δ-dimensional Bessel process (with cumulative distribution function F ), which
is almost surely finite. Moreover, for any α > 0 small enough,

(2.37)
(

1− ε√
2απ

)

F ε(t− α) ≤ F (t) ≤ F ε(t), for all t > 0,

where F ε(t) := P(ΞNε ≤ t).

These results and the key ideas of the proofs are adapted from the classical random walk on
spheres (WoS), see [12].
Proof of Theorem 2.8.
Step 1. Let us estimate the number of steps. Since (χ(n), n ≥ 0) is a homogeneous Markov chain,
we introduce the operator Pxf defined, for any non-negative function f : R+ → R+, by

Pxf :=

∫

R+

f(y)P(x,dy),

where P(x,dy) is the transition probability of the Markov chain. By definition, χ(n + 1) depends
only on χ(n), Vn and ξn. Let us note that, by construction, Vn and ξn are independent. Moreover

using the result developed in the Appendix, the density of ξn

(

2νΓ(ν+1)
An−1

)
1

ν+1
is given by:

(2.38) µ(r) =
(ν + 1)ν+2

Γ(ν + 2)
rν
(

− log r
)ν+11[0,1](r).

If we denote σd the uniform surface measure on the unit sphere in R
d, we get

Pxf =

∫ 1

0

∫

Sδ

f
(

x+ 2π1(u)
√
xK(x, r) +K2(x, r)

)

µ(r)dr σδ1(du),(2.39)

with K(x, r) defined by

(2.40) K(x, r) = ψA

([ A

2νΓ(ν + 1)

]
1

ν+1
r
)

,

and A depending on x in the following way:

A =
(γ2(l −√

x)2e

ν + 1

)ν+1Γ(ν + 1)

2
.

We can observe the following scaling property: ψA(A
1

ν+1 t) = A
1

2ν+2ψ1(t). Therefore the definition
of ψ1 leads to

(2.41) K(x, r) = γ(l −
√
x)

√

er

ν + 1
log

1

rν+1
= γ(l −

√
x)
√

er(− log r).

Step 2. Using classical potential theory for discrete time Markov chains (see, for instance, Theorem
4.2.3 in [14]), we know that

φ(x) = Ex

(

Nε−1
∑

n=0

g(χ(n))

)

11



satisfies, for any non-negative function g,

(2.42)

{

φ(x) = Pxφ+ g(x), 0 ≤ x < (l − ε)2,
φ((l − ε)2) = 0.

In particular, for g = 1, we obtain that φ(x) = Ex[N
ε]. In order to get an upper-bound for the

averaged number of steps, it suffices to apply a comparison result. We choose the function

(2.43) U ε(x) = {log((l −
√
x)/ε)− log(1− γ)}/(Cδγ2)

which satisfies U ε(x) ≥ PxU
ε +1, for all 0 < x < (l− ε)2 (see Lemma 2.10 for the definition of the

constant and for the inequality) and U ε(x) ≥ 0 for all 0 < x < (l−ε)2. A classical comparison result
related to the potential theory (see, for instance, Theorem 4.2.3 in [14]) implies that Ex[N

ε] ≤ U ε(x)
for all x ∈ [0, (l − ε)2] and consequently leads to the announced statement. �

Lemma 2.10. Let us define, for small ε > 0, U ε(x) = {log((l − √
x)/ε) − log(1 − γ)}/(Cδγ2)

for x ∈ [0, l2[, where γ is related to the definition of the WoMS. There exists a constant Cδ > 0,
such that, for any x ∈]0, (l − ε)2[, the following inequality yields

PxU
ε − U ε(x) ≤ −1.

We recall that PxU
ε is defined by (2.39) and (2.41).

Proof. We will split the proof in several steps.
Step 1. First of all, we observe that U ε ≥ − log(1− γ)/(Cδγ

2) in the domain [0, (l − ε)2]. Let us
consider now χ(0) = x ∈ [0, (l − ε)2] and y in the support of the law of χ(1) and let us prove that
U ε(y) ≥ 0. By the definition of χ(1) we obtain

χ(1) ≤ sup
y∈[−1,1],t∈[0,tmax(A)]

(x+ 2y
√
xψA(t) + ψ2

A(t)),

where A =
(

γ2(l−√
x)2e/(ν+1)

)ν+1 Γ(ν+1)
2 and both ψA and tmax are defined by (2.36). The right

hand side of the preceding inequality is increasing with respect to y so that:

χ(1) ≤
(√

x+ sup
t∈[0,tmax(A)]

ψA(t)
)2
.

Furthermore, for a > 0 the maximum of the function ψa is reached for tmax(a) =
1
e

(

a
Γ(ν+1)2ν

)
1

ν+1

and is equal to

(2.44) sup
t∈[0,tmax(a)]

ψa(t) =

{

2(ν + 1)

e

(

a

Γ(ν + 1)2ν

)
1

ν+1

}1/2

.

Finally using the definition of A and the inequality x ≤ (l− ε)2, we find the following lowerbound:

l −
√

χ(1) ≥ (l −
√
x)(1− γ) ≥ ε(1− γ).

We can therefore conclude that, for any y in the support of the law of χ(1) (even for y ≥ (l− ε)2),
U ε(y) ≥ 0 which ensures that U ε is well defined and non-negative in the domain of the operator
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Px.
Step 2. Furthermore the Taylor expansion yields

(2.45) U ε(y) ≤ U ε(x) +

√
x−√

y

Cδγ2(l −
√
x)

− (
√
x−√

y)2

2Cδγ2(l −
√
x)2

+
(
√
x−√

y)3

3Cδγ2(l −
√
x)3

, x, y ∈ [0, l2[.

If χ(0) = x and y is in the support of the random variable χ(1), then

√
y −

√
x =

√

x+ 2π1(u)
√
xK(x, r) +K2(x, r)−

√
x

≥ π1(u)K(x, r).

By the expansion (2.45) and the definition of the operator Px given by (2.39), the following upper-
bound for the operator Px holds

PxU
ε =

∫ 1

0

∫

Sδ

U ε
(

x+ 2π1(u)
√
xK(x, r) +K2(x, r)

)

µ(r)dr σδ1(du),

≤ U ε(x)−
∫ 1

0

∫

Sδ

π1(u)K(x, r)

Cδγ2(l −
√
x)

µ(r)dr σδ1(du)

−
∫ 1

0

∫

Sδ
+

π21(u)K
2(x, r)

2Cδγ2(l −
√
x)2

µ(r)dr σδ1(du)

−
∫ 1

0

∫

Sδ

π31(u)K
3(x, r)

3Cδγ2(l −
√
x)3

µ(r)dr σδ1(du),

where

(2.46) Sδ+ := {u ∈ Sδ : π1(u) > 0}.

Due to symmetry properties, the first and the third integral terms vanish. Then (2.41) leads to

PxU
ε ≤ U ε(x)− I

Cδ

∫

Sδ
+

π21(u) σ
δ
1(du)

with

I =
(ν + 1)ν+2e

2Γ(ν + 2)

∫ 1

0
rν+1(− log r)ν+2 dr.

The description of the probability density function in the Appendix leads to the following explicit
value

I =

(

ν + 1

ν + 2

)ν+2 e

Γ(ν + 2)
.

In order to conclude the proof, it suffices to choose the particular constant

Cδ = I

∫

Sδ
+

π21(u) σ
δ
1(du).
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Proof of Theorem 2.9
The proof is splited in two parts. First the steps of the algorithm and the hitting time of the
Bessel process of index ν shall be related to stopping times of a δ-dimensional Brownian motion
(ν = δ

2 − 1). Secondly we point out that the corresponding stopping times are close together by
evaluating deviations of the Brownian paths.
Step 1. Let B = (B(1), B(2), . . . , B(δ)) be a δ-dimensional Brownian motion. Then the norm of B
has the same distribution as a Bessel process of index ν (see, for instance [15]). Hence the first
hitting time τl is identical in law to the stopping time

Tl = inf{t ≥ 0; Bt /∈ D},

where D is the Euclidean ball centered at the origin and of radius l. We introduce then a procedure
in order to come close to Tl. For the first step we shall focus our attention to the first exit time
of a moving sphere centered at the origin and of radius ψa(t) defined by (2.36), we denote ξ̂1 this
stopping time. Of course this moving sphere should always stay in D, so we choose a such that the
maximum of ψa stays smaller than l. By (2.44), we get

sup
t≤a

ψa(t) < l ⇐⇒ a <
Γ(ν + 1)

2

(

el2

ν + 1

)ν+1

.

For a = A0 = Γ(ν+1)
2

(

eγ2l2

ν+1

)ν+1
with a parameter γ < 1, the condition is satisfied: supt≤a ψa(t) =

γ2ν+2l < l. Let us describe the law of (ξ̂1,Bξ̂1
). The norm of the Brownian motion is identical in

law with the Bessel process; therefore Proposition 2.2 implies that the density function of ξ̂1 is
given by (2.16) with a replaced by A0. Using the law described in Proposition A.1, we can prove
that ξ̂1 has the same distribution as

(

A0

Γ(ν + 1)2ν

)
1

ν+1

e−Z ,

where Z is Gamma distributed with parameters α = ν+2 and β = 1
ν+1 . By construction we deduce

that ξ̂1
(d)
= ξ1 where ξ1 is defined in the algorithm WoMS (A2). Knowing the stopping time, we can

easily describe the exit location since the Brownian motion is rotationnaly invariant: Bξ̂1
is then

uniformly distributed on the sphere of radius ψA0(ξ̂1). Hence

(ξ̂1, ‖Bξ̂1
‖) (d)

= (ξ1, χ(1)), and ξ̂1 < Tl.

By this procedure we can construct a sequence of stopping times (ξ̂n, n ≥ 1) and define Ξ̂n =
ξ̂1 + . . . + ξ̂n; Ξ̂n is the first time after Ξ̂n−1 such that the Brownian motion exits from a sphere
centered in BΞ̂n−1

of radius ψan initialized at time Ξ̂n−1. The moving sphere should stay in the
domain D, so we choose

an =
(

γ2
(

l −
√

BΞ̂n−1

)2
e/(ν + 1)

)ν+1Γ(ν + 1)

2
.

Using the same arguments as before and by the Markov property for the Brownian motion, we
obtain the identities in law

(an, n ≥ 1)
(d)
= (An, n ≥ 1),

(

Ξ̂n, ‖BΞ̂n
‖
)

n≥1

(d)
=
(

Ξn, χ(n)
)

n≥1
14
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Fig 1. Walk on Moving Spheres

with Ξ̂n < Tl and Ξn, An, χ(n) defined in the algorithm WoMS (A2). Consequently defining
N̂ ε = inf{n ≥ 0;BΞ̂n

/∈ Dε}, the following identity yields

(2.47)
(

Ξ̂N̂ε , ‖BΞ̂
N̂ε

‖
)

(d)
=
(

ΞNε , χ(N ε)
)

and Ξ̂N̂ε < Tl.

Step 2. Let us now estimate the difference between Ξ̂N̂ε and Tl. By (2.47) we first deduce

(2.48) F (t) := P(τl ≤ t) = P(Tl ≤ t) ≤ F ε(t) := P(ΘNε ≤ t), t > 0.

Furthermore, for any small α > 0,

1− F (t) = P(Tl > t, Ξ̂N̂ε ≤ t− α) + P(Tl > t, Ξ̂N̂ε > t− α)

≤ P(Tl > t, Ξ̂N̂ε ≤ t− α) + P(Ξ̂N̂ε > t− α)

≤ P(Tl > t, Ξ̂N̂ε ≤ t− α) + 1− F ε(t− α).(2.49)

At time Ξ̂N̂ε the Brownian motion is in the ε-neighborhood of the boundary ∂D, hence
l − ‖BΞ̂

N̂ε
‖ ≤ ε. Using the strong Markov property, we obtain

(2.50) P(Tl > t, Ξ̂N̂ε ≤ t− α) ≤ F ε(t− α) sup
y∈∂Dε

Py(Tl > α).

Since the Brownian motion is rotationnaly invariant, it suffices to choose y = (l − ε, 0, . . . , 0). Due
to the convexity of ∂D, the following upper-bound holds

(2.51) Py(Tl > α) ≤ P0( sup
0≤t≤α

B
(1)
t < ε) = P0(2|B(1)

α | < ε) ≤ ε√
2απ

.

Combining (2.48) for the upper-bound and (2.49), (2.50) and (2.51) for the lower-bound yields the
announced estimation (2.37). �

2.2.2. The first time the Bessel process of index ν hits a decreasing curved boundary. The algo-
rithm developed in the previous paragraph can be adapted to the problem of hitting a deacreasing
curved boundary. Let us define :

(2.52) τ = inf{t ≥ 0 : Zδ,0t = l(t)}, where l is decreasing and l(0) > 0.
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Assumption 2.11. There exists a constant ∆min > 0 which bounds the derivative of l

l′(t) ≥ −∆min, ∀t ≥ 0.

The procedure then also consists in building a WoMS which reaches a neighborhood of the
boundary. But instead of dealing with a fixed boundary as in Section 2.2.1, that is a ball of radius
l, we shall in this section introduce the following moving boundary: the ball centered in the origin
and of radius l(t). The arguments developed in order to prove Theorem 2.8 and Theorem 2.9 will
be adapted to this new context.

Algorithm (A3):
Let us define the following positive constants

(2.53) L = max
(

l(0),∆min,
√
ν + 1

)

, κ =
2ν

5ν+1L2ν+2
Γ(ν + 1).

Initialization: Set χ(0) = 0, ξ0 = 0, Ξ0 = 0, A0 = κ
(

l(0)−
√

χ(0)
)2(ν+1)

.

The n-th step: While the following condition holds

l(Ξn−1)−
√

χ(n− 1) > ε

(denoted by C(n − 1)), we simulate Un an uniform distributed random vector on [0, 1]⌊ν⌋+2, Gn a
standard gaussian random variable and Vn a uniformly distributed random vector on Sδ. Un, Gn
and Vn have to be independent. We then construct (ξn,Ξn, χ(n)) using (2.35). At the end of this

step we set An = κ
(

l(Ξn)−
√

χ(n)
)2(ν+1)

.

The algorithm stops when C(n − 1) is not longer satisfied: we set ξn = 0 and so Ξn = Ξn−1 and
χ(n) = χ(n− 1).
Outcome The exit position χ(n) and the exit time.

Let us note that the stochastic process (χ(n), n ≥ 0) is not a Markov chain since the sequence
(An)n≥0 depends on both (Ξn, χ(n)). That is why we define the following Markov chain

Rn := (Ξn, χ(n)) ∈ R
2
+

stopped at the first time the condition C(n) is not satisfied. In the following, we shall denote N ε

this stopping time (number of steps of the algorithm):

N ε = inf{n ≥ 0; l(Ξn)−
√

χ(n) ≤ ε}.

Theorem 2.12. The number of steps N ε of the algorithm WoMS (A3) is almost surely finite.
Moreover, there exist a constant Cδ > 0 and ε0(δ) > 0, such that

E[N ε] ≤ Cδ| log ε|, for all ε ≤ ε0(δ).

Theorem 2.13. As ε goes to zero, ΞNε converges in distribution towards τ defined by (2.52)
(with cumulative distribution function F ), which is almost surely finite. Moreover, for any α > 0
small enough,

(2.54)
(

1− ε√
2απ

)

F ε(t− α) ≤ F (t) ≤ F ε(t), for all t > 0,

where F ε(t) := P(ΞNε ≤ t).
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Proof of Theorem 2.12.
The proof is based mainly on arguments already presented in Theorem 2.8. So we let the details of
the proof to the reader and focus our attention to the main ideas.
(1) The process (Ξn, χ(n)) is a homogeneous Markov chain and the associated operator is given by

(2.55) Pt,xf :=

∫

(s,y)∈R2
+

f(s, y)P
(

(t, x), (ds,dy)
)

,

where f is a non-negative function and P

(

(t, x), (ds,dy)
)

is the transition probability of the chain.

The chain starts with (Ξ0, χ(0)) = (0, 0) and is stopped the first time when l(Ξn) −
√

χ(n) ≤ ε.
Classical potential theory ensures that

φ(t, x) = Et,x

(

Nε−1
∑

n=0

g(Ξn, χ(n))

)

is solution of the following equation
{

φ(t, x) = Pt,xφ+ g(t, x), (t, x) ∈ Dε,

φ(t, x) = 0, ∀(t, x) ∈ ∂Dε,
(2.56)

with Dε = {(t, x) ∈ R
2
+ : l(t) − √

x ≤ ε}. For the particular choice g = 1, we obtain φ(t, x) =
Et,x[N

ε], therefore the averaged number of step is given by φ(0, 0).
(2) In order to point out an upper-bound for the averaged number of steps, we use a comparison
result: we are looking for a function U(t, x) such that

{

U(t, x) ≥ Pt,xU + 1, ∀(t, x) ∈ Dε

U(t, x) ≥ 0, ∀(t, x) ∈ ∂Dε.
(2.57)

For such a particular function, we can deduce φ(t, x) ≤ U(t, x). Let us define

U(t, x) = c log

(

l(t)−√
x

ε

)

1{l(t)−√
x≥0},

with some constant c > 0 which shall be specified later on. The positivity assumption on the
boundary ∂Dε is trivial. Moreover since l is a decreasing function, (2.55) implies

Pt,xU =

∫

(s,y)∈R2
+

U(s, y)P
(

(t, x), (ds,dy)
)

≤
∫

(s,y)∈R2
+

U(t, y)P
(

(t, x), (ds,dy)
)

.(2.58)

By using the Taylor expansion, we get

(2.59) U(t, y) ≤ U(t, x)− c

√
y −√

x

l(t)−√
x
− c

2

(
√
y −√

x)2

(l(t)−√
x)2

− c

3

(
√
y −√

x)3

(l(t)−√
x)3

, (x, y) ∈ R
2
+.

Using similar arguments and similar bounds as those presented in Lemma 2.10, the odd powers in
the Taylor expansion don’t play any role in the integral (2.58). Therefore we obtain

Pt,xU ≤ U(t, x)− c

2

∫

(s,y)∈R2
+

(
√
y −√

x)2

(l(t)−√
x)2

P

(

(t, x), (ds,dy)
)

≤ U(t, x)− c

2

∫ 1

0

∫

Sδ
+

π21(u)K
2(x, r)

(l(t)−√
x)2

µ(r)dr σδ1(du)

17



where Sδ+ is given in (2.46) and K is defined by (2.40) with A = κ(l(s) −√
x)2(ν+1). We have now

Pt,xU ≤ U(t, x)− c(ν + 1)

2

( 2K

Γ(ν + 1)

)
1

ν+1

(

∫

Sδ
+

π21(u)σ
δ
1(du)

)

(
∫ 1

0
r(− log r)µ(r)dr

)

.

An appropriate choice of the constant c leads to (2.57). Finally we get

E[N ε] ≤ U(0, 0) = c log(l(0)/ε).

�

Proof of Theorem 2.13.
The arguments are similar to those developped for Theorem 2.9, the extension of the convergence
result to curved boundaries is straightforward. That is why we shall not repeat the proof but just
focus our attention on the only point which is quite different. We need to prove that the Markov
chain Rn = (Ξn, χ(n)) stays in the domain D0 = {(t, x) : 0 ≤ x ≤ l2(t)} so that the hitting time
τ defined by (2.52) satisfies τ > ΞNε . In other words, if the Markov chain Rn = (Ξn, χ(n)) for the
n-th step is equal to (s, x), then Rn+1 should belong to {(t, x) : t ≥ s, x ≤ l2(t)}. In the WoMS
setting, for t ≥ s, this means that the ball centered in x and of time-dependent radius ψA(t − s)
always belongs as time elapses to the ball centered in 0 of radius l(t). We recall that

A = κ(l(s)−
√
x)2(ν+1).

Therefore we shall prove that

(2.60) ∀t ≥ s, ψA(t− s) +
√
x ≤ l(t).

In fact, due to Assumption 2.11 and the definition of ψA, it suffices to obtain

(2.61) ψA(t− s) ≤ l(s)−
√
x−∆min(t− s), ∀s ≤ t ≤ s+W 2,

where

W =

(

A

Γ(ν + 1)2ν

)
1

2ν+2

=

(

κ

Γ(ν + 1)2ν

)
1

2ν+2

(l(s)−
√
x) =

1

L
√
5
(l(s)−

√
x).

Due to the definition of the constant L, we have

0 ≤W ≤ 1

2∆min

2(l(s) −√
x)∆min

√

2ν+2
e + 4(l(s)−√

x)∆min

≤ 1

2∆min

{

√

2ν + 2

e
+ 4(l(s)−

√
x)∆min −

√

2ν + 2

e

}

.

The right hand side of the preceding inequality is the positive root of the polynomial function
P (X) = ∆minX

2 +
√

2(ν + 1)/eX − (l(s) − √
x). We deduce that P (W ) ≤ 0. By (2.44) and

P (W ) ≤ 0, we obtain

sup
t≥s

ψA(t− s) =

(

2(ν + 1)

e

)1/2

W

≤ l(s)−
√
x−∆minW

2

≤ l(s)−
√
x−∆min(t− s), ∀s ≤ t ≤ s+W 2.

18



Finally we have proved (2.61) and so (2.60). �

If Assumption 2.11 is not satisfied then it is difficult to have a general description of an iterated
procedure in order to simulate hitting times. However the particular form of the function ψa defined
by (2.36) permits to describe a WoMS algorithm for the square root boundaries. Let us therefore
consider the following functions:

(2.62) ψa(t) =

√

2t log
a

Γ(ν + 1)tν+12ν
and f(t) =

√
r − ut,

well defined for t ≤ t0 := min
(

α
1

ν+1 , ru

)

where α = a(Γ(ν + 1)2ν)−1.

The algorithm is essentially based on the following result (the constants r and u associated with
the hitting problem of a square root boundary for the Bessel process shall be specified in the proof
of Proposition 2.15)

Lemma 2.14. Let us define

(2.63) Fν(r, u) =
1

2

(

er

ν + 1

)ν+1

Γ(ν + 1) e−u/2, r > 0, u > 0.

If a = Fν(r, u) then

(2.64) ψa(t) ≤ f(t), for all 0 ≤ t ≤ α
1

ν+1 .

Proof. We are looking for a particular value a depending on both r and u such that the following
bound holds: ψa(t) ≤ f(t), for all 0 ≤ t ≤ t0. Since t ≤ t0, it suffices to prove that

2t log
α

tν+1
≤ r − ut⇐⇒ g(t) := t

(

2 log
α

tν+1
+ u
)

≤ r.

Let us compute the maximum of the function g on the interval [0, t0], with t0 fixed,

g′(t) = 2 log
α

tν+1
+ u− 2(ν + 1).

We have
g′(t) = 0 ⇐⇒ log

α

tν+1
= ν + 1− u

2
⇐⇒ tν+1 = α exp

{u

2
− ν − 1

}

.

In other words the maximum of the function g is reached for

tmax = α
1

ν+1 exp
{ u

2(ν + 1)
− 1
}

and is equal to

g(tmax) = gmax = 2(ν + 1)α
1

ν+1 e
u

2(ν+1)
−1
.

Choosing gmax ≤ r we obtain in particular (2.64) that means

α ≤
(

er

2(ν + 1)

)ν+1

e−u/2 ⇐⇒ a ≤ 1

2

(

er

ν + 1

)ν+1

Γ(ν + 1)e−u/2.

For a0 =
1
2

(

er
ν+1

)ν+1
Γ(ν + 1)e−u/2, we get (2.64) since t0 = α

1
ν+1 .
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The aim is now to construct an algorithm which permits to approximate the hitting time of
the square root boundary. Therefore we consider a Bessel process of dimension δ which hits the
decreasing curved boundary f(t) given by (2.62).

Algorithm (A4) – the square root boundary: l(t) =
√

β0 − β1t with β0 > 0, β1 > 0.
Let κ ∈]0, 1[.
Initialization: Set χ(0) = 0, ξ0 = 0, Ξ0 = 0, A0 = κFν(β0, β1).
The (n+ 1)-th step : While the following condition holds

l(Ξn)−
√

χ(n) > ε(denoted by C(n)),

we define

(2.65) An = κFν

(

(l(Ξn)−
√

χ(n))2, β1

(

1−
√

χ(n)

l(Ξn)

))

where Fν is defined by (2.63), and we simulate Un+1 an uniform distributed random vector on
[0, 1]⌊ν⌋+2, Gn+1 a standard gaussian random variable and Vn+1 a uniformly distributed random
vector on Sδ. Un+1, Gn+1 and Vn+1 have to be independent. We then construct (ξn+1,Ξn+1, χ(n+1))
using (2.35).
The algorithm stops when C(n) is not longer satisfied : we set ξn+1 = 0 and so Ξn+1 = Ξn and
χ(n+ 1) = χ(n).

Proposition 2.15. The statements of Theorem 2.12 and Theorem 2.13 are true for the Algo-
rithm (A4) associated with the square root boundary.

Proof. All the arguments developped for decreasing boundaries with lower-bounded derivatives
are easily adapted to the square root boundary. We let the details to the reader and focus our
attention to the following fact: the stochastic process (Ξn, χ(n), n ≥ 0) stays in the domain D0

defined by
D0 = {(t, x) ∈ R

2
+ : l(t)−

√
x > 0}.

In the WoMS setting, for t ≥ s, this means that for (Ξn, χ(n)) = (s, x) ∈ D0 the following step
leads to

√

χ(n+ 1) < l(Ξn+1). By (2.35), it suffices to prove that

(2.66)
√
x+ ψA(t) < l(s+ t), for all t ∈ {u ≥ 0 : min(l(s+ u), ψA(u)) ≥ 0},

with A = κFν

(

(l(s) − √
x)2, β1

(

1 −
√
x

l(s)

))

, since χ(n + 1) ≤ (
√

χ(n) + ψAn(ξn+1))
2. By Lemma

2.14 and due to the coefficient κ, we have

ψA(t) <

√

(l(s)−
√
x)2 − β1

(

1−
√
x

l(s)

)

t.

Hence

(l(s + t)−
√
x)2 − ψA(t)

2 >
(

√

l(s)2 − β1t−
√
x
)2

− (l(s)−
√
x)2 + β1

(

1−
√
x

l(s)

)

t

> 2
√
x
(

l(s)−
√

l2(s)− β1t
)

− β1
√
x

l(s)
t ≥ 0.
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This leads directly to (2.66).

Remark 2.16. The whole study points out a new efficient algorithm in order to simulate Bessel
hitting times for given levels or curved boundaries. We can use this algorithm in two generalized
situation:

(1) We have assumed that the Bessel process starts from the origin. Of course the procedure
presented here can also be applied to Bessel processes starting from x > 0. It suffices to
change the initialization step !

(2) We focused our attention to the Bessel process but we linked also the initial problem to the
exit time of a δ-dimensional Brownian motion from a ball of radius l. The Algorithm (A1)
extended to higher dimensions can also be used in order to evaluate exit times of general
compact domains whose boundary is regular.

3. Numerical results. In this part we will illustrate the pre-
vious results on some numerical examples. Let us figure first an
outcome of our algorithm, the exit position from a sphere with
radius depending on time. The figure opposite is giving this result
for an radius l = 1 and a precision ε = 10−3.
Let us compare our algorithm with existing results. Consider the
classical Euler scheme for a Brownian motion and evaluate the first
hitting time and hitting position from a disk with given radius.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

First of all we can verify that the distribution of the hitting time for theWoMS algorithm matches
the distribution of the hitting time of a given level for the 2−dimensional Bessel process. Figure 2
gives this result for a starting disk with radius 1, a precision ε = 10−3 and a number of simulations
N = 20000. In the Euler scheme the time step is ∆t = 10−4.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

 

 
MB bidimensionnel
WOMS

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

Fig 2. Distribution of the hitting time (Euler scheme and WoMS algorithm (A1)) - Histogram of the angle for the
exit position

We can also test the fact that the exit position is uniformly distributed on the circle. In order to
do this we can evaluate the angle of the exit position in our WoMS procedure and show that it is
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an uniform distributed random variable with values in [−π, π]. Figure 2 also shows the histogram
of the result for a disk of radius 1 an ε = 10−3 and 20000 simulations.

Let us now present a simulation with Algorithm (A2). We consider the hitting time of the level
l = 2 for the Bessel process of index ν = 2 and we illustrate Theorem 2.8 by Figure 3. The
curve represents the averaged number of steps versus the precision ε = 10−k, k = 1, . . . , 7. We can
observe that the number of steps is better than suspected since the curve is sublinear. We obtain
the following values (for γ = 0.9 and 100 000 simulations in order to evaluate the mean).

ε 10−1 10−2 10−3 10−4

E[Nε] 4.0807 7.53902 9.50845 10.83133

ε 10−5 10−6 10−7

E[Nε] 10.94468 11.30869 11.62303

Fig 3. Averaged number of step of Algorithm (A2) versus ε

Finally we present the dependence of the averaged number of steps of Algorithm (A2) with
respect to the dimension of the Bessel process. For that purpose, we simulate hitting time of the
level l = 2 with ε = 10−3, γ = 0.9, 50 000 simulations for each estimation of the averaged value,
and the dimension of the Bessel process takes value in the set {2, 3, . . . , 18}.

ν 0 0.5 1 1.5 2

E[Nε] 6.819 7.405 8.270 8.887 9.594

ν 2.5 3 3.5 4

E[Nε] 10.256 10.542 10.995 11.096

Fig 4. Averaged number of step of Algorithm (A2) versus δ = 2ν + 2

4. Application to the Cox-Ingersoll-Ross process. We now aim to estimate the hitting
time of a level l > 0 for (Xδ

t , t ≥ 0), a Cox-Ingersoll-Ross process. The CIR process is the solution
of the following stochastic differential equation:

(4.1)







dXδ
t = (a+ bXδ

t )dt+ c
√

|Xδ
t |dBt,

Xδ
0 = x0,
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where x0 ≥ 0, a ≥ 0, b ∈ R, c > 0 and (Bt, t ≥ 0) is a standard Brownian motion. We denote here
δ = 4a/c2.
We will first recall a connection between this stochastic process and (Y δ(t), t ≥ 0), the square of
the Bessel process BESQ(δ), solution of the equation

(4.2) Y δ(t) = y0 + δt+ 2

∫ t

0

√

|Y δ(s)|dBs, t ≥ 0.

Lemma 4.1. The CIR process has the same distribution as (X t, t ≥ 0) which is defined by

(4.3)







Xt = ebtY δ
(

c2

4b(1− e−bt)
)

,

X0 = Y δ(0),

where Y is the square of a Bessel process in dimension δ = 4a/c2 (see [15]).

Proof. Let us only sketch some ideas of the proof. Let Y δ(t) be the square of the δ-dimensional
Bessel process. By applying Itô formula, we get the stochastic differential equation satisfied by the
process Xt

dXt = bXt dt+ ebtd
(

Y
( c2

4b
(1− e−bt)

))

= bXt dt+ bδ
c2

4b
dt+ 2ebt

√

|e−btX t| dB c2

4b
(1−e−bt)

= (a+ bXt) dt+ 2e
bt
2

√

|X t|dB c2

4b
(1−e−bt)

,(4.4)

where δ = 4a/c2. Let us remark that

c2

4b
(1− e−bt) =

∫ t

0
ρ2(s)ds, with ρ(t) =

c

2
e−

bt
2 .

We can deduce that there exists a Brownian motion (βt, t ≥ 0) such that

B c2

4b
(1−e−bt)

=

∫ t

0
ρ(s)dβs,

for all t ≥ 0. With this notation, the equation (4.4) writes

dXt = (a+ bX t) dt+ 2e
bt
2

√

|X t|ρ(t) dβt

= (a+ bX t) dt+ c

√

|Xt|dβt,

and X0 = Y (0). This proves that the process (X t, t ≥ 0) has the same distribution as the CIR
process given by (4.1).

Let us consider the hitting time of a given level l for the CIR process and denote it by Tl. This
time is defined by:

Tl = inf{s ≥ 0;Xδ
s = l}.

The previous Lemma 4.1 gives also an equivalence (in distribution) connecting the hitting time of
the CIR process and the hitting time of the square of a δ-dimensional Bessel process.
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Proposition 4.2. The hitting time Tl of a level l > 0 for a CIR process has the same distri-

bution as −1
b log

(

1− 4b
c2
τψ

)

where

τψ = inf
{

t ≥ 0;Y δ(t) = l
(

1− 4b

c2
t
)}

,

and Y δ is the square of a Bessel process of dimension δ = 4a/c2.

Proof. By using Lemma 4.1, τψ has the same distribution as T l given by

(4.5) T l = inf
{

s ≥ 0; Y δ
( c2

4b
(1− e−bs)

)

= le−bs
}

.

Define t = c2

4b(1− e−bs), we have two situations:
First case: If b < 0 let s = η(t) where

η(t) = −1

b
log
(

1− 4b

c2
t
)

, for t ≥ 0.

The map η is a strictly non-decreasing function, and we get thus

T l = inf
{

η(t); t ≥ 0, Y δ(t) = l
(

1− 4b

c2
t
)}

= η
(

inf
{

t ≥ 0;Y δ(t) = l
(

1− 4b

c2
t
)})

.

Second case: If b ≥ 0, let also s = η(t). In this case the variable t takes its values only on the

interval
[

0, c
2

4b

)

. So

T l = inf
{

η(t); 0 ≤ t ≤ c2

4b
, Y δ(t) = l

(

1− 4b

c2
t
)}

.

The condition 0 ≤ t ≤ c2

4b can be omitted in the estimation of the infimum as the boundary to hit :

1− 4bt
c2 is negative outside this interval and the Bessel process is always positive. Furthermore the

function η is also non-decreasing for b ≥ 0, and the result is thus obtained.

Application of Algorithm (A4):
An immediate consequence of Proposition 4.2 is that the hitting time Tl is related to the first time

the Bessel process of dimension δ = 4a/c2 reaches the curved boundary: f(t) =

√

l
(

1− 4b
c2 t
)

. We

are able to apply Algorithm (A4) if 4a/c2 ∈ N
∗ and b > 0 (the boundary is then decreasing).

Let us denote by N ε the number of steps of (A4) and ΞNε the approximated hitting time of the
Bessel process associated with the particular curved boundary f . Combining Proposition 2.15 and
Proposition 4.2 leads to

(

1− ε√
2απ

)

P

(

ΞNε ≤ c2

4b
(1− e−bt)− α

)

≤ P(Tl ≤ t) ≤ P

(

ΞNε ≤ c2

4b
(1− e−bt)

)

,

for α small enough and t > 0.
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APPENDIX A: SIMULATION OF RANDOM VARIABLES

Let us introduce simulation procedures related to particular probability density functions.

Proposition A.1. Let Z be a random variable with Gamma distribution Gamma(α, β) i.e.

P(Z ∈ dz) =
1

Γ(α)βα
zα−1e−

z
β1{z>0} dz, α > 0, β > 0.

Then W = exp(−Z) has the following distribution

P(W ∈ dr) =
1

Γ(α)βα
(− log r)α−1r1/β−11[0,1](r) dr.

In particular the stopping time τψ defined by (2.16) has the same law as
[

a
Γ(ν+1)2ν

]
1

ν+1
e−Z . Here

Z is a Gamma distributed random variable with parameters α = ν + 2 and β = 1
ν+1 .

Proof. Let f be a non-negative function. Using suitable changes of variables, we obtain

E[f(W )] =
1

Γ(α)βα

∫ ∞

0
f(e−z)zα−1e−

z
β dz

=
1

Γ(α)βα

∫ 1

0
f(r)(− log r)α−1r1/β−1 dr.

In order to end the proof it suffices to multiply W by a constant and use once again a change of
variables formula.

We need to simulate Gamma distributed variables. Let us just recall some common facts.

Proposition A.2. (i) If α ∈ N (so-called Erlang distributions) then the Gamma distributed
variables Z has the same law as −β log(U1 . . . Uα), where (Ui)1≤i≤α are independent uni-
formly distributed random variables. Hence W defined by W = exp(−Z) can be simulated by
(U1U2 . . . Uα)

β.

(ii) If α− 1/2 ∈ N then Z has the same law as −β log(U1 . . . U⌊α⌋) +
βN2

2 , where (Ui)1≤i≤⌊α⌋ are
i.i.d. uniformly distributed random variables and N is an independent standard Gaussian r.v.
(see, for instance, [5] chapter IX.3).
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