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ABSTRACT
State-of-the-art large-scale object retrieval systems usually
combine efficient Bag-of-Words indexing models with a spa-
tial verification re-ranking stage to improve query perfor-
mance. In this paper we propose to directly discover spa-
tially verified visual words as a batch process. Contrary
to previous related methods based on feature sets hashing
or clustering, we suggest not trading recall for efficiency by
sticking on an accurate two-stage matching strategy. The
problem then rather becomes a sampling issue: how to effec-
tively and efficiently select relevant query regions while min-
imizing the number of tentative probes? We therefore intro-
duce an adaptive weighted sampling scheme, starting with
some prior distribution and iteratively converging to unvis-
ited regions. Interestingly, the proposed paradigm is gen-
eralizable to any input prior distribution, including specific
visual concept detectors or efficient hashing-based methods.
We show in the experiments that the proposed method al-
lows to discover highly interpretable visual words while pro-
viding excellent recall and image representativity.

1. INTRODUCTION
State-of-the-art object retrieval systems have

demonstrated impressive performances in very large image
datasets. These methods, based on fine local descriptions
and efficient matching techniques, can detect accurately very
small rigid objects with unambiguous semantic such as logos,
buildings, manufactured objects, posters, etc. Mining such
small objects in large collection is a challenging task gaining
more and more interest. Applying naively usual local queries
methods might indeed be a tricky task. Constructing a full
local matching graph with these methods would indeed re-
quire to probe all candidate query regions around each local
feature leading to an intractable algorithm complexity.
To avoid querying all possible regions of interest while keep-
ing a good coverage of the contents, we propose in this paper
a weighted and adaptive sampling strategy aiming to select
the most relevant query regions. Sampling is indeed a sim-
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ple yet efficient statistical paradigm allowing to yield some
knowledge about a population without surveying it entirely.
Adaptive weighted sampling is a more advanced paradigm
allowing to iteratively update the sampling distribution ac-
cording to the results obtained during previous iterations.
This allows our mining method to progressively focus on
unvisited image regions and consequently reduce the num-
ber of required probes for achieving a good completeness
of the description. The resulting set of discovered objects
can therefore be used as a new type of visual word vocab-
ulary allowing to describe images with very compact global
descriptions. We show in the experiments that better re-
trieval performances than those obtained with usual visual
words might be achieved with extremely smaller vocabu-
lary size (e.g. 3,000 visual words for the OxfordBuildings
dataset). We therefore refer to the visual words generated
by our method as Consistent Visual Words (CVW). A CVW
is a set of image patches. These patches are described by
local features sets. A CVW models a small rigid object, or a
piece of a bigger object. A CVW is defined by the geomet-
ric consistency between the feature points of the considered
patches.

Interestingly, the initial distribution used by our adaptive
sampling method can be initialized with any prior knowl-
edge, typically visual saliency measures or visual concepts
detectors. The produced visual vocabularies might there-
fore be adapted to specific targeted objects or concepts.
Besides Bag-of-Words description concerns, our method can
simply be used for discovering instances of very small rigid
objects in large datasets. We show as well in this context
that our adaptive sampling matching method allows to reach
high recall while being very flexible in terms of prior knowl-
edge about the targeted objects.

2. RELATED WORKS
State-of-the-art object discovery and mining methods [14,

19] can be summarized by two main successive steps: match-
ing graph construction, and analysis of this graph. The
nodes of a matching graph typically represent images whereas
edges correspond to common matching regions between the
images. The first step to generate the matching graph is
usually based on large scale object retrieval methods [14, 5,
3]. The objectives addressed by the graph analysis methods
are various and include: construction of the object mod-
els, objects linking or summarization. To discover or ex-
tract such information, most of these methods are based on
Latent Topic Models such as probabilistic Latent Semantic
Analysis (pLSA) [8] and Latent Dirichlet Allocation (LDA)



[1, 14]. Most matching graph methods are based on Bags-
of-visual-Words models (BoW), describing images from a
set of quantized local features lying in a so called visual
vocabulary. The visual vocabulary is usually generated by
a K-means clustering algorithm [15] applied on the local
features set of the considered corpus. Such representations
are equivalent to standard vector-space models in text in-
formation retrieval allowing to efficiently measure similarity
between items with classical operators (dot product, his-
togram intersection, etc.). It is important to notice that
such similarities only consider global statistics of the image
even if the sparsity of the vectors allows to somehow embed
some local properties. This type of global strategies is there-
fore not adapted to discover very small objects representing
small subparts of images. In [16, 4, 14], for example, the
objects having a size lower than 25% of the image area are
not considered. So that usual BoW methods are mostly in-
teresting for their excellent efficiency/effectiveness tradeoff
not for their effectiveness in retrieving or mining objects.

When dealing with small objects, the most adapted meth-
ods to generate a matching graph are the one based on prob-
ing local query regions. This second type of strategies [15,
9, 11] independently consider each local feature of an image.
They have been shown to be effective in retrieving small
objects, such as trademark logos [11]. To guarantee this
quality level of precise objects retrieval, these methods stick
on an accurate local description of the images. For a 10K
image corpus, more than tens of millions local features are
independently indexed. In these methods, the number of
candidate local regions to be searched might thus be huge.
Even with the most efficient indexing structures that drasti-
cally reduce the computational costs, the overall complexity
remains too expensive to generate a full matching graph.

Instead of searching every candidate query regions, Chum
et al. [5, 3] propose to automatically select Regions Of Inter-
est (ROI) with a very low computational cost. Their method
combines BoW models with a Min-Hash hashing scheme [2]
and can be considered as a trade-off between global and local
strategies. Min-Hash is an algorithm commonly used in text
retrieval for finding near-duplicates [2] and works by approx-
imating the intersection between two sets of words. Applied
on visual words, it allows to discover efficiently very discrim-
inant candidate visual sketches that are likely to be parts of
more reliable objects. But the recall of this method for small
objects is far from sufficient as pointed out in further works
of the authors [3]. The first Min-Hash/BoW method [5] was
therefore only used to detect Image Near Duplicates.
To reduce this drawback, [3] proposed a new Min-Hash based
strategy called Geometric Min-Hash. In that method, the
first Min-Hash value of the sketches is still generated from
the whole image but the second and following hash values
are randomly sampled in the spatial neighborhood of the
first selected visual word. This version is able to discover
more relevant local sketches and is therefore a very efficient
way to discover candidate query regions that are likely to
contain object instances. But the first global hashing step
still makes it not robust to strong occlusions and the perfor-
mances might therefore degrade in highly cluttered contexts.
We also point out that this method might be used as an ef-
fective prior knowledge in our adaptive sampling matching
method. To the best of our knowledge, our method is the

first matching graph construction method directly based on
probing local queries.

3. PROPOSED METHOD
Our proposed mining method is an iterative process com-

posed of three main stages processed at each iteration: Adap-
tive Sampling of a query image region, Search of the selected
local query region and Decision of whether this query region
might be considered as a consistent visual word in the final
output vocabulary. The full algorithm repeats these 3 steps
T times until a fixed number of visual words has been found.
More formally, let Ω be an input dataset of N images Ii,
i ∈ 1, ..., N . Each image Ii is represented by a set of Ni

local visual features Fi,j (typically SIFT [12]) localized by

their position Pi,j . NF =
PN−1

i=0
Ni is the total number of

features Fi,j . Each local feature Fi,j is associated with a
fixed candidate query region Ri,j defined as the bounding
box centered around Pi,j , with height Hi,j and width Wi,j .
In this paper, Hi,j and Wi,j are set up as fixed ratio of image
width and height according to:

Hi,j =
√

γ ∗ Hi

Wi,j =
√

γ ∗ Wi

where γ is a parameter of the method corresponding to the
percentage of the image area covered by a candidate query
region (Hi and Wi are respectively the height and width
of image Ii). For example, a γ equals to 0.10 means that
the query width will be equal to one third of the image
width. This parameter is designed to adapt the query size
and shape to those of the image. Now, the following three
steps are processed at the t-th iteration :

1. Adaptive Sampling: This step proposes a candidate
query region Rt

q, centered around a randomly selected
feature F t

q . The feature F t
q is selected according to

a probability mass function pt(i, j) over the set of all
Fi,j . Such random sample can be generated easily from
any distribution pt by using an inverse transforma-
tion method [6] (also called Smirnov method). Such
method consists in transforming a uniform random
number by integrating the probability mass function
up to an area greater than its value. The algorithm
computing pt according to the results of the previous
steps is detailed in section 3.1.

2. Local Region Search: The candidate query region Rt
q

(centered around F t
q ) is processed by a three-step match-

ing procedure described in section 3.2. It returns a
set of geometrically verified matching regions in the
dataset. We refer to any of these matched regions as
Rt

m, m ∈ 1, ..., Mt.

3. Decision: Matching scores are then normalized and
thresholded according to the procedure described in
section 3.3. If the final results set contains more than
two images, it means that we have found a recurrent
object in the database. This threshold can be adapted,
depending on desired minimal frequency of retrieved
objects. Then, the tentative query region Rt

q and the
matching images Rt

m are kept to form a consistent vi-
sual word.



Finally, after T tentative probes, the algorithm outputs a
vocabulary V of |V | 6 T consistent visual words vt. Each
visual word is associated with an image region Rt

q and rep-
resented by the set of local features belonging to Rt

q .

3.1 Adaptive Sampling
To avoid querying all possible regions of interest while

keeping a good coverage of the contents, we propose a
weighted and adaptive sampling strategy aiming at selecting
the most relevant query regions. Sampling is a statistical
paradigm concerned with the selection of a subset of indi-
vidual observations within a population of objects intended
to yield some knowledge about the population without sur-
veying it entirely. If all items have the same probability to
be selected, the problem is known as uniform random sam-
pling. In weighted sampling methods [13], the items might
be weighted individually and the probability of each item
to be selected is determined by its relative weight. In con-
ventional sampling designs, either uniform or weighted, the
selection for a sampling unit does not depend on the obser-
vations made during previous surveys. On the other side,
adaptive sampling [18] is an alternative strategy aiming at
selecting more relevant sampling regions based on the results
observed during the previous surveys.
Our method starts with an initial probability mass function
p0(i, j) over the whole set of candidate query regions Ri,j .
This initial distribution might be either uniform or deter-
mined by some prior knowledge as discussed in Section 3.1.1.
Steps 1, 2 and 3 are then computed (see above) providing a
selected query region R0

q and a set of matching regions R0

m,
m ∈ 1, ..., M0.
Further probability mass functions pt(i, j) are then updated
in a recursive manner:

p
t = f

`

p
t−1

, R
t−1

q , {Rt−1

m }
´

As done in conventional weighted random sampling meth-
ods [13], the probability mass functions pt are in practice
computed by normalizing a weighting function wt such as:

p
t(i, j) =

wt(i, j)
P

i,j
wt(i, j)

(1)

The recursive updates are thus rather computed on the
weights:

w
t = g

`

w
t−1

, R
t−1

q , {Rt−1

m }
´

Our proposed updating function g is defined as follows:

w
t(i, j) =

8

>

>

>

<

>

>

>

:

0 if Fi,j = F t−1

q

α1 wt−1(i, j) if Fi,j ∈ Rt−1

q

α2 wt−1(i, j) if Fi,j ∈
˘

Rt−1

m

¯

m

wt−1(i, j) otherwise

(2)

The first condition means that the weights of already vis-
ited query region centers are set up to zero so that the proba-
bility to re-issue them as a new query is null (i.e. to guaranty
a sampling without replacement).
The second condition aims at decreasing the weights of
the features belonging to the previous query region Rt−1

q ,
so that their probability to be re-issued as new query region
centers is decreased. This avoids selecting new query regions
that have too much overlap with previous query regions.
The third condition aims at decreasing the weights of the
features belonging to already matched regions, so that their

probability to be re-issuing as new query region centers is
also decreased.
On the other side, the fourth condition keeps the weights
of unmatched features unchanged. These three first condi-
tions allow to iteratively focus the selected query regions on
objects that were never found in previous steps.
In practice, α2 is chosen to be greater than α1. Decreasing
too much the weights of matched regions might indeed de-
grade the overall recall. This comment can be related to the
success of query expansion methods [11] aiming at boosting
object retrieval recall by re-issuing different instances of the
same object as new queries.
In our experiments we used:

α1 = 0.1 α2 = 0.5

3.1.1 Prior saliency measures
As discussed above, the initial probability mass function

p0 can be either uniform or determined by some prior knowl-
edge. In this section we propose and discuss several prior dis-
tributions. A first group consists of generalist visual saliency
measures that might be used in any case. The second group
consists of specific priors aiming to focus on the discovered
visual words on specific visual concepts. The core idea is
that the visual vocabulary produced by our adaptive sam-
pling method might be adapted to the user’s query. We
notice that the output score of any visual concept detector
could be used as prior knowledge making our method widely
generic (e.g. animals, plants, indoor/outdoor, etc.).

Generalist Saliency Measures The purpose of this
group of priors is to guide the sampling process on infor-
mative regions according to some visual saliency measures.
We describe here two saliency measures but any other of the
literature might be used as well.

Spatial Density of Local Features: The principle of this
saliency measure is to emphasize centers of spatially dense
regions since they are more likely to be the centers of inter-
esting objects. Concretely, we measure for each local fea-
ture Fi,j the spatial density of its neighboring features with
a Parzen window:

π
D(i, j) =

Ni−1
X

c=0

Kσ(Pi,j ,Pi,c)

where Kσ is typically an RBF kernel. In our experiments,
we chose two distinct values of σ for the vertical and hori-
zontal coordinates (σx = Wi

3
and σy = Hi

3
).

Feature Space Dispersion: One drawback of matching tech-
niques is due to the degradation of performances on repeated
structures (such as textured regions) because of an increas-
ing probability of multiple matches [17]. To avoid such re-
gions, we propose to measure the feature-space dispersion of
the features belonging to a candidate region Ri,j . To esti-
mate the dispersion, we simply average the variance along
each dimension of the feature space:

π
δ(i, j) =

1

d

d−1
X

l=0

VarRi,j
(F [l])

where d is the dimension of the feature vector.
A result of this saliency measure is illustrated in Figure 1.
Specific Saliency Measures



Figure 1: Feature space dispersion saliency measure
- A hot color means that the center feature is dif-
ferent from its neighbors, a cold one means that it
is likely to be in a texture region

Face saliency: In order to build face specific vocabularies
of visual words, we implemented a prior distribution based
on the OpenCV face detector 1:

π
F (i, j) =

N
f
i
−1

X

l=0

K
σ

f
i,l

(Pi,j , P
f
i,l)

where K is the RBF kernel, N
f
i is the number of faces

detected in image Ii, Pf
i,l and σ

f
i,l are respectively the center

and the scale of the l-th face in the current image i.
Image center saliency: In many applications, the assump-

tion that the image center contains more objects of interest
might be relevant. We therefore implemented the following
saliency to boost the features closer to the image center:

π
P (i, j) = Kσ(Ci,Pi,j)

where Ci is the center of image Ii and K the RBF kernel
parameterized with σx

i = Wi

8
, σ

y
i = Hi

8
.

3.1.2 Transforming prior saliency measures into prob-
ability mass functions

We introduce here two generic schemes to transform any
saliency measure into a probability mass function p0.

Linear function: For a given saliency measure π, we define
the initial weighting function w0 as

w
0(i, j) =

π(i, j) − minπ

maxπ − minπ

where minπ and maxπ are respectively the minimum and
maximum values reached by the saliency measure on the
whole dataset. p0 is then obtained from w0 with Equation
1.

Rank-based function: For a given saliency measure π, we
rank every value π(i, j) and use the resulting ranks as initial
weights:

w
0(i, j) =

NF − ρ(i, j)

NF

where NF is the total number of features and ρ(i, j) the
rank of the feature Fi,j . p0 is then obtained from w0 with
1http://sourceforge.net/projects/opencvlibrary

Equation 1.

Our different experiments demonstrate that Linear func-
tion is adapted for πD(i, j), πF (i, j), πP (i, j) and Rank-
based function is better for πδ(i, j).

3.2 Local Region Search
For local region search, we used the following retrieval

framework proposed in [11]. In this step, a region Rt
q is

a local query Q represented by a set of nq features Fqi,
with corresponding positions Pqi for i ∈ 1, ..., nq. The Local
Region Search method works as follows:

STEP 1 - SIFT’s matching Each query feature Fqi is
matched to the dataset thanks to an efficient approximate
similarity search technique. We used the recent A Poste-
riori Multi-Probe Locality Sensitive Hashing (APMP-LSH)
method proposed by Joly et al. [10] that allows sublinear
search time with reduced memory space costs. This Approx-
imate Nearest Neighbor search method has a parameter α
to control the search quality. This parameter allows to con-
trol the trade-off between search quality and efficiency. This
control is very important to limit the computational costs in
function of the desired performances. We study the effects
of α in Section 4.3. To drastically improve the performances,
we combine the APMP-LSH with Hamming Embedding [7,
9]. This Embedding reduces the memory costs of the lo-
cal descriptors and replaces the L2 distance with Hamming
Distance.

STEP 2 - Filtering of potential matching images
Then, we keep only the retrieved images which have more
than a given number of matching features for the next step.

STEP 3 - Geometric consistency For each remain-
ing image result, we compute a geometric consistency score
by estimating an affine transformation model between the
query and the retrieved images. An affine transformation
model (Aj ,Bj) with 5 degrees of freedom is first estimated
for each remaining image by a RANSAC algorithm. Finally,
the similarity score of an image Ij for query Q is given by
the number of inliers according to the affine transformation
model:

SQ(Ij) =

Mj
X

m=1

δ(‖Pqm − AjPjm + Bj‖ ≥ t) (3)

where δ(d ≥ t) equals 1 if d ≥ t and 0 otherwise. t is a fixed
threshold setting the position error tolerance (t = 8). Mj is
the number of matches kept in image Ij after step 2, Pqm

and Pjm are the query and matched spatial coordinates of
the p-th match in image Ij . The output is a list of images
ranked in the decreasing order of the number of inliers SQ(I).

3.3 Decision
To decide if the tentative query region Rt

q is kept as a
part of a consistent visual word, we filter the previous results
by normalized scores which are obtained by an a contrario
normalization technique [11]. The a contrario normalization
technique allows to accurately control the percentage of false
alarms. This method involves a consistent visual word selec-
tion with a low level of false alarms. This technique is based
on an estimation of the false alarms distribution N̂fa(S) with
respect to the discrete random variable S = SQ(I), I ∈ Ω.
According to Equation 3, SQ depends only on the set of Mj

spatial coordinates pairs corresponding to the np matches



found in Step 1. High SQ scores are thus directly related to
the statistical dependence between the spatial positions of
the query and the matched features. We thus define our a
contrario background model by the probability mass func-
tion p̂fa(S) of the variable S under the hypothesis HQ

0
that

Pqm and Pjm are mutually independent random variables
for all j:

p̂fa(S) = Pr[SQ(I) = S | HQ
0

]

The cumulative distribution function N̂fa(S) can be ob-
tained by:

N̂fa(S) =
S

X

s=0

p̂fa(s)

We finally keep as the normalized score ŜQ(I) an estima-

tion of the results precision according to N̂fa(S):

ŜQ(I) =
#{Ij ∈ Ω, SQ(Ij) > SQ(I)} − N.N̂fa(SQ(I))

#{Ij ∈ Ω, SQ(Ij) > SQ(I)}
In practice, we estimate the probability mass function

p̂fa(S) for each query Q by a Monte Carlo simulation. We
generate independent spatial positions of the query features
Pqm and we keep the matched positions Pjm unchanged.
More precisely, we affect to a given query feature Fqi a
new spatial position Pqj randomly selected among the other
points positions of the query. Compared to a purely uni-
form random generation of point positions, this method has
the advantage to preserve some prior knowledge about the
points distribution, such as bounds and principal orienta-
tions. We then simply recompute Step 3 and we estimate
p̂fa(S) by counting the number of results having a score SQ

equal to S. To limit the estimation bias due to the presence
of correct images in the random results list, we only keep
in the count the results having a score higher than the one
obtained with the normal query.

4. EXPERIMENTS

4.1 Software Implementation
To reduce the main computational costs which is the Ap-

proximate Nearest Neighbor search of each query local fea-
ture, we developped a Thread Safe index structure based on
A Posteriori Multi-Probe Locality Sensitive Hashing (APMP-
LSH) [10] and Hamming Embedding [7, 9]. The Thread Safe
version of APMP-LSH provides a shared index structure be-
tween different threads, that avoids the duplication of data.
Our tests of this version show that on two 4-cores processors
(with HyperThreading), the optimum computational costs
are obtained with 24 threads. These 8 cores and 24 threads
provide a gain factor of 6 compared to 1 core and 1 thread.
To drastically improve the performances, we combine the
Thread Safe version of APMP-LSH with Hamming Embed-
ding. This embedding reduces the memory costs of the local
descriptors and replaces the L2 distance with Hamming Dis-
tance. Our different experiments in terms of object retrieval
performances (mean Average Precision) has shown that the
SIFT descriptors represented with 128 bits in the Hamming
space provides equivalent performances than the 32 bits float
precision version in the Euclidean space. In this case, the
compression factor is 32. Moreover, the use of Hamming
distance allows to reduce the computational costs compared

to L2 distance. The fast Hamming distance implementa-
tion is composed of two steps: XOR operation between two
descriptors and counting of number of bits set to 1 of the
previous result. The standard version fast Hamming dis-
tance is based on a lookup table to count number of bits set
to 1. Instead of using this version, we count number of bits
set to 1 with a SSE4.2 instruction 2: popcnt. This instruc-
tion allows to divide by 4 the computational costs compared
to the lookup table version.

4.2 Datasets
During our evaluations, we use the following image

datasets:
- BelgaLogos (BEL): The BelgaLogos dataset [11] 3 is

composed of 10,000 news images. A manually annotated
ground-truth for 26 logos and 55 queries where each query is
a logo is provided with this dataset. This dataset is adapted
to evaluate small objet retrieval performances. For the cur-
rent evaluations, we describe this corpus with 38 millions of
SIFT [12].

- OxfordBuildings (OXF): The 5,000 images of Oxford
Buildings dataset 4 are composed of buildings from Oxford
and miscellaneous images. A ground-truth is provided for
55 queries where each query is a piece of a building. For the
current evaluations, we describe this corpus with 30 millions
of SIFT.

To evaluate the objet retrieval performances, we mainly
use the usual criterion: mAP (mean Average Precision) com-
puted between our retrieval results and the provided ground-
truth.

4.3 Parameters Tuning for Local Region
Search

To evaluate the involvements of our Adaptive Sampling
method, we need to choose the parameters of Local Region
Search. Our different experiments of APMP-LSH coupled
with Hamming Embedding allows us to use the following
parameters: 128 bits for the Hamming Embedding represen-
tation of SIFT, 300 for the KNN size. We evaluated these
parameters with the two considered datasets (with α = 90%)
and we obtain: mAP = 0.30 for BEL and mAP = 0.72
for OXF. In [11], the system without Query Expansion has
a mAP = 0.20 with 11 millions of SIFT for BEL and a
mAP = 0.608 with 12 millions of SIFT for OXF. The main
difference of performances is due to the use of more SIFT
descriptors than in the experiments of [11].

The computational costs of each Tentative Probe mainly
depend of the Local Region Search complexity. This com-
plexity can be changed by the parameter α of the APMP-
LSH which allows to control the trade-off between the KNN
retrieval quality and the computational cost. Specifically,
the value of α is the rate of KNN that we are statistically
ensured to retrieve with the approximative search of APMP-
LSH. To choose an adapted value for α, we tested a serie of α
values for the Local Region Search applied on OXF dataset.
We then observed the variation of the mAP depending of α
(and by consequence the execution time) in Figure 2. This
figure perfectly shows that it is not profitable in terms of
mAP and computational cost to use an α value greater than

2http://en.wikipedia.org/wiki/SSE4
3http://www-rocq.inria.fr/imedia/belga-logo.html
4http://www.robots.ox.ac.uk/vgg/data/oxbuildings/
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80%. Therefore we will use this value for the following ex-
periments.

4.4 Adaptive Sampling and Priors Evaluation
The curves on the Figure 3 have been created with the

BelgaLogos dataset, α = 80%, and un-weighting factors
α1 = 0.1 and α2 = 0.5.
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Figure 3: Comparison of the covered surface ver-
sus the number of tentative probes with or without
using the update of the sampling distribution, and
with the prior density

They show that after 10,000 tentative probes, updating
the sampling distribution allows to cover a greater surface.
We can also see that using the prior spatial density speeds-
up the discovering process very early. For 70,000 tentative
probes with the prior spatial density, we cover 10% more
than without update.

Figure 4 illustrates the effect of updating the weighted
distribution. We stopped our two tests (with and without
update) when the same number of words has been created.
The left image shows a lot of overlapping words, while the
right image presents almost the same covered area, with

Figure 4: Bounding boxes of the consistent visual
words generated on the same image without update
(left image) and with update (right image)

fewer words.
Figure 5 shows that priors significantly improve the mAP.

We demonstrate that adding a priori information based on
our knowledge of the database (“objects of interest are often
centered in the photography”, or “the best described areas
are more discriminant”) can speed up the object discovery.
We also see that focusing on non-texture areas gives better
results.

The tests were made on OXF dataset with a low quality
of feature retrieval (α = 40%), in order to gain time and to
allow us to make 10 runs for each prior. We then computed
the median curves.
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Figure 5: Comparison of priors

4.5 Small object discovery
To observe the effect of the priors on the type of objects

detected, we launched 3 runs per prior. Each run stopped af-
ter having generated 600 words. Then we manually counted
the mean number of detections for each prior/type pair among
the words having over 5 matching images.

As we can see in Table 1, without using a prior, we mostly
detect textured objects, which are not often very interest-
ing. We show that we can decrease this number of textures
and therefore increase the number of objects of interest, like



logos. The use of an appropriate prior allows to discover a
minimum of 47 faces or 70 logos, among 600 visual words
and 10,000 images, in less than 15 minutes.

Without prior Dispersion Face
Objects 31 53 20
Logos 46 70 27
Textures 72 26 23
Faces 12 13 47

Table 1: Number of detection per categories and
priors

Figure 6: Examples of twelve generated CVW rep-
resented by one of their patches. The original im-
ages are cropped around the matching regions. 1st

row: Miscellaneous objects, 2nd row: Logos, 3rd row:
Textures, 4th row: Faces

4.6 Bags Of Consistent Visual Words Evalua-
tion

We would like to illustrate that our consistent visual words
are highly discriminant and robust. To demonstrate it, we
propose to construct Bags-of-Consistent-Visual-Words to
compare to the state-of the art methods based on BoW.
Our proposal is a strategy equivalent to the BoW in [16,
14], but in our case, we replace the descriptor quantization
by our consistent visual words. For OXF dataset, to our
knowledge [14] has the best performances in terms of mAP
score: 0.825. In [14], to get these performances, their pro-
posal is based on BoW, Scalar Product as the similarity

measure and Recursive Average Query Expansion method.
With our Bags-of-Consistent-Visual-Words, we also used the
Scalar Product and the Recursive Average Query Expansion
method.
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Figure 7: Test on OXF using α = 85% and image
center prior

Philbin [14] CVW
Vocabulary size 1,000,000 5,576
Words per image 3,000 9.14
mAP 0.825 0.861

Table 2: Comparison between the best BoW method
(reproduced from [14]) and our consistent visual
words

In [14], the size of their visual vocabulary is 1 million and
each image is described with an average of 3,000 SIFT. As we
can see in Table 2 and in Figure 7, we achieve our best mAP
score (0.861) in less than 4 hours with only 5,576 words, and
a mean of 9.14 words for each image. We can also notice in
Figure 7 that we can reach a high mAP with a very few
words. For example, a minimum of 2,500 words allows us
to obtain a state-of-the-art score, while with only 250 words
we got over 0.50 of mAP, in approximately 10 minutes. In
the case of Bags-of-Words indexed by inverted lists, this low
number of words involves a high degree of compression and
a very fast similarity search.

5. CONCLUSION AND FUTURE WORKS
We have proposed the concept of consistent visual words

and the experiments show that this type of words is very
effective to describe and retrieve local visual contents. The
experimentations with OXF demonstrate that these consis-
tent visual words largely overcome the usual visual words.
To generate consistent visual words, we developed a frame-
work based on Adaptive Sampling and Priors.

The core idea is that the visual vocabulary produced by
our adaptive sampling method might be adapted to what
the user is searching for. We observe that any visual concept
detector (e.g. animals, plants, indoor/outdoor, etc.) could
be used as prior knowledge, which demonstrates that our
method is widely generic.



This framework is very flexible and it is easy to integrate
information by formulating a specific prior.

In future works, we plan to study the effects of the pa-
rameter γ which defines the maximum scale of consistent
visual words. We could also propose to adapt this object
scale in function of image contents and then the local region
queries could be adaptive. To reduce the number of Tenta-
tive Probes, we would like to develop new types of priors,
and to study the fusion of different priors. For example, we
could fuse the priors by using the standard AND and OR
Probabilistic Operators.
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