
HAL Id: hal-00643449
https://hal.archives-ouvertes.fr/hal-00643449

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delegation Protocols in Human-Centric Workflows
Khaled Gaaloul, Erik Proper, François Charoy

To cite this version:
Khaled Gaaloul, Erik Proper, François Charoy. Delegation Protocols in Human-Centric Workflows.
13th Conference on Commerce and Enterprise Computing - CEC 2011, Sep 2011, Luxembourg, Lux-
embourg. pp.219 - 224, �10.1109/CEC.2011.38�. �hal-00643449�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49944274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00643449
https://hal.archives-ouvertes.fr


Delegation Protocols in Human-Centric Workflows
Khaled Gaaloul and H.A. (Erik) Proper

CRP Henri Tudor
L-1855 Luxembourg-Kirchberg, Luxembourg

{khaled.gaaloul,erik.proper}@tudor.lu

François Charoy
LORIA - Nancy University - UMR 7503

BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France
charoy@loria.fr

Abstract—Organisations are facilitated and conducted using
workflow management systems. Currently, we observe a tendency
moving away from strict workflow modelling towards dynamic
approaches supporting human interactions when deploying
a workflow. One specific approach ensuring human-centric
workflows is task delegation. Delegating a task may require an
access to specific and potentially sensitive data that have to be
secured and specified into authorisation policies.
In this paper, we propose a modelling approach to secure
delegation. In doing so, we define delegationprotocols
supporting specific constraints based on both workflow and
access control systems. Moreover, we develop an advanced
access control framework to integrate delegation constraints
within existing policies. The novelty consists in the proactivity
aspect of our framework to cope with dynamic delegation of
authority in authorisation policies.

Keywords: Workflow, Delegation, Access Control, Policy.

I. I NTRODUCTION

In the classical software engineering approach the organ-
isational context and related security requirements are often
considered during the design phase of a workflow, but internal
controls are later defined and implemented in a manual fashion
disjoint from predefined models [1]. Workflows model and
control the execution of business processes in an organisa-
tion. Internal controls depend on the organisational aspect to
support human-centric interactions and to analyse resources
specifications. Dealing with that, organisations establish a
set of authorisation policies that regulate how processes and
resources should be managed within a workflow [2].

Moreover, workflow systems are determined by a mix of ad-
hoc as well as human-centric processes. Human interactions
are also related with the environment in which organisations
cooperate dynamically, but are strictly constrained by regula-
tions and policies at the same time [3]. This highly dynamic
environment must be supported by mechanisms allowing flexi-
bility, security and on-the-fly shift of rights and responsibilities
both on a (atomic) task level and on a (global) process level
[4]. One specific set of mechanisms ensuring human-centric
interactions is that of task delegation.

We define task delegation as a means of assigning tasks and
its access rights(privileges)from one user to another user. The
user who performs a delegation is referred to as a “delegator”
and the user who receives a delegation is referred to as a “dele-
gatee”. Delegation can be very useful for real-world situations
where a user who has to perform a task is either unavailable

or too overloaded with work to successfully complete it. It is
frequently the case that delaying these tasks executions would
violate time constraints, thereby impairing the entire process
execution. Therefore, delegation works on ensuring flexible
execution to cope with unavailable workflow’s actors and the
organisation rigidity. Additionally, we aim to ensure a user-
to-user delegation with heavily human interactions. To that
end, we need to support additional requirements related to the
organisation flexibility and the authorisation policy definition
when granting privileges to access delegated resources.

Delegating a task consists of the definition of a user-to-user
dialogue to issue a delegation request. Here, human interac-
tions depict delegation protocols involving the main principals,
the delegated task and eventually the granted privileges to
access task’s resources. In addition, we have to consider addi-
tional constraints with regards to the process definition and the
authorisation policy. In doing so, we have to come up with a
new modelling approach that bridge the gap between workflow
(process) and access control (policy) systems. Further, we
leverage our approach to align the security requirements for
delegation within secure workflows. Moreover, we develop an
advanced access control framework supporting the dynamic
aspect of authority when delegating privileges.

The remainder of this article is organised as follows. Sec-
tion 2 presents fundamental concepts of the organisational
management and security in workflows. In section 3, we
motivate our work with an eGovernmental scenario supporting
task delegation. Section 4 presents our contribution in terms
of delegation protocols ensuring dynamic and secure human
interactions within a workflow. In section 5, we develop an
access control framework to specify delegated privileges into
authorisation policies. In Section 6, we conclude our approach
and outline future work.

II. BACKGROUND

The fundamental concepts of this work are related to the
organisational management as well as the security enforcement
in workflow systems. We aim to address issues related to the
organisational needs and security requirements for modelling
and securing task delegation.

A. Organisational management in workflows

In the context of heavily human-centric workflows, busi-
ness processes are determined by a mix of ad-hoc as well
as process-based interactions. We currently observed, when



substituting members of an organisation during workflow
deployment, a move away from the predefined modelling
workflow towards approaches supporting flexibility on the
organisational level. This highly dynamic environment must
be supported by mechanisms allowing the monitoring, secure
and on-the-fly shift of rights with respect to an ongoing human
interactions both on a (atomic) task level and on a (global)
process level [5].

The requirements for interactions and monitoring can be
summarised as transparency and control [6]. Transparency
addresses the revelation of the control flow dependencies.
This allows to react accordingly to exceptions and compen-
sations during execution. Control fosters the behaviour of
organisations according to their defined policies. One type
of transparency and control supporting mechanism in human-
centric workflows is that of task delegation. We do believe that
user-to-user delegation is a suitable approach to handle such
interactions.

During the design time, the workflow application designer
has to design both the structure of the business process to be
automated, and the structure of the resources that carry out
the process [3]. Resources and workflow’s tasks are linked
through the construct role. From a process perspective, a role is
a subject to authorisations that define permissions (operations)
for the execution of a task. From a resource perspective,
a role represents a granted authorisation for a workflow’s
actor (so-called user). In this paper, we aim to address issues
related to the user’s assignments and resource’s access for the
organisational management in workflow systems.

B. Access control over workflows

Typically, organisations establish a set of security policies,
that regulate how business processes and resources should be
managed within a workflow. A security policy defines the
expected standard of security enforcement using access control
mechanisms [7]. An access control has to be defined to check
the authorisation of the initiated user (thesubject).

We present an access control framework (ACF) to sup-
port authorisation policies within workflows. ACF is mostly
based on the eXtensible Access Control Markup Language
(XACML) specifications [8]. The main components are de-
scribed as follows:

• Policy Manager: It allows an administrator to define
policies. Through a graphical user interface, the admin-
istrator can navigate through the policy document, select
document elements (e.g., targets, authorisation rules, obli-
gations), and specify values for selected elements.

• ACF: An access control framework (ACF) is defined as a
set of software components which accept requests to ac-
cess resources, analyse these against policies representing
actual access rights to resources, and return a response
based on this analysis. To illustrate the original architec-
ture of an ACF, a request is issued by the requestor, which
is received by theReceivercomponent in ACF. This is
then sent to theAnalysercomponent that queries policies
stored in a policy database. A response is generated by the

Receiver Request

Responder

Analyser 
Policy 

Database

Requestor

Existing ACF

1. Issue Request 2. Receive
Request

3. Send
Request

4. Analyse
Request

5. Send
Response

Response

6. Generate 
Response

7. R
eceive

R
esponse

Policy Doc Policy 
Manager 

Fig. 1. Access control framework

Respondercomponent, which defines a decision (permit,
deny, or not applicable) that is sent back to the requestor.
It should be noted, that the above appears asynchronous
for the requestor; they provide the request, and a response
is produced.

Authorisation policies are predefined in the access control
framework. Significant contributions to ensure dynamic policy
enforcement can be found in [9]. While much of the work is
limited to role-based access control, the goal of our paper is
to consider task delegation constraints in workflow systems.
Delegation constraints needs to tackle several issues with
regards to workflow’s invariants in terms of users, tasks and
resources. Moreover, we need to support dynamic changes of
authority when cancelling/revoking delegation and its granted
privileges.

III. D ELEGATION IN EGOVERNMENT CONTEXT

To understand the motivation of our research, we present
a scenario from an eGovernment case study supporting dele-
gation [5]. Mutual Legal Assistance (MLA) defines a work-
flow scenario involving national authorities of two European
countries regarding the execution of measures for witness
protection in a criminal proceeding. Here we describe the
MLA process part in the Eurojust organisation A. Users
with roles Prosecutorand Assistantare assigned to execute
activities of the MLA process which are represented as tasks
(see Fig. 2).

A. Task delegation scenario

The MLA process consists of receiving the request of assis-
tance from Europol member in order to process it and send it
to the concerned authority in Eurojust B. The task “Translate
Documents” T3 is originally only accessible (read/write) by
the user Alice member of roleProsecutor, a fact defined in
the workflow security policy. We define a workflow policy as
a means for defining access rights to a task’s resources also
calledauthorisation policy.

Let P an authorisation policy for the MLA process. Task T3
is a long-running task and is expected to take 5 working days
to complete. TheProsecutorAlice is unavailable to execute
this task due to illness, and will delegate it to a subordinate



T1. Receive 
Request

T2. Prepare Content

T3. Translate 
Documents

T4. Approve 
Request

T5. Forward 
Request

Prosecutor

(T3, Prosecutor, Assistant, DC)

Assistant
E

ur
oj

us
t 

A
E

u
ro

ju
st

 
B

E
u

o
p

o
l

Translate 
Documents

5 days after 
delegation acceptance

Fig. 2. MLA delegation scenario

involved in the MLA process.Assistantis a subordinate to
Prosecutorin the organisational role hierarchy.

During delegation, the policyP is updated so that user
Bob with role Assistantis now allowed to complete task T3.
The policy P will grant an access right to Bob to execute
the task T3 and therefore to access task’s resources (e.g.,
legal documents). As such, users with rolesProsecutorand
Assistantare here the delegator and the delegatee, respectively.

In the meanwhile, Alice interrupts her sick leave and returns
to work. Once again, Alice is able to claim T3. Due to
qualification considerations, it is decided that Alice should
complete the task, and that herAssistantBob should revoke
his actions, and free the task. The policyP needs to be updated
to reflect that only Alice has access to the task. As such, the
grant access to Bob would now evaluate to a deny decision
which has to be integrated dynamically in the existing policy.

B. Problem statements

The authorisation policyP needs to reflect the new re-
quirements for delegation. In order to derive a delegation
policy from the existing policy, we have to specify additional
authorisation rules to support delegation, where a rule defines
the policy decision effect (e.g., permit, deny). Delegation rules
depend on several delegation constraints such as time (i.e., 5
days) and have to be included in the delegation policy to define
specific conditions to validate the policy decision effect.

Delegation constraints define the delegation behaviour
within the business process. This behaviour interprets human
interactions when deploying a workflow. Accordingly, it is not
possible to foresee a deny rule for revocation during the policy

definition. Moreover, a manual review of the current access
control rights and task executions is costly, labor intensive,
and prone to errors.

Based on the delegation scenario, we aim to address two
important issues related to task delegation in workflows. At the
organisational level, we have to identify the list of potential
delegatees having the ability to execute the delegated task.
At the security level, we have to decide how to ensure
the delegation of authority to a delegatee to access task’s
resources. The delegation of authority has to be defined in
the access control system. It expresses new delegation policies
enforcement defined in a dynamic manner and integrated in
the existing policy. Finally, we have to take into account how
delegation requests are issued.

Crampton et al. [10] identified two modes to issue a
delegation request. Thepull mode assumes that a delegator
has at his disposal a pool of delegatees to be selected to work
on his behalf. Thepush mode assumes that a delegator is
waiting for an acceptance from a potential delegatee. In this
paper, we consider both modes and explain how we model
them in a secure manner within workflows.

IV. M ODELLING AND SECURING DELEGATION

Delegation defines a mechanism to support user-to-user
interactions. We introduce delegation protocols to support
both push and pull modes. Delegation protocols define two
different models that depict the dialogue between a delegator
and a delegatee. These protocols will ensure the delegation of
authority in access control systems.

A. Security alignment

We aim to address the modelling issue of delegation since
we have to cope with the security constraints when granting
new rights (privileges) and enforcing new policies decisions.
In doing so, we align the security requirements for delegation
with the workflow specification. To that end, we have to
consider the delegated task status and the delegatee’s worklist.
The delegated task has to be managed by a specific component
to control its states (e.g., starting, execution, cancellation). The
worklist defines a list of work items (tasks) associated with a
given workflow participant (users) [11].

Our approach is aligned with the fundamental concepts
introduced in Sect. 2. In others words, our modelling tech-
nique will bridge the gap between workflow and access
control systems. We leverage the ACF mechanism as the main
Authorisation Component (AC) in the delegation protocols
to support delegation policies. Some of these policies may
contain dynamic constraints depending on the current task
state and the process history. To get this information the
decision point will ask a workflow component for the current
process state. This component is the Task Service Manager
(TSM) that retrieves all relevant state information and returns
it to the authorisation decision point in the AC component. For
instance, if the task is already assigned and being executed,
no further assignment will be allowed.



Authorisation 
Component

(1) Request for delegation

Delegetor

Delegation 
Component

Task Service 
Manager

WorkLists

(2) Check Request

(5) Update Subjects Worklists

else

(2-a) Evaluate 
Policy Set

Browse Task 

Assignment List

(2-c) Decision

Return Task Assignmenet 
Historly List

Response

Request 
Rejected

Request Declined

Request 
Accepted

Delegatee

(2-b) Query Task Status

(3) History 
tracking

(6) Delegation forwarded

(4) Update policy

Fig. 3. Task delegation pull model

In the following, we model delegation protocols using a
sequence diagram in Unified Modelling Language (UML).
It is a kind of interaction diagram that shows how actors,
workflow’s components and access control system operate
with one another and in what order.

B. Pull delegation

We define a subject as an assigned user who is member
of a role to claim a task instance. Then the task is added
to the subject worklist. Here, the pull delegation model is
based on a direct allocation of the task through a delegation
without any notion of role. This model associates implicitly
an authorisation to the selected subject (see Fig. 3). When a
subject holding a task initiates a delegation request, then the
following procedure manages it:

1) First the delegator is sending a request for delegation to
the Delegation Component for a specific task (delegated
task) and a specific subject (the delegatee).

2) The Delegation Component checks with the help of
the Authorisation Component (AC) if the delegator can
delegate and the delegatee can receive the request.
• a) The AC first retrieves the attributes affecting the

policy and conducts an initial evaluation regarding
the delegator’s right to delegate. This is due to the
fact that certain task assignments are exclusive and
are not allowed to be delegated. In the context of an
access control policy, it is defined as an obligation
to a rule effect (e.g. accept, deny) [8].

• b) The AC checks then the task status with the
Task Service Manager (TSM) component which
browses the current task assignment list to check
the availability of the task (e.g. executed, aborted).

• c) The AC receives the history list from TSM.
Finally, the AC sends a response to the delega-
tion component based on the intermediate results
received.

3) The Delegation Component then keeps track of the
current delegation within internal history records.

4) The delegation component updates the appropriate pol-
icy in the policy repository.

5) The delegation component updates the appropriate work-
lists (delegator and delegatee).

6) The delegation request is forwarded to the corresponding
delegatee.

C. Push delegation

The push model is based on an allocation of the task through
a delegation to a role and not directly to a subject (see Fig. 4).
When a subject holding a task initiates a delegation request,
then the following procedure manages it:

Delegatees memeber of ROLE A

Authorisation 
Component

(1) Request for 
delegation

Delegetor

Delegation 
Component

Task Service 
Manager

WorkLists

(2) can_delegate

(8) Update Subjects Worklists

else

(2-a) Evaluate 
Policy Set

Browse Task 

Assignment List

(2-c) Decision

Return Task Assignmenet 
Historly List

Response

Request 
Rejected

Request Declined

Request 
Accepted

Delegatee X

(2-b) Query Task Status

(6) History 
tracking

(9) Delegation forwarded

(7) Update policy

Delegatee Y

(3) Notification to delegate a task

(3) Notification to delegate a task

(4) Acceptanace

(5) can_receive

Response

Fig. 4. Task delegation push model

1) First the delegator is sending a request for delegation
to the delegation component for a specific task and a
specific role (Role A).

2) The delegation component checks with the help of the
Authorisation Component (AC) if the delegator can
actually delegate based on his policy attributes, then with
the task service manager regarding the delegated task
status.

3) The delegation component notifies all the subjects be-
longing to the role (Role A) of the availability of the
task.

4) The first one to respond is allocated with the task.
5) The delegation component checks with the help of the

AC if the delegatee can actually receive the task.
6) The delegation component then keeps track of the cur-

rent delegation within internal history records.
7) The delegation component updates the appropriate pol-

icy in the policy repository.
8) The delegation component updates the appropriate work-

lists (delegator and delegatee).



9) The delegation is forwarded to the corresponding dele-
gatee.

D. Access control enforcement

The access control component needs to express the associ-
ated authorisation for delegation and update it in the existing
policy.

• In the pull model, the delegatee is not granted with a new
role. The delegation request does not need further control
of the permission; the access control model handles nor-
mally a delegated task and does not need to be modified.
There is no need of granting additional privileges for the
delegatee.

• In the push model, the link of the authorisation with the
role is kept. It allows us to reuse the established role-
based access control model [12].

The pull model answers the requirements defined in the
delegation scenario in the MLA process. User Bob exists in the
delegatees list of the delegator Alice and is directly assigned
to the task T3. In this case, Bob as a delegatee can claim
achieving the task as he is provided with the same access rights
(privileges) as the previous owner of the task (the delegator
Alice) to execute an instance of the task T3.

Moreover, the access control enforcement has to take into
account new changes to be integrated in the existing policy
afterwards. Policy changes are related to delegation constraints
during task execution. Such constraints depend on user-to-user
interactions when executing a delegated task. For instance,
Alice is back to work before T3 delegation is done. Alice
asks Bob to revoke his work. Subsequently, the policyP has to
change dynamically the previous policy decision (permit) for
the delegatee Bob, thereby cancelling his work and assigning
back T3 to user Alice. This dynamic policy enforcement is
discussed in the next section.

V. A SECUREFRAMEWORK FORTASK DELEGATION

We present a modular architecture ensuring dynamic dele-
gation of authority and show how delegation policy decisions
will be implemented on the existing access control framework
(ACF). In the context of delegation, when a request is issued, it
is stored along with details of how to inform the requestor (the
delegatee) if the policy decision to the request changes. When
a policy is changed, previous requests are re-evaluated, and
the requestor is informed that his access rights have changed.
To support this approach, we propose an extension to the ACF
architecture that permits proactive enforcement of policies.

A. Architecture overview

We describe the main components of the task delegation
framework supporting proactive policy enforcement. We detail
what parts were changed and what the new extended architec-
ture looks like (see Fig. 5).

• Policy Manager: see section II-B.
• ACF: see section II-B.

Existing ACF

Receiver Analyser Responder

Policy 
Database

Policy 
Adaptation 

Listener
Re-Evaluator

Request 
Database

Request

Policy Invocation 
Manager

Response

Request
Response

Invoke Web Service

Requestor

Policy 
Manager

Define

Fig. 5. Architectural extension supporting delegation policies

• Dynamic Policy Enforcement Component: It imple-
ments our approach to support proactive policy deci-
sions. We extend the ACF architecture with additional
components related to the policy database. When the
Receiverreceives a request, it sends this to a Request
Database that stores this request. APolicy Adaptation
Listenercomponent polls thePolicy Databaseand sends
an event to aRe-evaluatorcomponent when a policy has
changed. This queries theRequest Databaseto retrieve
the previous requests made, and sends this to theAnalyser
component for re-evaluation. TheAnalyser then sends
back a new response to theRe-evaluator, which queries
the Request Databaseto see if this is different to the
response given to the request being analysed. If this is a
different response, theInvocation Managercomponent
invokes the “contact point” provided by the requestor
(and stored in the Request object) with the new response.

B. Architecture requirements

On an architectural level, as requests are required to be
re-evaluated upon a policy change, a storage mechanism of
previous requests and the given response are needed. If a
previous request is re-evaluated and a different response to the
one stored is produced, the ACF must inform the requestor of
the new result. Thus, a mechanism must exist that triggers a re-
evaluation when it detects a policy change. These effects of the
policy change would be automatically captured, and conveyed
back to the requestor for appropriate actions. In addition, an
invocation component is needed that actually marshals this
information to the requestor.

On a language level, the approach would require new
constructs to describe the invocation method that the ACF can
use to contact the requestor. As such, this acts as a “contact
point” for the requestor. In a service-oriented architecture
(SOA), this contact point could consist of the endpoint of a
service that could be invoked (see the Invoke Web Service in
Fig. 5). Subsequently, all access policies must be centralised
and referenced by the SOA architecture which is protected. We



give an SOA a single point of access and we let the services
register with our ACF. Since services are essentially black
boxes, we define how to contact them and to sort out what it
means when policy changes.

On a technical level, the Policy Manager generates policies
and subsequently embed credentials attributes for authentica-
tion and authorisation purposes. Credentials providers such
as certification of authorities issue digital certificates to the
requestor in order to compute his request by the ACF. At this
stage, theReceivercomponent acts as a policy enforcement
point to perform access control by making decision request
and enforcing decisions. For instance, an attribute certificate
is issued to the delegatee for authentication and authorisa-
tion purposes [9]. Attribute certificates will ensure integrity,
protection and non-repudiation through a digital signature.
The Receivergets his attributes certificate and checks his
permissions afterwards. The retrieved attributes are validated
against the policy (e.g. subject attributes, validity time). Once
the delegatee has been successfully authenticated, he will
attempt to perform specified actions on task resources. At each
attempt, theReceiverpasses the access request to theAnalyser
to decide. Decisions results (permit, deny, or not applicable)
are then sent via theResponder.

A new re-evaluation of a policy defines new attributes for
further request with regards to policy changes. As a first
solution, a service is invoked to contact the delegatee and
based on the mutual agreement between delegation principals,
appropriate actions will take place. For instance, the cancella-
tion of his work and the log off from the system.

VI. CONCLUSION

In this paper, we developed a solution to model task dele-
gation within workflows and to specify delegation constraints
into access control systems. The motivation of this work was
based on human-centric workflow from an eGovernment case
study. We defined delegation protocols to support user-to-user
interactions. In doing so, we modelled delegation protocols
with regards to workflow’s invariants in terms of users, tasks
and resources. We then explained how to align delegation
constraints between both workflow and access control systems.
Moreover, we developed an extension to an existing access
control framework in order to ensure dynamic delegation of
authority.

The next stage of our work is the implementation of
our framework using XACML (eXtensible Access Control
Markup Language) standard supporting delegation constraints.
Additionally, we are looking to enrich the access control
framework with a listener component that permits dynamic
changes within existing policies.

REFERENCES

[1] M. Clavel, V. Silva, C. Braga, and M. Egea, “Model-driven security in
practice: An industrial experience,” inECMDA-FA ’08: Proceedings of
the 4th European conference on Model Driven Architecture. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 326–337.

[2] V. Atluri and J. Warner, “Supporting conditional delegation in secure
workflow management systems,” inSACMAT ’05: Proceedings of the
tenth ACM symposium on Access control models and technologies. New
York, NY, USA: ACM, 2005, pp. 49–58.

[3] M. Zur Muehlen,Workflow-based Process Controlling. Foundation, De-
sign, and Application of workflow-driven Process Information Systems.
Logos Verlag Berlin, 2004.

[4] K. Gaaloul, “A Secure Framework for Dynamic Task Delegation in
Workflow Management Systems. Ph.D. thesis, The University of Henri
Poincaŕe, Nancy, France,” 2010.

[5] T. A. R4eGov, “Towards e-administration in the large,” 2006, http://
www.r4egov.eu/.

[6] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel, “Model-
driven business process security requirement specification,”System Ar-
chitecture., vol. 55, no. 4, pp. 211–223, 2009.

[7] C. P. Pfleeger and S. L. Pfleeger,Security in Computing (4th Edition).
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2006.

[8] Tim Moses, “eXtensible Access Control Markup Language (XACML)
Version 2.0,” 2005, committee specification, OASIS.

[9] D. W. Chadwick, S. Otenko, and T.-A. Nguyen, “Adding support to
xacml for multi-domain user to user dynamic delegation of authority,”
Int. Journal Information Security, vol. 8, no. 2, pp. 137–152, 2009.

[10] J. Crampton and H. Khambhammettu, “Delegation in role-based access
control,” in Proceedings of the Computer Security - ESORICS 2006,
11th European Symposium on Research in Computer Security, Hamburg,
Germany, September 18-20, 2006, ser. Lecture Notes in Computer
Science. Springer, 2006, pp. 174–191.

[11] WFMC, The Workflow Management Coalition, “Workflow Management
Coalition Terminology and Glossary,” 1999, document Number WFMC-
TC-1011.

[12] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,”IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

http://www.r4egov.eu/
http://www.r4egov.eu/

	Introduction
	Background
	Organisational management in workflows
	Access control over workflows

	Delegation in eGovernment Context
	Task delegation scenario
	Problem statements

	Modelling and Securing Delegation
	Security alignment
	Pull delegation
	Push delegation
	Access control enforcement

	A Secure Framework for Task Delegation
	Architecture overview
	Architecture requirements

	Conclusion
	References

