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Abstract

Peanut allergy is one of the most prevalent food allergies. The possibility of a lethal
accidental exposure and the persistence of the disease make it a public health problem.
Evaluating the intensity of symptoms is accomplished with a double blind placebo con-
trolled food challenge (DBPCFC), which scores the severity of reactions and measures the
dose of peanut that elicits the first reaction. Since DBPCFC can result in life-threatening
responses, we propose an alternate procedure with the long term goal of replacing invasive
allergy tests. Discriminant analyses of DBPCFC score, the eliciting dose and the first ac-
cidental exposure score were performed in 76 allergic patients using 6 immunoassays and
28 skin prick tests. A Multiple Factorial Analysis was performed to assign equal weights
to both groups of variables and predictive models were built by cross-validation with LDA,
k-NN, CART, penalized SVM, stepwise logistic regression and AdaBoost methods. We
developed an algorithm for simultaneously clustering eliciting dose values and selecting
discriminant variables. Our main conclusion is that antibody measurements offer infor-
mation on the allergy severity, especially those directed against rAra-h1 and rAra-h3.
Further independent validation of these results and the use of new predictors will help
extend this study to clinical practices.

Keywords : discriminant analysis, peanut allergy, DBPCFC, Multiple Factorial Analy-
sis, classification, variable selection

1 Introduction

An allergy is an abnormal reaction of the immune system towards foreign substances
(allergens) that are normally harmless. Peanut allergies in particular affect more than
0.5% of the entire French population, and its increasing prevalence and potentially severe
clinical reactions make it a public health problem. It is also the most lethal food allergy [4].
Following a strict avoidance diet is currently the only effective treatment that minimises
potentially lethal accidents.
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Diagnosing and scoring peanut allergies is currently performed with a double blind placebo
controlled food challenge (DBPCFC) [3]. Patients are given increasing peanut doses until
the first clinical reaction appears. Those showing specific allergy symptoms are declared
allergic, and a particular avoidance treatment is then initiated. DBPCFC is also used to
judge the severity of an established peanut allergy by determining the cumulative dose
that triggers the first reaction, known as the eliciting dose [in milligrams (mg)]. However,
these tests require patient hospitalisation in specialised centers and can potentially result
in life-threatening reactions from patients with severe allergies. The DBPCFC is also a
costly and time consuming test to conduct.

The severity of peanut allergies is usually scored using the following scale [1] :

• Score 1: Mild symptoms among : abdominal pains that spontaneously resolve
under 30 minutes and/or rhinocunjunctivitis and/or urticaria < 10 papulas and/or
a rash (eczema onset);

• Score 2: One moderate symptom among : abdominal pain requiring treatment or
generalized urticaria or non-laryngeal angioedema or cough or fall of Peak Expira-
tory Flow between 15 and 20%;

• Score 3: Two moderate symptoms in the preceding list;

• Score 4: Three moderate symptoms in the preceding list or laryngeal oedema or
hypotension or asthma requiring treatment;

• Score 5: Any symptom requiring hospitalisation in intensive care.

For an already diagnosed allergy, it would be much more advantageous to predict the
severity of the reaction from accidental exposure by using a blood sample or cutaneous
test. This would replace the DBPCFC test with a simple statistical tool that can still
evaluate potential risk without exposing the patient to a life-threatening allergic situation.
Such a diagnostic method would be a major advance in food allergies and be beneficial
to both patients and clinicians.

The first objective of this paper was to select a set of discriminant variables which can
offer useful information about the severity of peanut allergy. These variables could pro-
vide biologists and allergists a better understanding of the mechanisms inducing allergic
reactions. Moreover this will allow to avoid measuring useless variables in further studies.

The second goal of this study was to predict the DBPCFC score, the eliciting dose and the
first accidental exposure score, evaluated a posteriori with the patient’s medical record
according to the same scale as the DBPCFC score. The first accidental exposure score
would then reveal the “real” severity of the allergy. Compare this to using the DBPCFC,
which only offers a minimal view of the severity since the procedure is terminated once
the first symptoms appear.
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2 Experimental Procedure and Data

A clinical study was performed using 76 allergic patients with ages from 3 to 18 years.
Tables 1 and 2 describe the frequencies observed for DBPCFC score, the first accidental
exposure score and the eliciting dose. Note that only 47 out of the 76 patients experienced
a first accident. The remaining 29 patients were diagnosed during an allergy check-up
and subsequently confirmed by DBPCFC, thus avoiding further accidents. Patients were
homogeneously distributed in age and sex across severity scores.

Thirty-four variables were measured to reveal the presence of Immunoglobulins of type
E (IgE) antibodies. These are proteins produced by the immune system that can elicit
allergic reactions [20]. Each antibody is specific to an allergen, i.e., it is coded to identify
a particular protein for elimination. We measured the levels of IgE for the proteins of
interest with the goal of building a predictive model of allergy severity. The variables used
to test for IgE were measured either by immunoassays or by Skin Prick Tests (SPTs).

2.1 Immunoassays

Immunoassays are biochemical tests that quantify the level of antibodies in a blood sample
(in kilo-units per liter). We performed six immunoassays aimed at measuring the follow-
ing: the total IgE, the specific IgE to peanut (f13), and the specific IgE to recombinant
(r)Ara-h1, rAra-h2, rAra-h3, rAra-h8, which are IgE especially directed against peanut
recombinant major allergens [1].

2.2 Skin Prick Tests (SPTs)

SPTs are used to detect an immunological sensitivity to a particular substance. They
show the functional aspect of cellular IgE, which are linked to mast cells releasing chemical
mediators that elicit symptoms [20]. A small dose of allergen is applied under the skin by
pricking with a needle, and the diameter of the resulting wheal is measured in millimeters.
We also measured the diameter of prick-tests to codeine as a positive control showing the
basal reactivity of the skin. The ratio of the two diameters is used to measure the allergen
reaction.

We performed prick-tests for 28 allergens divided into three families:

1. 11 nuts: almond, Brazil nut, cashew nut, chestnut, hazelnut, peanut, pecan nut, pine
nut, pistachio, Queensland nut, walnut, which are often related to peanut allergies
by cross-reactivity;

2. 7 legumes: broad bean, chickpea, dried bean, green pea, lentil, lupine flour, soybean,
since peanuts are legume;
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3. 10 aeroallergens: 12 grass pollens, Alternaria, ash, birch, cat epithelia, dog ep-
ithelia, Dpte (Dermatophagöıdes pteronyssinus), mugwort, ribwort, rape seed, which
are the common clinical allergens.

Immunoassays and SPTs were measured immediately before DBPCFC.

3 Statistical approach

All computations were performed using the SAS Enterprise Guide 4.1.0.471 R© or R 2.7.0
[21].

3.1 Design of the study

We first performed a Principal Component Analysis (PCA) to gain an overview of the
data.

To solve our problems, discriminant analyses of DBPCFC score, first accident score and
eliciting dose were performed by using several classifiers. Two studies were performed for
each measure of severity by treating it as a four-class variable, and then as a two-class
variable.

For DBPCFC and first accidental exposure, 4 classes were built by considering the score
groups {1}, {2}, {3} and {4, 5} because of the low frequency of score 5. For the two-class
discrimination, groups were formed by scores of either {1, 2, 3} or {4, 5}, as recommended
by clinicians.

Since eliciting dose values are fixed by levels by the clinician [1], its measure is not a
continuous variable and cannot be predicted by a regression analysis. Moreover although
eliciting dose could be considered as a class variable, a discriminant analysis cannot be
directly performed because of numerous categories with low frequencie (Table 2). A
first solution consisted in converting eliciting dose into a four or two-class variable by
searching the best discriminated classification computed with all available variables. A
second solution will be proposed in Section 3.3.

Careful variable selection appeared especially as a major point of the analysis. Therefore
three different statistical approaches were proposed for each measure of severity :

3.1.1 Direct application of the classifiers

The performances of several classification rules were first compared without preselecting
variables. Linear Discriminant Analysis (LDA), k-Nearest Neighbors (k−NN), Classifi-
cation And Regression Trees (CART) [10] and AdaBoost with CART [5] were performed
using all the 34 available variables as predictors. k−NN were performed for k ∈ {1, . . . , 5}
and the number of nearest neighbors giving the best results was kept.
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3.1.2 Simultaneous variable selection and classification

Since in supervised learning keeping noisy predictors can increase the misclassification
error, two methods that simulteanously perform variable selection and classification were
also used : stepwise logistic regression [11] and penalized SVM [2].

3.1.3 Specific variable selection scheme prior to classification

DBPCFC and first accident scores

As explained earlier, the determination of a set of predictors to keep is one of the main
points of the study. Thus a variable selection scheme independent from classification was
also developed. Variables were retained in the model if either the corresponding p-value
of the Kruskal-Wallis test [6] was smaller than 0.10, or if the variable was selected by
the stepwise Wilks’ lambda (Λ) criterion [13]. The Λ statistic was computed at each
step with all variables already present in the model, whereas the F − to− enter statistic
and corresponding p-value measure the discriminant power of a variable added to the
preceding ones. For the latter, the maximal F − to − enter p-values used as entry and
removal criteria were set by default to 0.15, as recommended by [7].

The nonparametric Kruskal-Wallis test was preferred to ANOVA, because variables were
not always normally distributed in the classes induced by the scores. Note that the Wilks’
lambda selection is based on the hypotheses of multi-normality of the variables vector
distribution and equality of the within-class covariance matrices. In 1975, Lachenbruch
[14] asserted that the F−test is robust to small deviations of these hypotheses. We
therefore decided to use the Wilks’ lambda selection even though variables were not
always normally distributed in the classes induced by the measures of severity.

This variable selection scheme is a compromise between the assessment of variable marginal
importance and the detection of a discriminant subset of predictors. This will allow first
to provide biologists and allergists a list of informative variables in regards to the mech-
anisms involved in allergic reactions, and second to avoid keeping noisy variables that
could degrade the performance of the learning algorithms.

Biologists and allergists are particularly interested in using immunoassays as markers
of the severity of peanut allergy because Specific IgE to rAra-h1, rAra-h2, rAra-h3 are
yet known to be very useful in practice to detect peanut allergic patients [1]. Moreover
immunoassays are precise and reliable measures contrary to SPTs. But the number of
discriminant SPTs can far exceed the number of selected immunoassays, which could
possibly smear out the signal brought by immunoassays. As we wanted nevertheless to
keep the information provided by SPTs, a Multiple Factorial Analysis (MFA) [8] was
performed to equalize the influence of both groups of selected variables, which enabled
the use of factors as new predictors of severity.

Thus we performed two discriminant analyses :
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1. by using directly the discriminant variables as predictors for classification with the
methods introduced in Section 3.1.1,

2. by computing MFA factors of the discriminant variables and selecting a limited
number of discriminant factors by the same selection process as the one used with
raw variables, before performing the classification rules.

The overall specific statistical approach is summarized in Figure 1.

Multiple Factorial Analysis of discriminant variables

Same weight to both groups of
variables

Comparison of classifiers
with either variables or factors as 
predictors

_ LDA

_ k NN

_ CART

_ AdaBoost (two-class study)

Same weight to each variable 

Same weight to each
factor

Variable selection
by 

Kruskal-Wallis’ test
or

stepwise selection by Wilks’ lambda

Variable selection
by 

Kruskal-Wallis’ test
or

stepwise selection by Wilks’ lambda

Figure 1: Specific statistical analysis for DBPCFC and first accident scores. The left path
of the analysis gives a set of discriminant predictors without allowing for the weights of
both groups of variables, whereas the right one uses equally-weighted groups of predictors.

Eliciting dose

To discriminate this variable, we also devised an algorithm that simultaneously clusters
the eliciting dose values and selects predictors by minimizing the Wilks’ lambda (Section
3.3). This algorithm was applied by using raw variables or factors computed by MFA
with the 34 available variables as predictors. Once the predictors were chosen and the
clusters built, the same statistical approaches as for DBPCFC and first accident scores
were used. The corresponding statistical analysis is summarized in Figure 2.
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Multiple Factorial Analysis of all variablesVariables

Same weight to both groups of
predictors (variables or factors)

Simultaneous classification
of eliciting doses values

and
discriminant variable selection

Comparison of classifiers
with either variables or factors as 
predictors

_ LDA

_ k NN

_ CART

_ AdaBoost (two-class study)

Figure 2: Specific statistical analysis for the eliciting dose

3.2 Multiple Factorial Analysis (MFA)

MFA was introduced by B.Escofier and J.Pagès [8, 9] for sensory analysis, and is a PCA
with a particular choice of metric. The aim of this method is to give a similar part to
several groups of variables when determining factors, i.e., uncorrelated linear combina-
tions of the initial variables. This procedure is useful for avoiding models that are fully
influenced by a single group of numerous variables which could partially cancel the effect
of the other groups. Briefly, an MFA is performed as follows :

Suppose p variables are measured on n subjects and divided in q groups :

(x1,1, . . . , x1,m1); . . . ; (xq,1, . . . , xq,mq) (1)

with
∑q

k=1mk=p, where mk is the number of variables in group k.

Denote Xk the matrix of data of size n × p corresponding to the kth group of variables,
namely :

Xk=

xk,1 . . . xk,j . . . xk,mk

1
...

...

i . . . xk,ji . . .
...

...
n
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where the generic element xk,ji denotes the measure of the variable xk,j for the sample
point i.

Let also X = (X1| . . . |Xq) be the matrix corresponding to the whole set of variables.

For the kth group of variables, let Mk be a metric matrix in Rmk , k=1, . . . , q.

Let D be the diagonal matrix of the weights assigned to the sample points.

The MFA algorithm is then as follows :

• Step 1 : For any 1 ≤ k ≤ q, perform PCA(Xk,Mk,D), and denote λk1 the greatest
eigenvalue corresponding to the first factor ;

• Step 2 : consider the metric matrix in Rp :

M=

M1/λ1
1

. . .

Mq/λq
1


and perform PCA(X,M,D).

Note that in our case, q = 2 with the immunoassays as the first group of variables and
the SPTs as the second. Variables were first centered and scaled to unity, and the metric
matrix Mk was then set to the identity matrix Ik in Rmk .

For the DBPCFC and first accident scores, we thought it made more sense to compute
the factors using only the discriminant variables rather than using all available variables.
Indeed, the predictive model needed to be built with a reasonable number of characters.
Even if a limited number of factors were chosen afterwards, all variables would still have
to be measured to compute the factors. Moreover, a non-discriminant variable could
have a large coefficient for some retained factors even though it would not improve the
overall discriminative power of the model. Nonetheless, we did compute factors using all
variables as well, but the results did not improve the discrimination of the first accident
score. For the eliciting dose, factors were computed using all 34 available variables, not
only the discriminant ones. As described in Section 3.3, the set of discriminant variables
depends on the choice of the clustering of eliciting dose values and vice versa. Thus it did
not seem appropriate to replace the optimal set of variables by factors.

3.3 An algorithm for simultaneously clustering the response
variable and selecting discriminant variables

3.3.1 Principle

Eliciting dose is a variable whose values are taken according to an increasing scale of
fixed doses of peanut. For a given patient, only an interval including the eliciting dose
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is actually known. We wished first to group eliciting dose values in a limited number
of intervals, and second to select the most discriminant variables for these categories.
Here we propose an algorithm to perform these two steps simultaneously using alternate
optimization.

For a given partition in intervals, a set of discriminant variables of fixed cardinal is selected
using a certain optimality criterion. A new partition in intervals is then determined to
optimize this criterion with the chosen variables, and so on. In order to not repeat this
algorithm for different values of the cardinal, the number of variables to include could be
increased one-by-one at each step of the procedure. The optimal set of variables could
then be searched into all the possible subsets of variables of fixed cardinal corresponding
to this step. To avoid heavy computations, variables were included forward in the model.
At each step, a new variable was chosen according to the optimality criterion and added
to the preceding variables.

Since Wilks’ lambda provides a non-empirical stopping rule by testing its significance,
this approach was preferred over using within-class inertia computation as the optimality
criterion. The p-value of F − to− enter was set to 0.15.

3.3.2 Constructing the clusters

Let y be an ordinal categorial variable of levels {m1, . . . ,ml}, m1 < m2 < . . . < ml.
Suppose that we want to cluster the levels of y into a limited number r of intervals
]mi,mj]. Only consecutive levels can be gathered. We build consecutive left-opened
and right-closed intervals by selecting the upper bounds. Thus the number of possible
clusterings is Cr−1

l−1 .

3.3.3 Algorithm

The algorithm for computing intervals and selecting discriminant variables is as follows:

• Step 1 :

1. choose the clustering C1 of eliciting dose values that minimises Λ, computed
using all 34 available predictors ;

2. select the predictor v1 that minimises Λ with the obtained clustering C1 ;

• Step 2 :

1. choose the clustering C2 of eliciting dose values that minimises Λ, computed
using the previously selected predictor v1 ;

2. select the predictor v2 such that the paired predictors (v1, v2) minimise Λ with
the new clustering C2 ;
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• and so on . . .

• procedure stops if either no left predictor can improve the discriminant power of the
model, i.e., if F − to− enter p−value is greater than 0.15 [13], or if every predictor
is already entered.

Note that the F−to−enter value is only computed when a new variable is entered into the
model. This algorithm was used with both the variables and the MFA factors computed
using all 34 available variables. Since new discriminant variables could have been chosen
at each step of the algorithm, there was no default starting set of discriminant variables.
Moreover, it did not seem appropriate to perform the MFA at the end of the algorithm,
since the selected variables were specifically chosen to discriminate the found clusters.

3.4 Discriminant analysis

Linear discriminant analysis, k-NN, CART [10] and stepwise logistic regression [11] are
classic methods. For two-class discrimination we also used the AdaBoost algorithm with
CART [5] and penalized SVM. Since these are still recently developed algorithms, we
briefly summarize their concepts below.

3.4.1 AdaBoost

Let {(xi, yi)1≤i≤n} a dataset, where xi ∈ Rp is the vector of predictors, and yi ∈ {0, 1} is
a binary response variable to discriminate. The principle of the AdaBoost algorithm is
to re-weight observations that were misclassified by a base classifier (CART in our case).
At each step of the procedure, a new classification tree is randomly built, inducing new
misclassified sample points whose weights are updated before the following step starts.
The method proceeds according to the following algorithm:

• Step 1 : assign equal weigths to all sample points w
[0]
i =1/n,∀i = 1, . . . , n ;

• Step 2 : for m=1, . . . ,M do :

1. build a classifier ĝ[m] trained on data weighted by w
[m−1]
i ,∀i = 1, . . . , n ;

2. classify the data by resubstitution : determine ĝ[m](xi), i = 1, . . . , n ;

3. compute the misclassification rate :

err[m] =

∑n
i=1w

[m−1]
i 1(yi 6=ĝ[m](xi))∑n
i=1w

[m−1]
i

, (2)

α[m] = log

(
1− err[m]

err[m]

)
, (3)
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where

1(yi 6=ĝ[m](xi)) =

{
1 if yi 6= ĝ[m](xi) (i.e. if xi is misclassified),

0 otherwise;
(4)

4. update the weights

w̃i = w
[m−1]
i exp(α[m]

1(yi 6=ĝ[m](xi))), (5)

w
[m]
i =

w̃i∑n
j=1 w̃j

; (6)

• Step 3 : build the aggregated classifier

f̂AdaBoost(x) = arg maxy∈{0,1}

M∑
m=1

α[m]
1(ĝ[m](x)=y). (7)

A novel observation x is classified by the majority vote f̂AdaBoost(x), where vote m is
weighted by α[m].

In this study AdaBoost was performed for M = 50, 100 and 200 on the training set and
the parameter value giving the best result was kept.

3.4.2 Penalized SVM

Let {(xi, yi)1≤i≤n} a training set, where xi ∈ Rp is the vector of predictors, and yi ∈
{−1, 1} is the class label. The Support Vector Machine (SVM) algorithm gives the hy-
perplane H that best splits both groups and that is defined by the equation

H : f(x) =< w,x > +b = 0 (8)

where < ., . > is the usual dot product in Rp, w=(w1,. . .,wp) are the coefficients of the
hyperplane and b is the intercept.

The coefficients are obtained by solving the convex optimization problem :

min
b,w

n∑
i=1

[1− yif(x i)]+ + penλ(w) (9)

where λ is a positive tuning parameter, [.]+ = max(., 0) is the positive part and penλ(w) =
λ‖w‖22 = λ

∑p
j=1(w

j)2.

The class label of a novel observation x is then given by sign(f(x)).

To select a limited number of variables, the term penλ in (9) can be replaced by a penal-
ization function being singular at the origin and having a continuous first-order derivative
[22]. Two functions were used in this study :
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• L1 : penλ(w) = λ‖w‖1 = λ
∑p

j=1 |wj|

• Smoothly Clipped Absolute Deviation (SCAD) : penλ(w) =
∑p

j=1 pλ(w
j) where

pλ(w
j) =


λ|wj| if |wj| ≤ λ

− (|wj |2−2aλ|wj |+λ2)
2(a−1)

if λ < |wj| ≤ aλ
(a+1)λ2

2
if |wj| > aλ

(10)

where a > 2 is a tuning parameter. As suggested in [2], a is set by default to 3.7.

The optimal λ was chosen by the algorithm in the set {0.05, 0.10, 0.15, . . . , 0.95} for L1

penalization and in {0.10, 0.20, . . . , 1} for SCAD penalization.

For both penalizations, variables with coefficient |wj| lower than a given ε were considered
useless and removed from the model. In the penalized SVM R package, ε is set to 0.001
[22].

4 Results

4.1 Principal Component Analysis

The PCA representation of the variables was relevant. As seen on the correlation circle
of Figure 3, intra-family correlations between variables were rather high but inter-family
correlations were quite low (with the notable exception of nuts and aeroallergens). More-
over, the total IgE and specific IgE to rAra-h8 did not seem closely related to the other
immunoassays, an observation fully validated by clinicians. Indeed, as explained earlier,
the level of total IgE is the global measure of this antibody subclass, whereas the specific
IgE to rAra-h1, rAra-h2 and rAra-h3 are directed against peanut allergens alone. Also,
rAra-h8 is a homologous protein to the birch pollen allergen Bet-v1, sharing about 66%
of their amino acid sequences. Thus patients sensitive to both peanut and birch pollen
could present high values of specific IgE to rAra-h8 without being allergic to peanuts.

These results confirmed clinical observations. Also, the individual representation did not
provide supplementary information (data not shown), and no particular interpretation
was evident for the PCA axes.

4.2 Discriminant analysis

Here we show the results for the prediction of the first accidental exposure score, the
DBPCFC score and the eliciting dose. Tables 3, 4 and 5 give the well-classification rates
obtained by combining the classifiers with the 3 different statistical approaches :

1. direct application of the classifiers,
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2. simultaneous variable selection and classification methods,

3. specific variable selection scheme prior to classification.

The percentage of detected patients with high severity was also computed. According to
clinicians, failing to detect patients with severe allergies could indeed lead to inappropriate
food intake by the patient.

Results are given including the variable selection scheme and/or MFA in the cross-
validation. For the first and the third variable selection schemes, only the classifier
giving the best performances among LDA, k−NN, CART and AdaBoost is displayed.
For penalized SVM, the best result between L1 ans SCAD penalizations was kept.
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The variables obtained with the selection process offering the bests results are also given
and summarized in Figure 4 for each measure of severity .

4.2.1 First accidental exposure score

Four-class study

Recall that in what follows, we combined scores 4 and 5 because of the low frequency of
score 5. Thus the four classes considered here are for scores of {1}, {2}, {3}, and {4, 5}.
Well-classification rates obtained by fourth-fold cross-validation with each statistical ap-
proach are shown in Table 3. The percentage of patients of score 4 who were correctly
classified in class 4 is also given. Note that direct application of the classifiers could
not have been performed since the number of variables was greater than the size of the
learning sets. 5−NN combined with our specific variable selection scheme was the most
performant classifier with 41% of well-classified patients, since stepwise logistic regression
and penalized SVM did not give better results. Nevertheless all these results remained
poor. Replacing variables by factors did not give better results than direct use of the
variables.

On the whole dataset 7 variables had a Kruskal-Wallis p-value lower than 0.10 (peanut,
walnut, chick pea, pecan nut, broad bean, green pea, cashew nut, ordered by increasing
p-value, Table 6) and 8 were retained in the Wilks’ lambda selection (chick pea, specific
IgE to rAra-h8, green pea, rape seed, peanut, ribwort, total IgE, specific IgE to rAra-h1,
Table 7). Thus 12 different variables were selected in total (3 immunoassays and 9 SPTs).

Two-class study

The methodology used was the same as for the four-class study.

The method which gave the best results for two-class discrimination was 1−NN with
factors computed from discriminant variables as predictors (81% of well-classified sample
points) (Table 3). Of the score 4 patients, 74% were correctly classified. Contrary to the
four-class study, the use of factors improved the classification rates compared to the direct
use of variables since using selected variables with 1−NN gave 79% of well-classification
rate. The other models yielded poor results.

Processing the variable selection on the whole dataset gave interesting results. Eleven
different variables were selected to build discriminant factors: peanut, walnut, specific IgE
to rAra-h1, specific IgE to rAra-h3, pecan nut for Kruskal-Wallis and peanut, specific IgE
to rAra-h1, lupine flour, specific IgE to rAra-h2, ribwort, Dpte, birch, dog epithelia for
Wilks’ lambda. These immunoassays, as well as SPTs to nuts and legumes, are variables
expected by clinicians. This indicates that our selection process seems to detect “useful”
variables. More surprisingly, a few SPTs to aeroallergens were also selected. Indeed, these
variables are not known to cross-react with peanuts. Note that the discriminant factors
will have to be computed these variables to use the best model for further classification.
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4.2.2 DBPCFC score

The statistical approach used to predict the DBPCFC score was the same as for the first
accident score.

Four-class study

Scores of 4 and 5 were again grouped together due to the low frequency of score 5.

Although applying CART without preselecting variables gave the best results with a 38%
successful classification rate, the overall misclassification error remained high (Table 4).
Note that with the specific variable selection approach, MFA was not performed since
only SPTs were entered in the model during cross-validation.

Interestingly 7 variables were entered in the classification tree performed on the whole
dataset : lupine flour, specific IgE to f13, lentil, total IgE, specific IgE to rAra-h3, 12
grass pollens, specific IgE to rAra-h8, in order of selection. This means that although all
variables were available for building a model only a few were considered as useful by the
CART algorithm.

Two-class study

DBPCFC scores can be gathered into two classes in the same manner as for the first
accidental exposure score. Overall, using 3-NN classification with our variable selection
scheme offered the best results, with 66% of successfully classified sample points and 33%
of successfully classified severe patients (Table 4).

Total IgE was the only immunoassay retained in the model during cross-validation. Thus,
no factor was computed. Indeed, assigning the same weight to this single variable as to the
other variables did not seem appropriate, because total IgE are not antibodies specifically
involved in peanut allergies, but in all allergic reactions.

On the whole dataset this resulted in selecting variables lupine flour for Kruskal-Wallis
and almond, total IgE, lupine, broad bean, pine nut for Wilks’ lambda.

4.2.3 Eliciting dose

Before applying directly all the classifiers without selecting variables and performing step-
wise logistic regression and penalized SVM, eliciting dose was first converted into a class
variable. During cross-validation values were gathered into the partition of minimal Wilks’
lambda computed with all available variables. These results were compared to those ob-
tained with our algorithm that simultaneously selects discriminant variables and groups
the eliciting dose values in an optimal partition (Section 3.3). This was performed for both
four-class (r = 4) and two-class (r = 2) studies. The minimal number of sample points
in each class was set to 10, in order to have class frequencies large enough to perform
cross-validation.

Note that this process was included in cross-validation.

Four-class study
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The eliciting dose was correctly predicted for 39% of the patients using our algorithm and
CART with variables. Moreover, only 52% of the patients from the lowest eliciting doses
group were correctly classified. Other approaches did not give better results (Table 5) .

Table 8 shows the bounds x, y, z for clustering ]−∞, x] , ]x, y] , ]y, z] , ]z,+∞[, and the
variables entered at each step of the algorithm when performed on the whole dataset.
The algorithm stopped at step 7 because no additional improvement resulted afterwards.
The selected variables were hazelnut, birch, pistachio, cashew nut, green pea, total IgE,
pine nut and the bounds were 95, 215, and 500 mg.

The same study was performed with factors as predictors but it did not enhance the
model.

Two-class study

Selecting factors of all available variables with our algorithm was the most discriminant
model to discriminate the eliciting dose in the two-class study (77% were successfully
classified with 5−NN). It also successfully classified 72% of the highly reactive patients.
The threshold of eliciting dose was 300 mg with 7 factors selected (Λ = 0.62). Neverthe-
less, this model cannot easily be used in practice. Indeed, as mentioned earlier, MFA was
performed on all 34 variables, not just the discriminant variables. This means that to
correctly predict the eliciting dose, all variables would have to be measured to compute
the factors; this does not seem feasible.

5 Conclusions

To the best of our knowledge, this paper presents the first discriminant analysis of
DBPCFC score, first accident score, and eliciting dose measurement of peanut allergy
severity. Previous studies were aimed at finding links between immunoassays or SPTs
and allergy severity, but their statistical analyses were limited to either comparing dis-
tributions between groups of patients (using, for instance, the Mann-Whitney test) or to
computing linear correlation coefficients [12, 19]. In our approach, we used several classi-
fication rules to aid in comparing and choosing the optimal and most efficient method. It
appeared that in general selecting discriminant variables by a process independent from
classification gave better results. In addition, we found that using MFA to compute new
predictors was an attractive solution when equalizing the weights of group variables, and
we proposed a novel algorithm for simultaneously clustering the levels of ordinal qualita-
tive variables and for selecting discriminant variables.

Our work differs from earlier studies in several respects. Previous studies were performed
on small sample sizes of 30 to 40 patients [12, 19] using a small number of measured
variables, which only permitted a limited choice of discriminating predictors. Also, specific
IgE to Ara-h1,2,3 were measured by SPTs instead of immunoassays [19] and although a
positive response to an SPT does indeed indicate allergen sensitivity, it is still less accurate
than immunoassays.
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Variable First accident 4 classes First accident 2 classes DBPCFC 4 classes DBPCFC 2 classes Eliciting Dose 4 classes
total IgE 1 1 1 1

sp.IgE to f13 1
sp IgE to rAra-h1 1 1
sp IgE to rAra-h2 1
sp IgE to rAra-h3 1 1
sp IgE to rAra-h8 1 1

almond 1
Brazil nut

cashew nut 1 1
chest nut
hazelnut 1
peanut 1 1

pecan nut 1 1
pine nut 1 1
pistachio 1

Queensland nut
walnut 1 1

broad bean 1 1
chickpea 1

dried bean
green pea 1 1

lentil 1
lupine flour 1 1 1

soybean
12 grass pollens 1

Alternaria
ash

birch 1 1
cat epithelia
dog epithelia 1

Dpte 1
mugwort
ribwort 1 1

rape seed 1
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Figure 4: Summary of discriminant variables. Selected variables are colored in black for
each measure of severity. In two classes, all available variables were used to compute
discriminant factors of eliciting dose

There are several scoring methods in the literature to evaluate peanut allergy severity. For
example, Hourihane et al. devised a complex 25-class scoring system combining observed
reactions and eliciting doses [12]. A graduation of symptoms was also proposed by Müller
[18], but this score is based on allergic reactions in response to bee or wasp venom (and not
peanut allergens). Thus, developing a standardized scoring method is still necessary and
would facilitate comparison studies from different centers. One possible solution would
be comparing the results of Hourihane et al.’s score with the one used in this study using
the same cohort of patients. Moreover, the large number of scoring levels in Hourihane
et al.’s approach could be reduced by our algorithm.

Nevertheless, several potential biases in our study must be noted. First, SPT diameters
are relatively imprecise. There is no standard method of measuring SPT reaction since
both wheal diameters and areas are popular metrics [19]. Additionally, the score of the
first accident can be inaccurate or imprecise since it depends on the medical history
of the patient, and hence subject to inaccuracies in the patient’s memory which may
underestimate symptom severity. Other factors such as medication can affect the first
reaction symptoms as well [15, 17] yielding a severity score higher than it should be.
Finally, the first exposure score is a past event predicted using variables measured during
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a subsequent DBPCFC. As mentioned in Section 4.2.2, Hourihane et al. also used such
a reverse prediction with a community score that was evaluated a posteriori using the
record file of the patient [12].

The predictive models used in our study yielded correct classifications for the first ac-
cidental exposure and DBPCFC of up to 81% and 66% for the two-class study. Our
algorithm also allowed us to group eliciting dose values and to select discriminant predic-
tors, leading to an 77% classification rate for the two-class study. This indicates that it
is indeed possible to correctly predict peanut allergy severity by measuring well-chosen
variables. Considering that all immunoassays of specific IgE were selected once, we also
hypothesize that measuring new antibodies to peanut allergens, such as those directed
against rArah-6, rArah-7 and rArah-9, will further improve the discriminative power of
our models. This also argues for these antibodies playing key roles in the diagnosis of
peanut allergy severity.

Our variable selection process also offers a new perspective on conducting allergy check-
ups. Indeed, some unexpected variables appeared several times in our models, such as
SPTs to dog epithelia as shown in Figure 4. If future experiments could distinguish the
medical relevance of this observation from cross-reactivity, then the importance of these
SPTs in discriminating severity would be confirmed. Besides, some SPTs never appeared
in our models, such as SPTs to Alternaria or Brazil nut, and thus should no longer be
performed in practice when diagnosing peanut allergy severity. Furthermore, some SPTs
with proven cross-reactivity to peanuts were retained in our models, such as lupine flour
[16], indicating that our results were in line with other medical discoveries.

The discriminating models described in this paper are a first step towards a simple, safe
and efficient diagnosis of peanut allergy severity by quantifying antibodies. Before being
applied in clinical practices, they must first be validated on an independent set of patients.
New variables must also be added as additional predictors toward improving successful
classification rates. These models could then become practical tools for clinicians. When
scoring severity, the clinical test results could be reported online at the allergy vigilance
network (Réseau d’allergovigilance, http://www.cicbaa.com/ ), or a simple statistical soft-
ware could be programmed.
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Table 1: Frequencies of DBPCFC and first accidental exposure severity score
scores 1 2 3 4 5 sum

DBPCFC 17 25 11 22 1 76
first accident 9 16 4 16 2 47

Table 2: Frequencies of eliciting dose values
eliciting dose (mg) n eliciting dose (mg) n

1.4 1 300 1
4.4 2 400 1
14 1 500 18
15 2 965 4
44 8 1000 1
65 5 2000 3
95 1 2110 1
115 1 3500 1
165 1 3610 1
210 1 4110 1
215 17 7000 3
265 1 sum 76
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Table 3: Results of the discriminant analysis of first accidental exposure score for the
three kinds of variable selection schemes. The best classification method is given for the
four-class and two-class studies. Results are expressed as successful classification rates
and as severe patient detection rates.

method 4 classes 2 classes
no selection x AdaBoost (M = 50) : 63%-33%

stepwise logistic regression 34%-65% 63%-22.5%
penalized SVM x L1 : 61%-44%

Kruskal-Wallis / Wilks’ lambda with variables 5NN : 41%-65% 1NN : 79%-72%
Kruskal-Wallis / Wilks’ lambda with factors 1NN : 34%-46% 1NN : 81%-74%

Table 4: Results of the discriminant analysis of DBPCFC score for the three kinds of
variable selection schemes. The best classification method is given for the four-class and
two-class studies. Results are expressed as successful classification rates and as severe
patient detection rates.

method 4 classes 2 classes
no selection CART : 38%-44% 2NN : 64%-37%

stepwise logistic regression 35%-32% 56%-10%
penalized SVM x L1 : 62%-24%

Kruskal-Wallis / Wilks’ lambda with variables 2NN : 36%-52% 3NN : 66%-33%
Kruskal-Wallis / Wilks’ lambda with factors x x

Table 5: Results of the discriminant analysis of eliciting dose for the three kinds of
variable selection schemes. The best classification method is given for the four-class and
two-class studies. Results are expressed as successful classification rates and as severe
patient detection rates.

method 4 classes 2 classes
no selection LDA : 38%-39% 5NN : 69%-62%

stepwise logistic regression 12%-5% 58%-48%
penalized SVM x L1 : 66%-45%

algorithm with variables CART : 39%-52% 1NN : 66%-36%
algorithm with factors LDA : 33%-34% 5NN : 77%-72%
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Table 6: p-values of Kruskal-Wallis tests for first accidental exposure score (four-class
study). Variables are ordered by increasing p-values.

variable p-value variable p-value
peanut 0.023 total IgE 0.424
walnut 0.038 chest nut 0.436

chick pea 0.051 ribwort 0.442
pecan nut 0.060 12 grass pollens 0.455

broad bean 0.067 lentil 0.474
green pea 0.081 mugwort 0.488

cashew nut 0.088 sp.IgE to f13 0.498
sp.IgE to rAra-h3 0.146 sp.IgE to rAra-h8 0.570
sp.IgE to rAra-h2 0.160 rape seed 0.582

soybean 0.172 ash 0.631
pistachio 0.201 sp.IgE to rAra-h2 0.693

Alternaria 0.216 pine nut 0.698
dried bean 0.254 Dpte 0.706
Brazil nut 0.266 birch 0.723

dog ephitelia 0.291 almond 0.736
Queensland nut 0.317 hazelnut 0.766

lupine flour 0.372 cat ephitelia 0.806

Table 7: Wilks’ lambda stepwise selection for first accidental exposure score (four-class
study).
step entered Wilks’ Λ F − to− enter F − to− enter p-value

1 chick pea 0.74 5.14 4.00E-03
2 Sp.IgE to rAra-h8 0.55 4.84 5.55E-03
3 green pea 0.39 5.36 3.31E-03
4 rape seed 0.31 3.76 1.81E-02
5 peanut 0.26 2.50 7.41E-02
6 ribwort 0.21 2.56 6.95E-02
7 Total IgE 0.18 2.09 1.18E-01
8 Sp.IgE to rAra-h1 0.15 2.24 9.98E-02

23



Table 8: Clusters and variables selected to discriminate eliciting doses and corresponding
Λ and F − to− enter statistics (four-class study).
step bounds / predictors Wilks Λ F − to− enter F − to− enter p-value

1 95-215-500 0.08
1 hazelnut 0.73 8.51 6.96E-05
2 95-215-500 0.73
2 birch 0.64 3.15 0.031
3 95-215-1000 0.63
3 pistachio 0.56 2.85 0.044
4 95-215-1000 0.56
4 cashew nut 0.50 2.74 0.050
5 95-215-1000 0.50
5 green pea 0.45 2.24 0.092
6 95-215-1000 0.45
6 total IgE 0.41 2.20 0.096
7 95-215-500 0.41
7 pine nut 0.35 3.24 0.028
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