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Abstract. We propose a simple and practical speed-up technique, which
can be combined with every distance vector routing algorithm based on
shortest paths, allowing to reduce the total number of messages sent
by that algorithm. We combine the new technique with two algorithms
known in the literature: DUAL, which is part of CISCO’s widely used
EIGRP protocol, and the recent DUST, which has been shown to be
very effective on networks with power law node degree distribution. We
give experimental evidence that these combinations lead to an important
gain in terms of the number of messages sent by DUAL and DUST at
the price of a little increase in terms of space occupancy per node.

1 Introduction

The problem of updating efficiently all-pairs shortest paths in a distributed net-
work whose topology dynamically changes over the time is considered crucial
in today’s communication networks. This problem has been widely studied in
the literature, and the solutions found can be classified as distance-vector and
link-state algorithms. In a distance-vector algorithm, a node knows the distance
from each of its neighbors to every destination and stores this information in
a data structure usually called routing table; a node uses its own routing ta-
ble to compute the distance and the next node in the shortest path to each
destination. Most of the distance-vector solutions for the distributed shortest
paths problem proposed in the literature (e.g., see [1–3]) rely on the classical
Distributed Bellman-Ford method (DBF from now on), originally introduced
in the Arpanet [4], which is still used in real networks and implemented in the
RIP protocol. DBF has been shown to converge to the correct distances if the
link weights stabilize and all cycles have positive lengths [5]. However, the con-
vergence can be very slow (possibly infinite) due to the well-known looping and
count-to-infinity phenomena. In a link-state algorithm, as for example the OSPF
protocol widely used in the Internet (e.g., see [6]), a node must know the entire
network topology to compute its distance to any network destination (usually
running the centralized Dijkstra’s algorithm for shortest paths). Link-state al-
gorithms are free of the looping and count-to-infinity problems. However, each



node needs to receive up-to-date information on the entire network topology
after a network change. This is achieved by broadcasting each change of the
network topology to all nodes [6] and by using a centralized algorithm for short-
est paths. In the last years, there has been a renewed interest in devising new
efficient light-weight distributed shortest paths solutions for large-scale Ether-
net networks (see, e.g., [7–10]), where distance-vector algorithms seem to be an
attractive alternative to link-state solutions when scalability is not an issue.

Related works. Among the distance vector algorithms one of the most interest-
ing is surely DUAL (Diffuse Update ALgorithm) [2], which is free of the looping
and count-to-infinity phenomena, thus resulting an effective practical solution
(it is in fact part of CISCO’s widely used EIGRP protocol). Another distance
vector algorithm has been recently introduced in [11] and successively developed
in [12], where it has been named DUST (Distributed Update of Shortest paThs).
Compared with DUAL, DUST suffers of the looping and count-to-infinity phe-
nomena, even though it has been designed to heuristically reduce the cases where
these phenomena occur. However, DUST uses an amount of data structures per
node which is much smaller than those of both DBF and DUAL. In [12, 11, 13]
the practical performance of DBF, DUAL, and DUST have been measured, in
terms of both number of messages, and space occupancy per node. This has been
done by using both realistic and artificial dynamic scenarios. In particular, the
Internet topologies of the CAIDA IPv4 topology dataset [14] (CAIDA - Coop-
erative Association for Internet Data Analysis is an association which provides
data and tools for the analysis of the Internet infrastructure), and the random
topologies with a power-law node degree distribution, generated by the Barabási-
Albert algorithm [15], which are able to model many real-world networks such as
the Internet, the World Wide Web, citation graphs, and some social networks.
The outcome of these studies is that the space occupancy per node required by
DUST is always much smaller than that required by both DBF and DUAL. In
terms of messages, DUST outperforms both DBF and DUAL on the CAIDA
topologies, while in the Barabási-Albert instances, DUST sends a number of
messages that is slightly more than that of DUAL and much smaller than that
of DBF.

Results of the paper. In this paper, we provide a new general, simple, and
practical technique, named Distributed Leafs Pruning (DLP), which can be com-
bined with every distance-vector algorithm with the aim of overcoming some of
their main limitations in large scale networks (high number of messages sent,
low scalability, poor convergence) at the price of a little overhead in the space
occupancy per node.

In order to check the effectiveness of DLP, we combined it with DUAL
and DUST, by obtaining two new algorithms named DUAL-DLP and DUST-
DLP. Then, we implemented DUAL, DUST, DUAL-DLP and DUST-DLP
in the OMNeT++ simulation environment [16], a network simulator which is
widely used in the literature. As input to the algorithms, we considered the
same instances used in [12, 11, 13], that is the Internet topologies of the CAIDA
IPv4 topology dataset and the random topologies with a power-law node degree



distribution, generated by the Barabási-Albert algorithm. The results of our ex-
perimental study can be summarized as follows: the application of DLP to both
DUST and DUAL implies a little memory overhead and provides a significant
improvement in the global number of sent messages with respect to the origi-
nal algorithms. In particular, the ratio between the number of messages sent by
DUAL-DLP and DUAL is within 0.29 and 0.48. Similarly, the ratio between
the number of messages sent by DUST-DLP and DUST is within 0.16 and
0.38. The space overhead is only between 8k and 11k bytes, which is very small
compared, e.g., to the space required by DUAL that is about 5M bytes. We
also considered for our experiments highly dynamic graphs where many edge
weight updates occur, with the aim of checking the new technique in more real-
istic scenarios. Also in these cases, the application of DLP significantly decreases
number of messages sent at the price of a little space overhead. Namely, the ratio
between the number of messages sent by DUAL-DLP and DUAL is within 0.16
and 0.42 and the ratio between the number of messages sent by DUST-DLP
and DUST is within 0.07 and 0.41. Also in this highly dynamic instances the
space occupancy overhead is experimentally irrelevant.

2 Preliminaries

We consider a network made of processors linked through communication chan-
nels that exchange data using a message passing model, in which: each processor
can send messages only to its neighbors; messages are delivered to their destina-
tion within a finite delay but they might be delivered out of order; there is no
shared memory among the nodes of the network; the system is asynchronous,
that is, a sender of a message does not wait for the receiver to be ready to receive
the message.

Graph notation. We represent the network by an undirected weighted graph
G = (V,E,w), where V is a finite set of nodes, one for each processor, E is
a finite set of edges, one for each communication channel, and w is a weight
function w : E → R+ ∪ {∞} that assigns to each edge a real value representing
the optimization parameter associated to the corresponding channel. An edge in
E that links nodes u, v ∈ V is denoted as {u, v}. Given v ∈ V , N(v) denotes
the set of neighbors of v. The maximum degree of the nodes in G is denoted by
maxdeg. A path P in G between nodes u and v is denoted as P = {u, ..., v}. The
weight of P is the sum of the weights of the edges in P . A shortest path between
nodes u and v is a path from u to v with the minimum weight. The distance
d(u, v) from u to v is the weight of a shortest path from u to v. Given two nodes
u, v ∈ V , the via from u to v is the set of neighbors of u that belong to a shortest
path from u to v. Formally: via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}.
Given a time t, we denote as wt(), dt(), and viat() the edge weight, the distance,
and the via at time t, resp. We denote a sequence of update operations on the
edges of G by C = (c1, c2, ..., ck). Assuming G0 ≡ G, we denote as Gi, 0 ≤ i ≤ k,
the graph obtained by applying the operation ci to Gi−1. The operation ci either
inserts a new edge in Gi, or deletes an edge of Gi, or modifies (either increases or



decreases) the weight of an existing edge in Gi. We consider the case in which C
is a sequence of weight increase and weight decrease operations, that is operation
ci either increases or decreases the weight of edge {xi, yi} by a quantity εi > 0.
The extension to delete and insert operations is straightforward.

Distance-vector algorithms. We consider the generic routing problem be-
tween all the nodes of a network, in which each node needs to find a shortest
path to each other node. This problem can be tackled in different ways. The
most reliable, robust and used approach is that based on distributed all-pairs
shortest paths. We are interested in the practical case of a dynamic network in
which an edge weight change (increase/decrease) can occur while one or more
other edge weight changes are under processing. A processor v of the network
might be affected by a subset of these changes. As a consequence, v could be
involved in the concurrent executions related to such changes.

Distance-vector routing algorithms based on shortest-paths usually share a
set of common features. In detail, given a graph G = (V,E,w), a generic node v
of G: knows the identity of every other node of G, the identity of all its neighbors
and the weights of the edges incident to it; maintains and updates its own routing
table that has one entry for each s ∈ V , which consists of at least two fields:
Dt[v, s], the estimated distance between v and s at time t, and VIAt[v, s], the
neighbor used to forward data from v to s at time t; handles edge weight increases
and decreases either by a single procedure (see, e.g., [2]), which we denote as
WeightChange, or separately (see, e.g., [12]) by two procedures, which we
denote as WeightIncrease and WeightDecrease; requests information to
its neighbors through a message denoted as query, receives replies by them
through a message denoted as reply, and propagates a variation to the estimated
routing information as follows:

– if v is performing WeightChange, then it sends to its neighbors a message,
from now on denoted as update; a node that receives this kind of message
executes procedure Update;

– if v is performing WeightIncrease or WeightDecrease, then it sends
to its neighbors message increase or decrease, resp.; a node that receives
increase/decrease executes procedure Increase/Decrease, resp.

3 The new technique

The main goal of Distributed Leafs Pruning (DLP) is to reduce the number of
messages sent by a generic distance-vector algorithm, at the price of a little over-
head in the space occupancy per node. DLP has been designed to be efficient
mainly in a class of networks which is highly important in practice. This is the
class of networks having a power-law node degree distribution which includes
many of the currently implemented communication infrastructures, like Inter-
net, WWW, some social networks, and so on [17]. For sake of simplicity, from
now on we refer to this class as “power-law networks”. Examples of power-law
networks are the Internet topologies of the CAIDA IPv4 topology dataset [14]
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Fig. 1. Power-law node degree distribution of a graph of the CAIDA IPv4 topology
dataset with 5000 nodes and 6109 edges.

(see, e.g., Fig. 1), and the artificial instances generated by the Barabási-Albert
algorithm [15].

The idea underlying DLP is very simple and it is based on the following
observations: (i) a power-law network with n nodes typically has average node
degree much smaller than n and a number of nodes with unitary degree which is
generally high. For example, some graphs of the CAIDA IPv4 topology dataset
have average node degree approximately equal to n/2000, and a number of nodes
with unitary degree approximately equal to n/2; (ii) nodes with unitary degree
does not provide any useful information for the distributed computation of short-
est paths. In fact, any shortest path from a node with degree one v to any other
node of the network has necessarily to pass through the unique neighbor of v in
the network.

To describe the technique we need to introduce some preliminary definitions.
Given an undirected weighted graph G = (V,E,w), the core of G is the graph
Gc = (Vc, Ec, wc) which represents the maximal connected subgraph of G having
all nodes of degree greater than one. A node v ∈ V is a central node if v ∈ Vc,
otherwise v is a peripheral node. An edge of G that links two central nodes is
a central edge, an edge that links a central node with a peripheral node is a
peripheral edge. For each peripheral node u, the unique central node v adjacent
to u is called the owner of u.

Data structures. Given a generic distance-vector algorithm A, DLP requires
that a generic node of G stores some additional information with respect to those
required by A. In particular, a node v needs to store and update information
about central and peripheral nodes and edges of G. To this aim, v maintains
a data structure called Classification Table, denoted as CTv, which is an array
containing one entry CTv[s], for each s ∈ V , representing the list of the peripheral
neighbors of s. A central node is not present in any list of CTv. A peripheral
node is present in CTv[s], for exactly one s ∈ V , and s is its owner. Each list
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Fig. 2. (a) Nodes u and v ask for information to their central neighbors by send-
ing them message Q (query); (b) Nodes u and v propagate updated routing
information to all their neighbors through message U (update); (c) A central
node x receiving an update message U, propagates it to its neighbors.

contains at most maxdeg entries and the sum of the sizes of all the lists is always
smaller than n. Hence the space overhead per node due to CTv is O(n).

Properties. The main purpose of DLP is to force distributed computation to
be carried out only by the central nodes. The peripheral nodes receive updates
about routing information passively from the respective owners, without starting
any kind of distributed computation. Then, the larger is the set of the peripheral
nodes of the network, the bigger is the improvement in the global number of
messages sent by the algorithm. The following lemma introduces some basic
relationships between the paths that link central and peripheral nodes.

Lemma 1. Given an undirected weighted graph G = (V,E,w), and its core
Gc = (Vc, Ec, wc), let {p, c} be a peripheral edge in which c ∈ Vc at time t. The
following relations hold:

– dt(x, p) = dt(x, c) + wt(c, p), ∀ x ∈ V \ {p};
– viat(x, p) = viat(x, c), ∀ x ∈ V \ {p}.

Proof. By definition, node p has a unique adjacent node at time t, then the
shortest path {x, ..., p} can be split in two sub-shortest paths: the path {x, ..., c}
with weight d(x, c), and the edge {c, p} with weight w(c, p). 2

Some useful additional relationships can be derived from Lemma 1. In particular,
if between the time instants ti and ti+1 the weight of the edge {p, c} between
a peripheral node p and his corresponding owner c changes, that is wti(p, c) 6=
wti+1(p, c), then p can update its own routing table toward each node of the
network x ∈ V simply by computing:

dti+1(p, x) = dti(p, x) + wti+1(p, c)− wti(p, c), (1)

viati+1(p, x) = {c}. (2)

In a similar way, if a generic node of the network x ∈ V , between the time instants
ti and ti+1, receives an update about a weight change in the path toward a generic
central node c (that is, dti+1(x, c) 6= dti(x, c)), then the nodes involved in the



Event: node v invokes procedure UpdatePeripherals(s, Dold[v, s])
Procedure: UpdatePeripherals(s, Dold[v, s])

1 if D[v, s] 6= Dold[v, s] then
2 foreach k ∈ CTv[s] do
3 D[v, k] := D[v, k] + D[v, s]− Dold[v, s]
4 VIA[v, k] := VIA[v, s]
5 update any specific data structures of A

Fig. 3. Pseudocode of procedure UpdatePeripherals.

change are x, c and the peripheral neighbors of c, if they exists. These nodes, by
Lemma 1, can update their estimated routing tables simply by computing, for
all peripheral nodes p with owner c:

dti+1(x, p) = dti(x, p) + dti+1(x, c)− dti(x, c), (3)

viati+1(x, p) = viati+1(x, c). (4)

Distributed Leafs Pruning. The application of DLP to a distance vector al-
gorithm A induces a new algorithm denoted as A-DLP. The global behavior of
A-DLP can be summarized as follows. While in a classic routing algorithm every
node performs the same code thus having the same behavior, in A-DLP cen-
tral and peripheral nodes have different behaviors. In particular, central nodes
detect changes concerning both central and peripheral edges while peripheral
nodes detect changes concerning only peripheral edges. If the weight of a central
edge {u, v} changes, then node u (v, resp.) performs the procedure provided by
A for that change only with respect to central nodes for the distributed compu-
tation of the shortest paths between all the pairs of central nodes. During this
computation, if u needs information by its neighbors, it asks only to neighbors
in the core (see Fig. 2(a)). Once u (v) has updated its own routing information,
it propagates the variation to all its neighbors through the update, increase or
decrease messages of A (Fig. 2(b)). When a generic node x receives an update,
increase or decrease message it stores the current value of D[u, s] in a temporary
variable Dold[u, s]. Now, if x is a central node, then it handles the change and
updates its routing information by using the proper procedure of A (Update,
Increase, or Decrease) and propagates the new information to its neighbors
(see Fig. 2(c)). Otherwise, x handles the change and updates its routing infor-
mation toward s by using Lemma 1 and the data received from its owner. At the
end, x calls the procedure UpdatePeripherals reported in Fig. 3 using s and
Dold[p, s] as parameters. If the routing table entry of s is changed (line 1), then
the information about the peripheral neighbors of s, if they exist, is updated by
using Equations 3 and 4 (lines 3–4).

If a weight change occurs in a peripheral edge {u, p}, then the central node u
sends a p change(p, w(u, p), u) message to each of its neighbors (Fig. 4(a)), while
node p sends a p change(p, w(u, p), u) message to its owner u, without starting
any distributed computation. When a generic node x receives message p change,
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Fig. 4. (a) Node u, as a consequence of a weight change on edge {u, p}, sends
message p change (P) to all its neighbors; (b) Node x receiving a message P,
propagates it to the whole network.

Event: node v receives the message p change(p, w(u, p), u) from u
Procedure: PeripheralChange(y, w(x, y), x)

1 if w(x, y) 6= (D[v, y]− D[v, x]) then
2 if v ≡ y then
3 foreach s ∈ V do
4 D[v, s] := D[v, s]− D[v, x] + w(x, y)
5 VIA[v, y] := x
6 update any specific data structures of A

7 else
8 D[v, y] := D[v, x] + w(x, y)
9 VIA[v, y] := VIA[v, x]

10 update any specific data structures of A
11 foreach k ∈ {x : x ∈ N(v) ∧ x 6= u ∧ x 6= y} do
12 send p change(y, w(x, y), x) to k

Fig. 5. Pseudocode of procedure PeripheralChange.

it simply performs procedure PeripheralChange of Fig. 5, which is a mod-
ified flooding algorithm to forward the message over the network (Fig. 4(b)).
Procedure PeripheralChange first verifies at line 1 whether the message was
already received by applying Lemma 1. If the message does not provide updated
information, it is discarded. Otherwise, the procedure needs to update the data
structures at x. We distinguish two cases: if x coincides with p, then the pro-
cedure updates the routing table for all the nodes s ∈ V , using Equations 1
and 2 (see Lines 2-6). Otherwise (x 6= p), the procedure simply updates the
routing table entry concerning p by using Lemma 1 (Lines 8-10). At this point,
the procedure propagates the information about the change, forwarding message
p change to all the neighbors, except to nodes u and possibly p (Lines 11–12).



4 Combination of DLP with distance-vector algorithms

Combination of DLP with DUAL. In DUAL, each node v maintains, for
each destination s a set of neighbors called the feasible successor set F [v, s],
and for each u ∈ N(v), the distance D[u, s] from u to s. F [v, s] is computed as
follows: node u ∈ N(v) is in F [v, s] if the estimated distance D[u, s] from u to
s is smaller than the estimated distance D[v, s] from v to s. If the neighbor u,
through which the distance to s is minimum, is in F [v, s], then u is chosen as
successor to s, i.e. the neighbor to be used to forward data, which is stored as
s[v, s]. If a weight change occurs in an adjacent edge, then node v executes pro-
cedure WeightChange. This procedure updates the data structures and, if the
current successor, after the update, is no more in F [v, s], it selects an alternative
successor. If F [v, s] becomes empty, then v turns in active state and starts a
synchronous update procedure, known as a diffuse computation, to recompute
the set, by exchanging query and reply messages with neighbors. Node v cannot
choose its new successor to s until the diffuse computation terminates. When
a neighbor u receives the queries, it updates F [u, s]. If u has a successor to s
after such update, it replies to the query by sending message reply containing
its own distance to s. Otherwise, u becomes active in turn and, before replying
to v’s original query, it forwards the diffuse computation by sending out queries
and waiting for the replies from its neighbors. When a node receives messages
reply by all its neighbors, it turns back in passive state, sends out all the replies,
updates its data structures and finishes the diffuse computation. At the end of
each diffuse computation, v sends message update containing the new computed
distance to its neighbors. To handle concurrent weight changes and updates, each
node implements, by using a large set of data structures, a finite state machine.

DUAL can be combined with DLP as described in Section 2. In addition,
the generic procedures reported in Fig. 3 and 5, are modified, by using the
data structures of DUAL, to generate two specific procedures, called DUAL-
PeripheralChange and DUAL-UpdatePeripherals. The main changes can
be summarized as follows: (i) in Procedure PeripheralChange (at Lines 5 and
9) and in Procedure UpdatePeripherals (at Line 4) the data structure VIA

is replaced by the data structure s; (ii) in Procedure PeripheralChange (at
Lines 6 and 10) and in Procedure UpdatePeripherals (at Line 5) the spe-
cific data structures of DUAL, described above, are updated by using Lemma
1. The correctness of DUAL-DLP directly follows from Lemma 1 and from the
correctness of DUAL [2].

Combination of DLP with DUST. DUST maintains only the routing table
described in Section 2 and, for each node v and for each source s, VIA[v, s]
contains the set VIA[v, s] ≡ {vi ∈ N(v) | D[v, s] = w(v, vi) + D[vi, s]}. Algorithm
DUST starts every time an operation ci on edge (xi, yi) occurs. Operation ci
is detected only by nodes xi and yi. If ci is a weight increase (weight decrease)
operation, xi performs procedure WeightIncrease (WeightDecrease) that
sends message increase(xi, s) (decrease(xi, s, D[xi, s])) to yi for each s ∈ V . Node
yi has the same behavior of xi. If a node v receives message decrease(u, s, D[u, s]),



then it performs procedure Decrease, that relaxes edge (u, v). In particular, if
w(v, u) + D[u, s] < D[v, s], then v updates D[v, s] and VIA[v, s], and propagates
the updated values to nodes in N(v). If w(v, u) + D[u, s] = D[v, s], then u is a
new estimated via for v with respect to s, and hence v adds u to VIA[v, s]. If
a node v receives increase(u, s), then it performs procedure Increase which
checks whether the message comes from a node in VIA[v, s]. In the affirmative
case, v removes u from VIA[v, s]. As a consequence, VIA[v, s] may become empty.
In this case, v computes the new estimated distance and via of v to s. To do
this, v asks to each node vi ∈ N(v) for its current distance, by sending message
get-dist(v, s) to vi. When vi receives get-dist(v, s) by v, it performs procedure
SendDist which sends D[vi, s] to v, unless one of the following two conditions
holds: (i) VIA[vi, s] ≡ {v}; (ii) vi is updating its routing table with respect to
destination s. In this case vi sends ∞ to v. When v receives the answers to the
get-dist messages by all its neighbors, it computes the new estimated distance
and via to s. If the estimated distance is increased, v sends an increase message
to its neighbors. In any case, v sends to its neighbors decrease, to communicate
them D[v, s]. In fact, at some point, v could have sent ∞ to a neighbor vj . Then,
vj receives the message sent by v, and it performs procedure Decrease to check
whether D[v, s] can determine an improvement to the value of D[vj , s].

DUST can be combined with DLP, by modifying its behavior as described
Section 2. In addition, the generic procedures reported in Fig.s 3 and 5, are
modified, by using the data structures of DUST, to generate two specific proce-
dures, called DUST-PeripheralChange and DUST-UpdatePeripherals.
The main changes can be summarized as follows: (i) in Procedure Peripher-
alChange (at Lines 5 and 9) and in Procedure UpdatePeripherals (at Line
4) the data structure VIA is modified to be a set instead of a single value vari-
able; (ii) since DUST does not use any additional data structures, in Procedure
PeripheralChange Lines 6 and 10 are removed and in Procedure UpdatePe-
ripherals Line 5 is removed. The correctness of DUST-DLP directly follows
from Lemma 1 and from the correctness of DUST [11].

5 Experimental analysis

In this section we report the results of our experimental study on algorithms
DUAL, DUST, DUAL-DLP, and DUST-DLP. The experiments have been
carried out on a workstation with an Intel Core2 2.66 GHz processor and 8Gb
RAM and consist of simulations within the OMNeT++ 4.0p1 environment [16].

Executed tests. For the experiments we used both real-world and artificial
instances of the problem. In detail, we used the CAIDA IPv4 topology dataset [14]
and a class of random power-law networks generated by the Barabási-Albert
algorithm [15].

CAIDA (Cooperative Association for Internet Data Analysis) is an associa-
tion which provides data and tools for the analysis of the Internet infrastructure.
The CAIDA dataset is collected by a globally distributed set of monitors. The
monitors collect data by sending probe messages continuously to destination IP



addresses. Destinations are selected randomly from each routed IPv4/24 prefix
on the Internet such that a random address in each prefix is probed approxi-
mately every 48 hours. The current prefix list includes approximately 7.4 million
prefixes. For each destination selected, the path from the source monitor to the
destination is collected, in particular, data collected for each path probed in-
cludes the set of IP addresses of the hops which form the path and the Round
Trip Times (RTT) of both intermediate hops and the destination.

We parsed the files provided by CAIDA to obtain a weighted undirected
graph GIP where a node represents an IP address contained in the dataset (both
source/destination hosts and intermediate hops), edges represent links among
hops and weights are given by Round Trip Times. As the graph GIP consists
of almost 35000 nodes, we cannot use it for the experiments, as the amount of
memory required to store the routing tables of all the nodes is O(n2 · maxdeg)
for any implemented algorithm. Hence, we performed our tests on connected
subgraphs of GIP , with a variable number of nodes and edges, induced by the
settled nodes of a breadth first search starting from a node taken at random.
We generated a set of different tests, each test consists of a dynamic graph
characterized by a subgraph of GIP (we denoted each n nodes subgraph of GIP

with GIP−n) and a set of k concurrent edge updates, where k assumes values in
{5, 10, . . . , 100} or in {105, 110, . . . , 200}. An edge update consists of multiplying
the weight of a random selected edge by a percentage value randomly chosen in
[50%, 150%]. For each test configuration (a dynamic graph with a fixed value of
k) we performed 5 different experiments (for a total amount of runnings equal
to 100) and we report average values.

A Barabási–Albert topology is generated by iteratively adding one node at
a time, starting from a given connected graph with at least two nodes. A newly
added node is connected to any other existing nodes with a probability that is
proportional to the degree that the existing nodes already have. We randomly
generated a set of different tests, where a test consists of a dynamic graph char-
acterized by a n nodes Barabási–Albert random graphs, denoted as GBA−n and
a set of k concurrent edge updates, where k assumes values in {5, 10, . . . , 100}
or in {105, 110, . . . , 200}. Edge weights are non-negative real numbers randomly
chosen in [1, 10000]. Edge updates are randomly chosen as in the CAIDA tests.
For each test configuration (a dynamic graph with a fixed value of k) we per-
formed 5 different experiments (for a total amount of runnings equal to 100) and
we report average values.

Analysis. In Fig. 6 we report the number of messages sent by DUST, DUST-
DLP, DUAL and DUAL-DLP on subgraphs GIP−5000 of GIP having 5000
nodes and 6109 edges in the cases where the number k of modifications is in
{5, 10, . . . , 100}.

In Fig. 7 we report the number of messages sent by DUST, DUST-DLP,
DUAL and DUAL-DLP on subgraphs GIP−1200 of GIP having 1200 nodes and
1443 edges in the cases where the number k of modifications is in {105, 110, . . . ,
200}.
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Fig. 6. Number of messages sent on a 5000 nodes subgraph GIP−5000 of GIP .
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Fig. 7. Number of messages sent on a 1200 nodes subgraph GIP−1200 of GIP .

The figures show that the application of the technique DLP on both DUST
and DUAL provides a significant improvement in the global number of sent
messages. In the tests of Fig. 6, the ratio between the number of messages sent by
DUAL-DLP and DUAL is within 0.29 and 0.48 which means that the number
of messages sent by DUAL-DLP is between 29% and 48% that of DUAL.
Similarly, the ratio between the number of messages sent by DUST-DLP and
DUST is within 0.26 and 0.38. In the tests of Fig. 7 the ratio between the
number of messages sent by DUAL-DLP and DUAL is within 0.16 and 0.23
and the ratio between the number of messages sent by DUST-DLP and DUST
is within 0.07 and 0.26. In both cases, the figures show that in most of the cases
DUST sends less messages than DUAL and DUST-DLP sends less messages
than DUAL-DLP.

Regarding Barabási-Albert graphs, we performed similar tests as for GIP .
Fig. 8 reports the number of messages sent by DUST, DUST-DLP, DUAL
and DUAL-DLP on a graph GBA−5000 with 5000 nodes and 6242 edges where



Graph Algorithm
MAX AVG

Bytes Overhead Bytes Overhead

GIP−5000

DUAL 5 200 000 — 186 090 —
DUST 40 032 — 40 000 —

DUAL-DLP 5 208 508 0.16% 194 598 4.57%
DUST-DLP 48 540 21.25% 48 508 21.27%

GBA−5000

DUAL 5 605 000 — 187 420 —
DUST 40 012 — 40 000 —

DUAL-DLP 5 616 516 0.20% 198 936 6.14%
DUST-DLP 51 528 28.78% 51 516 28.79%

Table 1. Space complexity - Results of a dynamic execution with k = 100 over
GIP−5000 and GBA−5000

the number k of modifications is in {5, 10, . . . , 100}, while Fig. 9 reports the
number of messages sent by DUST, DUST-DLP, DUAL and DUAL-DLP
on a graph GBA−1200 with 1200 nodes and 1836 edges where the number k of
modifications is in {105, 110, . . . , 200}. In most of these executions, differently
from the previous case, DUAL behaves better than DUST. However, the use of
DLP again shows a clear improvement in the global number of sent messages
by both algorithms. In detail, the ratio between the number of messages sent
by DUAL-DLP and DUAL is within 0.30 and 0.37 and within 0.32 and 0.42
in the tests of Fig. 8, while the ratio between the number of messages sent by
DUST-DLP and DUST is within 0.16 and 0.38 in GBA−5000 and within 0.08
and 0.41 in the tests of Fig. 9.

To conclude our analysis, we analyzed the space occupancy per node, which
is summarized in Tables 1 and 2. DUAL requires a node v to store, for each
destination, the estimated distance given by each of its neighbors and a set of
variables used to guarantee loop-freedom, while DUST only needs the estimated
distance of v and the set VIA, for each destination. Since in these sparse graphs
it is not common to have more than one via to a destination, the memory
requirement of DUST is much smaller than that of DUAL. The space occupancy
of the data structure used by DLP is not a function of the degree of the graph
and is always bounded, in the worst case, by n. It follows that the application
of the technique on both DUST and DUAL implies a really small memory
overhead compared with the space occupancy of these algorithms. In fact, the
space overhead of e.g.GIP−5000 is only 8 508 bytes, which is very small compared,
e.g., to the space required by DUAL that is about 5M bytes. In Table 1 and 2
the relative overheads, that are the percentage of the ratios between the space
overhead and the space required by DUAL and DUST, are also reported. It is
evident from Table 1 and 2 that the space occupancy overhead resulting from
the application of DLP is experimentally irrelevant.
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6 Conclusions and future work

We have proposed a simple and practical speed-up technique, which can be
combined with every distance vector routing algorithm based on shortest paths,
allowing to reduce the total number of messages sent by that algorithm. We
have combined the new technique with DUAL and the recent DUST. We have
given experimental evidence that these combinations lead to an important gain
in terms of the number of messages sent by these algorithms at the price of a
little increase in terms of space occupancy per node.

Some research directions deserve further investigation: (i) we have experi-
mentally show that the application of DLP has a better impact on the number
of messages sent by DUST; it would be interesting to evaluate the impact of
DLP on the convergence of DUST; (ii) it would be interesting to know how
DLP is scalable to bigger networks than those considered in this paper.



Graph Algorithm
MAX AVG

Bytes Overhead Bytes Overhead

GIP−1200

DUAL 1 248 000 — 44 430 —
DUST 9 602 — 9600 —

DUAL-DLP 1 250 660 0.21% 47 086 6.00%
DUST-DLP 13 520 40.08% 12 256 27.67%

GBA−1200

DUAL 834 000 — 48 360 —
DUST 9 624 — 9600 —

DUAL-DLP 836 136 0.26% 50 496 4.42%
DUST-DLP 12 549 30.39% 11 732 22.21%

Table 2. Space complexity - Results of a dynamic execution with k = 200 over
GIP−1200 and GBA−1200
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