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Abstract

We survey an area of recent development, relating dynamics to the-
oretical computer science. We discuss some aspects of the theoretical
simulation and computation of the long term behavior of dynamical sys-
tems. We will focus on the statistical limiting behavior and invariant
measures. We present a general method allowing the algorithmic approx-
imation at any given accuracy of invariant measures. The method can
be applied in many interesting cases, as we shall explain. On the other
hand, we exhibit some examples where the algorithmic approximation of
invariant measures is not possible. We also explain how it is possible to
compute the speed of convergence of ergodic averages (when the system is
known exactly) and how this entails the computation of arbitrarily good
approximations of points of the space having typical statistical behaviour
(a sort of constructive version of the pointwise ergodic theorem).
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1 Introduction

The advent of automated computation led to a series of great successes and
achievements in the study of many natural and social phenomena which are
modeled by dynamical systems. The use of computers and simulations allowed
to predict the behavior of many important models and, on the other hand,
led to the discovery of important general aspects of dynamics. This motivated
the huge amount of work that was made by hundreds of scientists to improve
practical simulation and computation techniques. It also motivated the study
of the theoretical limits of simulation and computation techniques, and the
theoretical understanding of related problems.

In this paper we shall focus on some of these theoretical aspects related to
rigorous computation and simulation of (discrete time) dynamical systems.

The simulation and investigation of dynamical systems started with what
we call the naive approach, in which the user just implements the dynamics
without taking rigorous account of numerical errors and rounding. Then the
user simply sees what happens on the screen.

Evidently, the sensitivity to initial conditions and the typical instability of
many interesting systems (to perturbations on initial conditions but also on the
map generating the dynamics) implies that what is beeing observed on the com-
puter screen could be completely unrelated to what was meant to be simulated.
In spite of this, the naive approach turns out to work almost unreasonably well
in many situations and it is even today the most commonly used approach in
simulations. The theoretical reasons of why this method works and what are
its limits, are in our opinion yet to be understood (some aspects have been
investigated in [39],[44],[30] [7, 8],[37] e.g.).

Opposite to the naive approach, there is the “absolutely rigorous” approach,
which will be the main theme of this paper. Here the user seeks for an algorithm
able to produce a description up to any desired precision of the object x which is
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meant to be computed. In case such an algorithm exits, we say that the object
x is computable (suitable precise definitions will be given below).

For example, in this approach the constant e is a computable number because
there is an algorithm that is able to produce a rational approximation of e at
any given accuracy (for instance by finding the right m and calculating

∑m
1

1
n!

such that the error is smaller than requested).

In an “absolutely rigorous” simulation (computation), both the initial point
(or initial distribution) and the transition map are supposed to be computable,
and the question arises if interesting objects related to the dynamics (e.g. in-
variant sets or invariant measures) can be computed from the description of the
system (or perhaps by using some additional information).

In this paper we shall survey a number of results related to these computa-
tional aspects, some of which are updated with new information. We will see
that in many cases the objects of interest can indeed be computed, but there
are some subtleties, and cases where the interesting objects cannot be computed
from the description of the system, or cannot be computed at all. In other words,
these results provide theoretical limits to such computations. In particular, we
shall recall some examples where this non-computability phenomenon appears,
in the case of invariant measures and Julia sets.

Computing invariant measures. An important fact motivating the study
of the statistical properties of dynamical systems is that the pointwise long
term prediction of a chaotic system is not possible, whereas, in many cases, the
estimation or forecasting of averages and other long term statistical properties
is. This forecasting procedure, often corresponds in mathematical terms to
the computation of invariant measures or to the estimation of some of their
properties – measures contain information on the statistical behavior of the
system (X,T ) and on the potential behavior of averages of observables along
typical trajectories of the system (see Section 3).

An invariant measure is a Borel probability measure µ on X such that for
each measurable set A it holds that µ(A) = µ(T−1(A)). They represent equilib-
rium states, in the sense that probabilities of events do not change in time.

To rigorously compute an invariant measure means to find an algorithm
which is able to output a description of the measure (for example an approx-
imation of the measure made by a combination of delta measures placed on
“rational” points) up to any prescribed precision.

We remark that once an interesting invariant measure is computed, this in-
formation is useful for the computation of other dynamical properties: Lyapunov
exponents, entropy, escape rates, etc... For example, in dimension one, once an
ergodic invariant measure µ has been approximated, the Lyapunov exponent λµ
can be estimated using the formula λµ =

∫ 1

0
log2 T

′dµ, where T ′ denotes the
derivative of the map generating the dynamics. In higher dimensions, similar
techniques can be applied (see e.g. [22] for more examples of derivation of dy-
namical quantities from the computation of the invariant measure and similar
objects).
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Before giving more details about the computation of invariant measures, we
remark that, since there are only countably many “algorithms” (computer pro-
grams), whatever we mean by “approximating a measure by an algorithm”would
imply that only countable many measures can be computed. In general, how-
ever, a dynamical system may have uncountably many invariant measures (usu-
ally an infinite dimensional set). So, a priori most of them will not be algorith-
mically describable. This is not a serious problem because we should put our
attention on the most meaningful ones. An important part of the theory of dy-
namical systems is indeed devoted to the understanding of physically relevant
invariant measures. Informally speaking, these are measures which represent
the asymptotic statistical behavior of many (positive Lebesgue measure) initial
conditions (see Section 3 for more details).

The existence and uniqueness of physical measures is a widely studied prob-
lem (see [51]), which has been solved for some important classes of dynamical
systems. These measures are some of the good candidates to be computed.
Other measures of particular interest in certain cases, as we shall see below, are
the maximal entropy ones.

The computation of interesting invariant measures (in more or less rigor-
ous ways) is the main goal of a significant part of the literature related to
computation in dynamics. An important role here is played by the transfer
operator induced by the dynamics. Indeed, the map T defining the dynam-
ics, induces a transition map LT on the space of probability measures over X,
LT : PM(X) → PM(X). LT is called the transfer operator associated to T
(definition and basic results about this are recalled in Section 3). Invariant
measures are fixed points of this operator. The main part of the methods which
are used to compute invariant measures deals with suitable finite dimensional
approximations of this operator. In Section 3 we will review briefly some of
these methods, and give some references. We then consider the problem from
the abstract point of view mentioned above, and give some general results on
rigorous computability of the physical invariant measure. In particular we will
see that the transfer operator is computable up to any approximation in a gen-
eral context (see Thm 16). The corresponding invariant measure is computable,
provided we are able to give a description of a space of “regular” measures
where the physical invariant measure is the only invariant one (see Thm 17 and
following corollaries).

We will also show how the measure can be obtained from a description of
the system in a class of examples (piecewise expanding maps) by using the
Lasota-Yorke inequality.

Rational transformations of the Riemann Sphere are another interesting class
where our methods can be applied. These complex dynamics are very well stud-
ied in the literature, and enormous attention has been addressed to the Julia sets
associated to them, which have emerged as the most studied examples of fractal
sets generated by a dynamical system. One of the reasons for their popularity is
the beauty of the computer-generated images of such sets. The algorithms used
to draw these pictures vary; the näıve approach in this case works by iterating
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the center of a pixel to determine if it lies in the Julia set. There exists also more
sophisticated algorithms (using classical complex analysis, see [45]) which work
quite well for many examples, but it is well known that in some particular cases
computation time will grow very rapidly with increase of the resolution. More-
over, there are examples, even in the family of quadratic polynomials, where no
satisfactory pictures of the Julia set exist.

In the rigorous approach, a set is computable if, roughly speaking, its image
can be generated by a computer with an arbitrary precision. Under this notion
of computability, the question arise if Julia sets are always computable. In a
series of papers ([5, 4, 12, 13]) it was shown that even though in many cases
(hyperbolic, parabolic) the Julia set is indeed computable, there exists quadratic
polynomials which are computable (again, in the sense that all the trajectories
can be approximated by an algorithm at any desired accuracy), and yet the
Julia set is not.

So we can not simulate the set of limits points on which the chaotic dynamics
takes place, but, what about the statistical distribution? In fact, it was shown
by Brolin and Luybich that there exists a unique invariant measure which maxi-
mizes entropy, and that this measure is supported on the Julia set. The question
of whether this measure can be computed has been recently solved in [6], where
it is proved that the Brolin-Lyubich measure is always computable. So that even
if we can not visualize the Julia set as a spatial object, we can approximate its
distribution at any finite precision. In Section 3.3 we shall briefly review the
mentioned results on uncomputability of Julia sets, and explain how our method
can be applied to show computability of the Brolin-Lyubich measure.

After such general statements one could conjecture that all computable dy-
namical systems should always have a computable invariant measure. We will
see that, perhaps surprisingly, this is not true. Not all computable systems (the
dynamics can be computed up to any prescribed approximation) have com-
putable invariant measures (see Section 3.4). The existence of such examples
reveals some subtleties in the computation of invariant measures.

Finally, to further motivate these results, we remark that from a technical
point of view, computability of the considered invariant measure is a requirement
in several results establishing connections between computation, probability,
randomness and pseudo-randomness (see Section 5 and e.g. [3, 24, 25, 26])

Computing the speed of convergence and pseudorandom points.
For several questions in ergodic theory the knowledge of the speed of conver-

gence to ergodic behavior is important to deduce other practical consequences.
In the computational framework, the question turns out to be the effective
estimation of the speed of convergence in the ergodic theorems1. From the
numerical-practical point of view this has been done in some classes of systems,
having a spectral gap for example. In this case a suitable approximation of the
transfer operator allows to compute the rate of decay of correlations [23][40] and
from this, other rates of convergence can be easily deduced.

1Find a N such that 1
n

∑
f ◦Tn differs from

∫
f dµ less than a given error for each n ≥,in

some sense.
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Other classes of systems could be treated joining the above spectral ap-
proach, with combinatorial constructions (towers, see [41] e.g.), but the general
case need a different approach.

In [2] it was shown that much more in general, if the system can be described
effectively, then the rate of convergence in the pointwise ergodic theorem can be
effectively estimated (not only the asymptotical speed, but explicit estimates on
the error).

We give in section 4 a very short proof of a statement of this kind (see
Theorem 39 ) for ergodic systems, and show some consequences. Among these,
a constructive version of pointwise ergodic theorem. If the system is computable
(in some wide sense that will be described), then it is possible to compute
points having typical statistical behavior. Such points could hence be called
pseudorandom points of the system (see Section 5).

Since the computer can only handle computable initial conditions, any sim-
ulation can start only from these points. Pseudorandom initial conditions are
hence in principle the good points where to start a simulation.

We remark that it is widely believed that naive computer simulations very
often produce correct statistical behavior. The evidence is mostly heuristic.
Most arguments are based on the various “shadowing” results (see e.g. [35]
chapter 18). In this kind of approach (different from ours), it is possible to
prove that in a suitable system every pseudo-trajectory (as the ones which are
obtained in simulations with some computation error) is close to a real trajectory
of the system. However, even if we know that what we see in a simulation is near
to some real trajectory, we do not know if this real trajectory is typical in some
sense. Another limitation of this approach is that shadowing results hold only
in systems having some strong hyperbolicity, while many physically interesting
systems are not like this. In our approach we consider real trajectories instead
of “pseudo” ones and we ask if there exists computable points which behaves as
a typical point of the dynamics.

Acknowledgement 1 We would like to thank The Abdus Salam International
Centre for Theoretical Physics (Trieste, IT) for support and hospitality during
this research.

2 Computability on metric spaces

To have formal results and precise assumptions on the computability (up to any
given error) of continuous objects, we first need to introduce some concepts.
In particular, we shall introduce recursive versions of open and compact sets,
and characterize the functions which are well suited to operate with those sets
(computable functions). In this section, we try to explain this theory as simple
and self contained as possible. Other details and different approaches to the
subject can be found in the introductory texts [9] and [50].
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2.1 Computability

The starting point of recursion theory was the introduction of a mathemat-
ical definition making precise the intuitive notions of algorithmic or effective
procedure on symbolic objects. Several different formalizations have been inde-
pendently proposed (by Church, Kleene, Turing, Post, Markov...) in the 30’s.
They all turned out to be be equivalent: they compute the same functions from
N to N. The class of functions thus defined is now called the class of recursive
functions. As an algorithm is allowed to run forever on an input, these functions
may be partial, i.e. not defined everywhere. The domain of a recursive function
is the set of inputs on which the algorithm eventually halts. A recursive function
whose domain is N is said to be total.

We now recall an important concept from recursion theory. A set E ⊆ N
is said to be recursively enumerable (r.e.) if there is a (partial or total)
recursive function ϕ : N → N enumerating E, that is E = {ϕ(n) : n ∈ N}. If
E 6= ∅, ϕ can be effectively converted into a total recursive function ψ which
enumerates the same set E.

2.2 Algorithms and uniform algorithms

Strictly speaking, recursive functions only work on natural numbers. However,
this can be extended to the objects (thought as “finite” objects) of any countable
collection, once a numbering of its elements has been chosen. We will use the
word algorithm instead of recursive function when the inputs or outputs are
interpreted as finite objects. The operative power of algorithms on the objects
of such a numbered set obviously depends on what can be effectively recovered
from their numbers.

More precisely, let X and Y be numbered sets such that the numbering of
X is injective (it is then a bijection between N and X). Then any recursive
function ϕ : N → N induces an algorithm A : X → Y . The particular case
X = N will be much used.

For instance, the set Q of rational numbers can be injectively numbered
Q = {q0, q1, . . .} in an effective way: the number i of a rational a/b can be
computed from a and b, and vice versa. We fix such a numbering: from now on
the rational number with number i will be denoted by qi.

Now, let us consider computability notions on the set R of real numbers.

Definition 2 Let x be a real number. We say that:

• x is lower semi-computable if the set {i ∈ N : qi < x} is r.e.

• x is upper semi-computable if the set {i ∈ N : qi > x} is r.e.

• x is computable if it is lower and upper semi-computable.

It is worth noticing that a real number is computable if and only if there
exists an algorithmic enumeration of a sequence of rational numbers converging
exponentially fast to x. That is:
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Proposition 3 A real number is computable if there is an algorithm A : N→
Q such that |A(n)− x| ≤ 2−n for all n.

We remark that the notion of computable real number was already intro-
duced (in a different but equivalent way) by Turing in [47].

Uniformity. Algorithms can be used to define computability notions on many
classes of mathematical objects. The precise definitions will be particular to
each class of objects, but they will always follow the following scheme:

An object O is computable if there is an algorithm

A : X → Y

which computes O in some way.

Each computability notion comes with a uniform version. Let (Oi)i∈N be a
sequence of computable objects:

Oi is computable uniformly in i if there is an algorithm

A : N×X → Y

such that for all i, Ai := A(i, ·) : X → Y computes Oi.

For instance, the elements of a sequence of real numbers (xi)i∈N are uniformly
computable if there is a algorithm A : N×N→ Q such that |A(i, n)−xi| ≤ 2−n

for all i, n.
In other words a set of objects is computable uniformly with respect to some

index if they can be computed with a “single” algorithm starting from the value
of the index.

In each particular case, the computability notion may take a particular name:
computable, recursive, effective, r.e., etc. so the term “computable” used above
shall be replaced.

2.3 Computable metric spaces

A computable metric space is a metric space with an additional structure allow-
ing to interpret input and output of algorithms as points of the metric space.
This is done in the following way: there is a dense subset (called ideal points)
such that each point of the set is identified with a natural number. The choice of
this set is compatible with the metric, in the sense that the distance between two
such points is computable up to any precision by an algorithm getting the names
of the points as input. Using these simple assumptions many constructions on
metric spaces can be implemented by algorithms.

Definition 4 A computable metric space (CMS) is a triple X = (X, d, S),
where
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(i) (X, d) is a separable metric space.

(ii) S = {si}i∈N is a dense, numbered, subset of X called the set of ideal
points.

(iii) The distances between ideal points d(si, sj) are all computable, uniformly
in i, j (there is an algorithm A : N3 → Q such that |A(i, j, n)−d(si, sj)| <
2−n).

Point (iii) says that the information that can be recovered from the numbers
of the numbered set S is their mutual distances.

The algorithms involved in the following definitions (up to Definition 9) are
assumed to be total.

Definition 5 We say that in a metric space (X, d), a sequence of points (xn)n∈N
converges recursively to a point x if there is an algorithm D : Q→ N such that
d(xn, x) ≤ ε for all n ≥ D(ε).

Definition 6 A point x ∈ X is said to be computable if there is an algorithm
A : N→ S such that (A(n))n∈N converges recursively to x.

We define the set of ideal balls to be B := {B(si, qj) : si ∈ S, 0 < qj ∈ Q}
where B(x, r) = {y ∈ X : d(x, y) < r} is an open ball. We fix a numbering
B = {B0, B1, . . .} which makes the number of a ball effectively computable from
its center and radius and vice versa. B is a countable basis of the topology.

Definition 7 (Effective open sets) We say that an open set U is effective if
there is an algorithm A : N→ B such that U =

⋃
nA(n).

Observe that an algorithm which diverges on each input n enumerates the
empty set, which is then an effective open set. Sequences of uniformly effective
open sets are naturally defined. Moreover, if (Ui)i∈N is a sequence of uniformly
effective open sets, then

⋃
i Ui is an effective open set.

Definition 8 (Effective Gδ-set) An effective Gδ-set is an intersection of a
sequence of uniformly effective open sets.

Obviously, an uniform intersection of effective Gδ-sets is also an effective
Gδ-set.

Let (X,SX = {sX1 , sX2 , ...}, dX) and (Y, SY = {sY1 , sY2 , ...}, dY ) be com-
putable metric spaces. Let also BXi and BYi be enumerations of the ideal balls
in X and Y . A computable function X → Y is a function whose behavior can
be computed by an algorithm up to any precision. For this it is sufficient that
the pre-image of each ideal ball can be effectively enumerated by an algorithm.

Definition 9 (Computable Functions) A function T : X → Y is com-
putable if T−1(BYi ) is an effective open set, uniformly in i. That is, there is
an algorithm A : N× N→ BX such that T−1(BYi ) =

⋃
nA(i, n) for all i.

A function T : X → Y is computable on D ⊆ X if there are uniformly
effective open sets Ui such that T−1(BYi ) ∩D = Ui ∩D.
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Remark 10 Intuitively, a function T is computable (on some domain D) if
there is a computer program which computes T (x) (for x ∈ D) in the following
sense: on input ε > 0, the program, along its run, asks the user for approxi-
mations of x, and eventually halts and outputs an ideal point s ∈ Y satisfying
d(T (x), s) < ε. This idea can be formalized, using for example the notion of
oracle computation. The resulting notion coincides with the one given in the
previous definitions.

Recursive compactness is an assumption which will be needed in the follow-
ing. Roughly, a compact set is recursively compact if the fact that it is covered
by a finite collection of ideal balls can be tested algorithmically (for equivalence
with the ε-net approach and other properties of recursively compact set see [27]).

Definition 11 A set K ⊆ X is recursively compact if it is compact and
there is a recursive function ϕ : N∗ → N such that ϕ(i1, . . . , ip) halts if and only
if (Bi1 , . . . , Bip) is a covering of K.

3 Computability of invariant measures

3.1 Invariant measures and statistical properties

Let X be a metric space, T : X → X a Borel measurable map and µ a T -
invariant Borel probability measure. A set A is called T -invariant if T−1(A) =
A (mod 0). The system (X,T, µ) is said to be ergodic if each T -invariant set
has total or null measure. In such systems the famous Birkhoff ergodic theorem
says that time averages computed along µ-typical orbits coincides with space
average with respect to µ. More precisely, for any f ∈ L1(X,µ) it holds

lim
n→∞

Sfn(x)

n
=

∫
f dµ, (1)

for µ almost each x, where Sfn = f + f ◦ T + . . .+ f ◦ Tn−1.
This shows that in an ergodic system, the statistical behavior of observables,

under typical realizations of the system is given by the average of the observable
made with the invariant measure.

We say that a point x belongs to the basin of attraction of an invariant
measure µ if (1) holds at x for each bounded continuous f . In case X is a
manifold (possibly with boundary), a physical measure is an invariant measure
whose basin of attraction has positive Lebesgue measure (for more details and a
general survey see [51]). Computation of such measures will be the main subject
of the first part of this section.

3.1.1 The transfer operator

A function T between metric spaces naturally induces a function LT between
probability measure spaces. This function LT is linear and is called transfer
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operator (associated to T ). Measures which are invariant for T are fixed points
of LT .

Let us consider a computable metric space X and a measurable function
T : X → X. Let us also consider the space PM(X) of Borel probability
measures on X.

Let us define the linear function LT : PM(X)→ PM(X) by duality in the
following way: if µ ∈ PM(X) then LT (µ) is such that∫

f dLT (µ) =

∫
f ◦ T dµ

for each bounded continuous f .
The computation of invariant measures (and many other dynamical quanti-

ties) very often is done by computing the fixed points (and some other spectral
information) of this operator in a suitable function space. The most applied
and studied strategy is to find a suitable finite dimensional approximation of
LT (restricted to a suitable function space) so reducing the problem to the
computation of the corresponding relevant eigenvectors of a finite matrix.

An example of this is done by discretizing the space X by a partition Ai and
replacing the system by a (finite state) Markov Chain with transition probabil-
ities

Pij =
m(Ai ∩Aj)
m(Ai)

where m is the Lebesgue measure on X (see e.g. [21][22][40]). Then, taking
finer and finer partitions it is possible to obtain in some cases that the finite
dimensional model will converge to the real one (and its natural invariant mea-
sure to the physical measure of the original system). In some cases there is an
estimation for this speed of convergence (see eg. [22] for a discussion), but a
rigorous bound on the error (and then a real rigorous computation) is known
only in a few cases (piecewise expanding or expanding maps, see [40],[29]).

Similar approaches consists of applying a kind of Faedo-Galerkin approxi-
mation to the transfer operator by considering a complete Hilbert base of the
function space and truncating the operator to the action on the first elements
(see [49] ).

Another approach is to consider a perturbation of the system by a small
noise. The resulting transfer operator has a kernel. This operator can then
be approximated by a finite dimensional one (again by the Faedo-Galerkin
method for instance) and the relevant eigenvectors can be thus calculated (see
e.g. [18][17]). This method is useful in cases where it is possible to prove that
the physical measure of the original system can be obtained as the limit when
the size of the noise tends to zero (this happens, for example, for uniformly
hyperbolic systems).

Variations on the method of partitions are given in [19, 20], while in [43]
a different method, fastly converging, based on periodic points is exploited for
piecewise analytic Markov maps. Another strategy to face the problem of com-
putation of invariant measures consist in following the way the measure µ can be
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constructed and check that each step can be realized in an effective way. In some
interesting examples we can obtain the physical measure as limit of iterates of
the Lebesgue measure µ = limn→∞ LnT (m) (recall that m is the Lebesgue mea-
sure). To prove computability of µ the main point is to explicitly estimate the
speed of convergence to the limit. This sometimes can be done using techniques
related to decay of correlations ([25]).

Concluding, if the goal is to rigorously compute an invariant measure, most
of the results in modern literature are partial. Indeed, besides of being applied to
restricted classes of systems, they usually need additional information in order
to compute the measure. For example, the calculation of the finite dimensional
approximations is often not done Turing-rigorously, or the rate of convergence
of the approximations is computed up to some constants (depending on the
system) which are not estimated.

In the remaining part of this section we present some general results, mainly
from [27] and [6], and explain how they can be applied to rigorously compute
invariant measures. These results have the advantage of being simple and quite
general with all the needed assumptions made explicit. On the other hand, they
are not well suited for a complexity (in time or space) analysis, so it is not clear
if they can be implemented and used in practice.

The rigorous framework in which they are proved, however, allows to see
them as a study about the theoretical limits of (Turing-)rigorous computation
of invariant measures and, in fact, also negative results can be obtained. In
particular, we present examples of computable systems having no computable
invariant measures.

3.2 Computability of measures

In this section we explain precisely what we mean by computing a measure,
namely to have an algorithm able to approximate the measure by “simple mea-
sures” up to any desired accuracy.

Let us consider the space PM(X) of Borel probability measures over X. Let
C0(X) be the set of real-valued bounded continuous functions on X. We recall
the notion of weak convergence of measures:

Definition 12 µn is said to be weakly convergent to µ if
∫
f dµn →

∫
f dµ

for each f ∈ C0(X).

Let us introduce the Wasserstein-Kantorovich distance between measures.
Let µ1 and µ2 be two probability measures on X and consider:

W1(µ1, µ2) = sup
f∈1-Lip(X)

∣∣∣∣∫ f dµ1 −
∫
f dµ2

∣∣∣∣
where 1-Lip(X) is the space of functions on X having Lipschitz constant less

than one. The distance W1 has the following useful properties

Proposition 13 (see [1] Prop 7.1.5)
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1. W1 is a distance and if X is bounded, separable and complete, then PM(X)
with this distance is a separable and complete metric space.

2. If X is bounded, a sequence is convergent in the W1 metric if and only if
it is convergent for the weak topology.

3. If X is compact then PM(X) is compact with this metric.

Item (1) has an effective version: PM(X) inherits the computable metric
structure of X. Indeed, given the set SX of ideal points of X we can naturally
define a set of ideal points SPM(X) in PM(X) by considering finite rational
convex combinations of the Dirac measures δs supported on ideal points s ∈ SX .
This is a dense subset of PM(X). The proof of the following proposition can
be found in ([33]).

Proposition 14 If X is bounded, then (PM(X),W1, SPM(X)) is a computable
metric space.

A measure µ is then computable if there is a sequence µn ∈ SPM(X) con-
verging recursively fast to µ in the W1 metric (and hence in the weak topology).

3.3 Computable invariant “regular” measures

Here we describe a general method to compute invariant measures, that can be
applied in several situations. We start by illustrating the method in its simplest
form, namely to show that

Proposition 15 If a computable system T : X → X is uniquely ergodic, then
its invariant measure is computable.

Proof. The method is based on the following very simple and well-known fact:
the singleton set {x0} is recursively compact if and only if its unique element
x0 is a computable point. The idea is then to show that the set {µ} ⊂ PM(X),
where µ is the unique invariant measure, is recursively compact. This is done in
the following way: first we observe that the set of probability measures PM(X)
is recursively compact (since X is). Second we observe that the set PMT (X)c

of probability measures which are NOT invariant under T is recursively open
(here it is essential that T is an everywhere computable map). Finally we use
the general fact that a recursively compact set minus a recursively open set
is always recursively compact. In our case: PM(X) − PMT (X)c = {µ} is
recursively compact, as was to be shown.

The obstructions to extend this idea to more general situations come from
two main facts: (i) when the map T is not everywhere computable and then the
set PMT (X) of invariant measures is not (recursively) compact anymore and
(ii) when the map T is not uniquely ergodic, the set PMT (X) is not a singleton,
and it therefore does not need to contain computable points (even if recursively
compact).

13



To overcome these difficulties, we essentially need to find a different re-
cursively compact condition which would allow us to separate a distinguished
invariant measure from the rest, while making use of T only on its domain of
computability.

In the following, we present a general result which sets the requirements in
order to accomplish this task. It will be convenient to spell the principle in a
more equation solving way, namely as an abstract theorem allowing the compu-
tation of isolated fixed points (see [27] Corollary 2.4.3) of maps computable on
a suitable subset.

This result will be then applied to the transfer operator, and invariant mea-
sures will be found as fixed points that can be somehow distinguished by means
of analytic or dynamical properties (as being physical or absolutely continuous,
for example).

It will be therefore necessary to consider a space where the transfer opera-
tor is computable (this space hopefully will contain the distinguished invariant
measure).

We remark that if T is not continuous then LT is not necessarily continu-
ous (this can be realized by applying LT to some delta measure placed near a
discontinuity point) and hence not computable. Still, we have that LT is con-
tinuous (and its modulus of continuity is computable) at all measures µ which
are “far enough” from the discontinuity set D. This is technically expressed by
the condition µ(D) = 0.

Proposition 16 Let X be a computable metric space and T : X → X be a
function which is computable on X \ D. Then LT is computable on the set of
measures

PMD(X) := {µ ∈ PM(X) : µ(D) = 0}. (2)

From a practical point of view, this proposition provides sufficient conditions
to rigorously approximate the transfer operator by an algorithm.

The above tools allow us to ensure the computability of LT on a large class
of measures and obtain in a way similar to Proposition 15:

Theorem 17 ([27], Theorem 3.2) Let X be a computable metric space and
T a function which is computable on X \ D. Suppose there is a recursively
compact set of probability measures V ⊂ PM(X) such that for every µ ∈ V ,
µ(D) = 0 holds. Then every invariant measure isolated in V is computable.
Moreover the theorem is uniform: there is an algorithm which takes as inputs
finite descriptions of T, V and an ideal ball in M(X) which isolates2 an invariant
measure µ, and outputs a finite description of µ.

Remark 18 Notice that there is no computability condition on the set D. We
also remark that unless T is uniquely ergodic, invariant measures are never
isolated in PM(X), so the task is to find a (recursively compact) condition that
only a single invariant measure would satisfy.

2If the invariant measure is unique in V the isolating ball is not necessary.
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Clearly, Proposition 15 is now a trivial corollary of Theorem 17. As already
said, the main difficulty in the application of Theorem 17 is the requirement that
the invariant measure we are trying to compute be isolated in V . In general the
space of invariant measures of a given dynamical system could be very large (an
infinite dimensional convex subset of PM(X)) but there is often some kind of
particular regularity that can be exploited to characterize a particular invariant
measure, isolating it from the rest. For example, let us consider the following
seminorm:

‖µ‖α = sup
x∈X,r>0

µ(B(x, r))

rα
.

If α and K are computable and X is recursively compact then

Vα,K = {µ ∈ PM(X) : ‖µ‖α ≤ K} (3)

is recursively compact ([27]). This implies

Proposition 19 Let X be recursively compact and T be computable on X \D,
with dimH(D) < ∞. Then any invariant measure isolated in Vα,K with α >
dimH(D) is computable. Once again, this is uniform in T, α,K.

We recall that in the above proposition dimH denotes the Hausdorff dimen-
sion of a set. The above general proposition allow us to obtain as a corollary
the computability of many systems having absolutely continuous invariant mea-
sures. For example, let us consider maps on the interval.

Proposition 20 Let X = [0, 1], T be computable on X \D, with dimH(D) < 1
and suppose (X,T ) has a unique absolutely continuous invariant measure µ with
bounded density, then µ is computable (starting from T and a bound for the L∞

norm of the invariant density).

Similar results hold for maps on manifolds (again see [27]).

3.3.1 Computing the measure from a description of the system in
the class of piecewise expanding maps

As it is well known, interesting examples of systems having a unique absolutely
continuous invariant measure (with bounded density as required) are topologi-
cally transitive piecewise expanding maps on the interval or expanding maps on
manifolds.

We show how to find a bound for the invariant density on piecewise expand-
ing maps. This implies that the invariant measure can be calculated starting
from a description of T .

Definition 21 A nonsingular function T : ([0, 1],m)→ ([0, 1],m) is said to be
piecewise expanding if3

3For the sake of simplicity we will consider the simplest setting in which we can work
and give precise estimations. Such a class was generalized in several ways. We then warn
the reader that in the current literature, by piecewise expanding maps it is meant something
slightly more general than the definition we give here.
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1. There is a finite set of points d1 = 0, d2, ..., dn = 1 such that T |(di,di+1) is
C2 and can be extended to a C2map on [di, di+1].

2. inf(T ′) > 1 on the set where it is defined.

3. T is topologically mixing4.

It is now well known that such maps have an unique ergodic invariant mea-
sure with bounded variation density.

Such a density is also the unique fixed point of the (Perron Frobenius )
operator5 L : L1[0, 1]→ L1[0, 1] defined by

[Lf ](x) =
∑

y∈T−1x

f(y)

T ′(y)
.

We now show how to find a bound for such a density, starting from the
description of the system, and then compute the associated invariant measure.

The following proposition was proved in the celebrated paper [38] (Thm. 1
and its proof) and it is now called Lasota-Yorke inequality. We give a precise
statement where the constants are explicited.

Proposition 22 Let T be a piecewise expanding map. Let f be of bounded
variation in [0, 1] and let denote its variation by V ar(f). Let d1, ..., dn be the
discontinuity points of T .

If λ = inf
x∈[0,1]−{d1,...,dn}

T ′(x). Then

V ar(Lf) ≤ 2λV ar(f) +B||f ||1

where

B =

sup
x∈[0,1]−{d1,...,dn}

(| T
′′(x)

(T ′(x))2 |)

inf
x∈[0,1]−{d1,...,dn}

| 1
T ′(x) |

+
2

min(di − di+1)
.

The following is an elementary fact about the behavior of real sequences

Lemma 23 If a real sequence an is such that an+1 ≤ lan + k for some l <
1, k > 0, then

sup(an) ≤ max(a0,
k

1− l
).

Proposition 24 If f is the density of the physical measure of a piecewise
expanding map T as above and λ > 2. Then

V ar(f) ≤ B

1− 2λ

where B is defined as above.

4A system is said to be topologically mixing if, given sets A and B, there exists an integer
N , such that, for all n > N , one has fn(A) ∩B 6= ∅.

5Note that this operator corresponds to the above cited transfer operator acting on densities
instead of measures.
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Proof. (sketch) The topological mixing assumption implies that the map has
only one invariant physical measures (see [48]). Let us use the above results iter-
ating the constant density corresponding to the Lebesgue measure. Proposition
22 and Lemma 23 give that the variation of the iterates is bounded by B

1−2λ .
Suppose that the limit measure has density f . By compactness of uniformly
bounded variation functions in L1, the above properties give a bound on the
variation of f (see [38] proof of Thm. 1).

The following is a trivial consequence of the fact that

||f ||∞ ≤ V ar(f) +

∫
fdµ.

Corollary 25 In the above situation ||f ||∞ ≤ B
1−2λ + 1.

The bound on the density of the invariant measure, together with Corollary
20 gives the following uniform result on the computation of invariant measures
of such maps.

Theorem 26 Suppose a piecewise expanding map T and its first and second
derivatives are computable on [0, 1]−{d1, ..., dn}. Suppose that also its extension
to the closed intervalls [di, di+1] are computable. Then, the physical measure
can be computed starting from a description of the system (the points di and the
programs computing the map and its derivatives).

Proof. (sketch) Since T and T ′ are computable on each interval [di, di+1] we
can compute a number λ such that 1 < λ ≤ inf(T ′) (see [27] Proposition 3) If
we consider the iterate TN instead of T the associated invariant density will be
the same as the one of T , and if λN > 2, then TN will satisfy all the assumptions
needed on Proposition 24. In the same way it is possible to compute an upper
bound for the related B

1−2λ . Then we have a bound on the density and we can
apply Corollary 20 to compute the invariant measure.

3.3.2 Unbounded densities and non uniformly hyperbolic maps

The above results ensure computability of some absolutely continuous invariant
measure with bounded density. If we are interested in situations where the
density is unbounded, we can consider a new norm, “killing” singularities.

Let us hence consider a computable function f : X → R and

‖µ‖f,α = sup
x∈X,r>0

f(x)µ(B(x, r))

rα
.

If α and K are computable and X is recursively compact then

Vα,K = {µ ∈ PM(X) : ‖µ‖f,α ≤ K} (4)

is recursively compact, and Proposition 19 also hold for the seminorm ‖.‖f,α.

If f is such that f(x) = 0 when limr→0
µ(B(x,r))

rα = ∞ this can let the norm be
finite when the density diverges.
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As an example, where this can be applied, let us consider the Manneville
Pomeau type maps on the unit interval. These are maps of the type x →
x+ xz(mod 1).

When 1 < z < 2 the dynamics has a unique absolutely continuous invariant
measure µz. This measure has a density ez(x) which diverges at the origin.
Moreover, ez(x) � x−z+1 and is bounded elsewhere (see [34] Section 10 and [48]
Section 3 e.g.). If we consider the norm ‖.‖f,1 with f(x) = x2 we have that
‖µz‖f,1 is finite for each such z. It follows that for each such z the measure µz
is computable.

3.3.3 Julia sets and the Brolin-Lyubich measure

Here we explain how our method can be applied to compute the measure of
maximal entropy (or Brolin-Lyubich measure) associated to rational maps of
the Riemann Sphere.

It is interesting to say that this measure is supported on the Julia set (asso-
ciated to the rational map) which may happen to be uncomputable!

For sake of completeness we now attempt to briefly introduce computability
notions for invariant compact sets, and the main results on Julia sets.

Let K be a compact subset of the plane. Informally speaking, in order to
draw the set K on a computer screen we need a program which is able to decide,
given some precision ε, if pixel p has to be colored or not. By representing pixel
p by a ball B(p, ε) where (p, ε) ∈ Q2, the question one would like to answer is:
does B(p, ε) intersects K ? The following definition captures exactly this idea:

Definition 27 A compact set K ⊂ R2 is said to be computable if there is an
algorithm A such that, upon input (p, ε):

• halts and outputs “ yes” if K ∩B(p, ε) 6= ∅,

• halts and outputs “ no” if K ∩B(p, ε) = ∅,

• run forever otherwise.

We remark that if a compact set is computable under the definition above,
then it is recursively compact in the sense of Definition 11. The converse is
however false.

The question of whether Julia sets are computable under this definition
has been completely solved in a series of papers by Binder, Braverman and
Yampolsky. See [4, 5, 12, 13, 14]. Here we review some of their results. For
simplicity, we give the definition of the Julia set only for quadratic polynomials.
Consider a quadratic polynomial

Pc(z) = z2 + c : C→ C.

Obviously, there exists a number M such that if |z| > M , then the iterates
of z under P will uniformly scape to ∞. The filled Julia set is the compact
set defined by:

Kc = {z ∈ C : sup
n
|Pnc (z)| <∞}.
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That is, the set of points whose orbit remains bounded. For the filled Julia
set one has the following result:

Theorem 28 ([14]) The filled Julia set Kc of a computable quadratic polyno-
mials Pc is always computable.

The Julia set can now be defined by:

Jc = ∂Kc,

where ∂(A) denotes the boundary of A. The Julia set is the repeller of the
dynamical system generated by Pc. For all but finitely many points, the limit of
the n-th preimages P−nc (z) coincides with the Julia set Jc. The dynamics of Pc
on the set Jc is chaotic, again rendering numerical simulation of individual orbits
impractical. Yet Julia sets are among the most drawn mathematical objects,
and countless programs have been written for visualizing them.

In spite of this, the following result was shown in [12].

Theorem 29 There exist computable quadratic polynomials Pc(z) = z2 + c
such that the Julia set Jc is not computable.

This phenomenon of non-computability is rather subtle and rare. For a
detailed exposition, the reader is referred to the monograph [13].

Thus, we cannot accurately simulate the set of limit points of the preimages
(Pc)

−n(z), but what about their statistical distribution? The question makes
sense, as for all z 6=∞ and every continuous test function ψ, the following holds

1

2n

∑
w∈(Pc)−n(z)

ψ(w) −→
n→∞

∫
ψdλ,

where λ is the Brolin-Lyubich probability measure [15, 42] supported on the Julia
set Jc. We can thus ask whether the the Brolin-Lyubich measure is computable.
Even if Jc = Supp(λ) is not a computable set, the answer does not a priori have
to be negative. In fact, the following result holds:

Theorem 30 ([6]) The Brolin-Lyubich measure of computable quadratic poly-
nomial is always computable.

This result essentially follows from Theorem 17 as well. The difficulty is once
again to find a recursively compact condition which characterizes Brolin-Lyubich
measure. This measure happens to be singular with respect to Lebesgue, so that
the absolute continuity argument does not apply. The key property allowing the
application of Theorem 17 in this case is balance: a probability measure µ on C
is said to be balanced with respect to a rational function R (of degree at least
2), if for every set A ⊂ C on which R is injective, we have:

µ(R(A)) = d · µ(A),
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where d denotes the degree of R.
Computation of the Brolin-Lyubich measure is then reduced to show that for

probability measures, being balanced is a recursively compact condition. The
proof of this fact is not very difficult, but it does require to overcome some
problems like the fact that the function µ→ µ(A) is not computable. For more
details the interested reader is referred to ([6]).

3.4 Computable systems without computable invariant mea-
sures

We have seen several techniques to establish the computability of many impor-
tant invariant measures. This raises naturally the following question: does a
computable system necessarily have a computable invariant measure? What
about ergodic physical measures?

The following is an easy example o a simple system for which the last answer
is negative, showing that the general question of computing invariant measures
has some subtlety.

Let us consider a system on the unit interval given as follows. Let τ ∈ (0, 1)
be a lower semi-computable real number which is not computable. There is a
computable sequence of rational numbers τ i such that supi τ i = τ . For each i
consider Ti(x) = max(x, τ i) and

T (x) =
∑
i≥1

2−iTi(x).

The functions Ti are uniformly computable so T is also computable.

Figure 1: The map T .

The system ([0, 1], T ) is hence a computable dynamical system. T is non-
decreasing, and T (x) > x if and only if x < τ .

This system has a physical ergodic invariant measure which is δτ , the Dirac
measure placed on τ . The measure is physical because τ attracts all the interval

20



at its left. Since τ is not computable then δτ is not computable. We remark
that coherently with the previous theorems δτ is not isolated.

It is easy to prove, by a simple dichotomy argument, that a computable
function from [0, 1] to itself must have a computable fixed point. Hence it is not
possible to construct a system over the interval having no computable invariant
measure at all (we always have the δ over the fixed point). With some more
work one can construct such an example on the circle. Indeed the following can
be established

Proposition 31 There is a computable, continuous map T on the circle having
no computable invariant probability measure.

For the description of the system and for applications to reverse mathematics
see [27] (Proposition 12).

4 Computing the speed of ergodic convergence

As recalled before, the Birkhoff ergodic theorem tells that, if the system is
ergodic, there is a full measure set of points for which the averages of the values
of the observable f along its trajectory (time averages) coincides with the spatial
average of the observable f . Similar results can be obtained for the convergence
in the L2 norm, and others. Many, more refined results are linked to the speed
of convergence of this limit. And the question naturally arise, if there is a
possibility to compute this speed of convergence in a sense similar to Definition
5.

In the paper [2] some abstract results imply that in a computable ergodic
dynamical system, the speed of convergence of such averages can be algorithmi-
cally estimated. On the other hand it is also shown that there are non ergodic
systems where this kind of estimations are not possible. In [28] a very short
proof of this result for ergodic systems was given. We present the precise result
(Theorem 39) with its proof in this section.

4.0.1 Convergence of random variables

We first make precise what is meant by “compute the speed of convergence” in
a pointwise a.e. convergent sequence.

Definition 32 A random variable on (X,µ) is a measurable function f :
X → R.

Definition 33 Random variables fn effectively converge in probability to
f if for each ε > 0, µ{x : |fn(x)−f(x)| < ε} converges effectively to 1, uniformly
in ε. That is, there is a computable function n(ε, δ) such that for all n ≥ n(ε, δ),
µ{|fn − f | ≥ ε} < δ.

Definition 34 Random variables fn effectively converge almost surely to
f if f ′n = supk≥n |fk − f | effectively converge in probability to 0.
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Definition 35 A computable probability space is a pair (X,µ) where X
is a computable metric space and µ a computable Borel probability measure on
X.

Let Y be a computable metric space. A function f : (X,µ)→ Y is almost
everywhere computable (a.e. computable for short) if it is computable on
an effective Gδ-set of measure one, denoted by domf and called the domain of
computability of f .

A morphism of computable probability spaces f : (X,µ) → (Y, ν) is a
morphism of probability spaces which is a.e. computable.

Remark 36 A sequence of functions fn is uniformly a.e. computable if the
functions are uniformly computable on their respective domains, which are uni-
formly effective Gδ-sets. Observe that in this case, intersecting all the domains
provides an effective Gδ-set on which all fn are computable. In the following we
will apply this principle to the iterates fn = Tn of an a.e. computable function
T : X → X, which are uniformly a.e. computable.

Remark 37 The space L1(X,µ) (resp. L2(X,µ)) can be made a computable
metric space, choosing some dense set of bounded computable functions as ideal
elements. We say that an integrable function f : X → R is L1(X,µ)-computable
if its equivalence class is a computable element of the computable metric space
L1(X,µ). Of course, if f = g µ-a.e., then f is L1(X,µ)-computable if and
only if g is. Basic operations on L1(X,µ), such as addition, multiplication by
a scalar, min, max etc. are computable. Moreover, if T : X → X preserves µ
and T is a.e. computable, then f → f ◦ T (from L1 to L1) is computable (see
[32]).

Let us call (X,µ, T ) a computable ergodic system if (X,µ) is a com-
putable probability space where T is a measure preserving morphism and (X,µ, T )
is ergodic. Let ||f || denote the L1 norm or the L2 norm.

Proposition 38 Let (X,µ, T ) be a computable ergodic system. Let f be a com-
putable element of L1(X,µ) (resp. L2(X,µ)).

The L1 convergence (resp. L2 convergence) of the Birkhoff averages An =
(f + f ◦ T + . . . + f ◦ Tn−1)/n is effective. That is: there is an algorithm
n : Q→ N such that for each m ≥ n(ε), ||Am −

∫
fdµ|| ≤ ε. Moreover the

algorithm depends effectively on T, µ, f .

Proof. Replacing f with f −
∫
fdµ, we can assume that

∫
fdµ = 0. The

sequence ||An|| is computable ( see Remark 37 ) and converges to 0 by the
ergodic theorems.

Given p ∈ N , we write m ∈ N as m = np+ k with 0 ≤ k < p. Then
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Anp+k =
1

np+ k

(
n−1∑
i=0

pAp ◦ T pi + kAk ◦ T pn
)

||Anp+k|| ≤
1

np+ k
(np||Ap||+ k||Ak||)

≤ ||Ap||+
||Ak||
n

≤ ||Ap||+
||f ||
n
.

Let ε > 0. We can compute some p = p(ε) such that ||Ap|| < ε/2. Then we
can compute some n(ε) ≥ 2

ε ||f ||. The function m(ε) := n(ε)p(ε) is computable
and for all m ≥ m(ε), ||Am|| ≤ ε.

4.1 Effective almost sure convergence

Now we use the above result to find a computable estimation for the a.s. speed
of convergence.

Theorem 39 Let (X,µ, T ) be a computable ergodic system. If f is L1(X,µ)-
computable, then the a.s. convergence is effective. Moreover, the rate of con-
vergence can be computed as above starting from T, µ, f .

This will be proved by the following

Proposition 40 If f is L1(X,µ)-computable as above, and ||f ||∞ is bounded,
then the almost-sure convergence is effective (uniformly in f and a bound on
||f ||∞ and on T , µ ).

To prove this we will use the well known Maximal ergodic theorem:

Lemma 41 (Maximal ergodic theorem) For f ∈ L1(X,µ) and δ > 0,

µ({sup
n
|Afn| > δ}) ≤ 1

δ
||f ||1.

The idea is simple: compute some p such that ||Afp ||1 is small, apply the

maximal ergodic theorem to g := Afp , and then there is n0, that can be com-

puted, such that Afn is close to Agn for n ≥ n0.

Proof of Proposition 40. Let ε, δ > 0. Compute p such that ||Afp || ≤ δε/2.

Applying the maximal ergodic theorem to g := Afp gives:

µ({sup
n
|Agn| > δ/2}) ≤ ε. (5)
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Now, Agn is not far from Afn: expanding Agn, one can check that

Agn = Afn +
u ◦ Tn − u

np
,

where u = (p− 1)f + (p− 2)f ◦ T + . . .+ f ◦ T p−2. ||u||∞ ≤ p(p−1)
2 ||f ||∞ so if

n ≥ n0 ≥ 4(p−1)||f ||∞/δ, then ||Agn −Afn||∞ ≤ δ/2. As a result, if |Afn(x)| > δ
for some n ≥ n0, then |Agn(x)| > δ/2. From (5), we then derive

µ({ sup
n≥n0

|Afn| > δ}) ≤ ε.

As n0 can be computed from δ and ε, we get the result.

Remark 42 This result applies uniformly to a uniform sequence of computable
L∞(X,µ) observables fn.

We now extend this to L1(X,µ)-computable functions, using the density of
L∞(X,µ) in L1(X,µ).

Proof of Theorem 39. Let ε, δ > 0. For M ∈ N, let us consider f ′M ∈
L∞(X,µ) defined as

f ′M (x) =

{
min(f,M) if f(x) ≥ 0

max(f,−M) if f(x) ≤ 0.

Compute M such that ||f − f ′M ||1 ≤ δε. Applying Proposition 40 to f ′M
gives some n0 such that µ({supn≥n0

|Af
′
M
n | > δ}) < ε. Applying Lemma 41 to

f ′′M = f − f ′M gives µ({supn |A
f ′′M
n | > δ}) < ε. As a result, µ({supn≥n0

|Afn| >
2δ}) < 2ε.

Remark 43 We remark that a bounded a.e. computable function, as defined
in Definition 35 is a computable element of L1(X,µ) (see [32]). Conversely,
if f is a computable element of L1(X,µ) then there is a sequence of uniformly
computable functions fn that effectively converge µ-a.e. to f .

5 Computing pseudorandom points, construc-
tive ergodic theorem

In this section we show how the previous results on computation of invariant
measures and speed of convergence allow to compute points which are statisti-
cally typical for the dynamics. Let X again be a computable metric space and
µ a computable probability measure on it. Suppose X is complete.

Points satisfying the above recalled pointwise ergodic theorem for an observ-
able f , will be called typical for f .

Points which are typical for each f which is continuous with compact support
are called typical for the measure µ ( and for the dynamics).
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The set of computable points in X (see Definition 6) being countable, is a
very small (invariant) set, compared to the whole space. For this reason, a com-
putable point could rarely be expected to be typical for the dynamics, as defined
before. More precisely, the Birkhoff ergodic theorem and other theorems which
hold for a full measure set, cannot help to decide if there exist a computable
point which is typical for the dynamics.

A number of theoretical questions arise naturally from all these facts. Due to
the importance of forecasting and simulation of a dynamical system’s behavior,
these questions also have some practical motivation.

Problem 44 Since simulations can only start with computable initial condi-
tions, given some typical statistical behavior of a dynamical system, is there
some computable initial condition realizing this behavior? How to choose such
points?

Such points could be called pseudorandom points, and a result showing its
existence and their computability from the description of the system could be
seen as a constructive version of the pointwise ergodic theorem.

Meaningful simulations, showing typical behaviors of the dynamics can be
performed only if computable, pseudorandom initial conditions exist. Com-
putable points are the only points we can use when we perform a simulation or
some explicit computation on a computer.

Based on a sort of effective Borel-Cantelli lemma, in [25] the above problem
was solved affirmatively for a class of systems which satisfies certain technical
assumptions which includes systems whose decay of correlation is faster than
C log2(time). Using the results on the estimation of the rate of convergence
given in the previous section, it is possible to remove these technical assumptions
on the speed of decay of correlations. It is also worth to remark that the result
is uniform also in T and µ (the pseudorandom points will be calculated from a
description of the system).

The following result ([25], Theorem 2 or [28]) shows that from a sequence
fn which converges effectively a.s. to f and from its speed of convergence, it is
possible to compute points xi for which fn(xi)→ f(xi).

Theorem 45 Let X be a complete metric space. Let fn, f be uniformly a.e.
computable random variables. If fn effectively converges almost surely to f then
the set {x : fn(x) → f(x)} contains a sequence of uniformly computable points
which is dense in Supp(µ). Moreover, the effective sequence found above depends
algorithmically on fn and on the function n(δ, ε) giving the rate of convergence

Since by the results of the previous section n(δ, ε) can be calculated starting
from T , µ and f , we can directly apply the above Theorem to compute typical
points for the dynamics. Indeed, the following holds (see [28] for the details)

Theorem 46 If (X,µ, T ) is a computable ergodic system and f is L1(X,µ) and
a.e. computable, then there is a uniform sequence xi of computable points which
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is dense on the support of µ such that for each i

lim
n→∞

1

n

∑
f(Tn(xi)) =

∫
f dµ.

Moreover this sequence can be computed starting from a description of T , µ and
f .

The uniformity in f of the above result together with the existence of a
r.e. collection of computable observables which is dense in the space of com-
pactly supported continuous functions, imply the following (see again [28] for
the details)

Theorem 47 If (X,µ, T ) is a computable ergodic system then there is a uni-
form sequence xn of computable points which is dense on the support of µ such
that for each n, xn is typical for µ. Moreover this sequence can be computed
starting from a description of Tand µ.

In particular, for the classes of systems where the interesting invariant mea-
sure can be computed by the description of the system (see Section 3.3.1, The-
orem 26), we obtain that in turn the pseudorandom points can be computed
starting from a description of the system alone.

Corollary 48 Each piecevise expanding map, with computable derivatives, as
in the assumptions of Theorem 26 has a sequence of pseudorandom points which
is dense in the support of the measure. Moreover this sequence can be computed
starting from the description of the system.

These two statements can be seen as constructive/effective versions of the
ergodic theorem.

6 Conclusions and directions

In this article we have reviewed some recent results about the rigorous computa-
tion of invariant measures, invariant sets and typical points. Here, the sentence
rigorous computation means “computable (up to any required precision) by a
Turing Machine”. Thus, this can be seen as a theoretical study of which infinite
objects in dynamics can be arbitrarily well approximated by a modern com-
puter (in an absolute sense), and which cannot. In this line, we presented some
general principles and techniques that allow the computation of the relevant
objects in several different situations. On the other hand, we also presented
some examples in which the computation of the relevant objects is not possible
at all, setting some theoretical limits to the abilities of computers when used to
simulate dynamical systems.

The examples of the second kind, however, seem to be rather rare. An
important question is therefore whether this phenomenon of non-computability
is robust or prevalent in any sense, or if it is rather exceptional. For example,
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one could ask whether the non-computability is destroyed by small changes
in the dynamics or whether the non-computability occurs with small or null
probability.

Besides, in this article we have not considered the efficiency (and therefore
the feasibility) of any of the algorithms we have developed. An important (and
more difficult) remaining task is therefore the development of a resource bounded
version of the study presented in this paper. In the case of Julia sets, for
instance, it has been shown in [10, 46, 11] that hyperbolic Julia sets, as well
as some Julia sets with parabolics, are computable in polynomial time. On the
other hand, in [5] it was shown that there exists computable Siegel quadratic
Julia sets whose time complexity is arbitrarily high.

For the purpose of computing the invariant measure form the description of
the system, in section 3.3.1 we had to give explicit estimations on the constants
in the Lasota Yorke inequality. This step is important also when techiques
different from ours are used (see [40] e.g.). Similar estimations could be done
in other classes of systems, following the way the Lasota Yorke inequality is
proved in each class (although, sometimes this is not a completely trivial task
and requires the “effectivization” of some step in the proof). A more general
method to have an estimation for the constants or other ways to get information
on the regularity of the invariant measure would be useful.
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Theory and Dynamical Systems (2006), 26: 1867-1903 2

[45] J. Milnor. Dynamics in one complex variable. Introductory lectures. Friedr.
Vieweg & Sohn, Braun- schweig, 1999. 5

[46] R. Rettinger, A Fast Algorithm for Julia Sets of Hyperbolic Rational Func-
tions. Proc. of CCA 2004, in ENTCS, vol 120, pp. 145-157. 27

[47] A. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proc. Lond. Math. Soc. 2, 42 (1936), 230–265. 8

[48] M. Viana, “Stochastic Dynamics of Deterministic Systems,” Brazillian
Math, IMPA, Colloquium 1997. 17, 18

[49] J. Weber, F Haake, P A Braun, C Manderfeld, P Seba Resonances of the
Frobenius-Perron operator for a Hamiltonian map with a mixed phase space
Journal of Physics A v. 34, n. 36 7195–721 (2001) 11

[50] K. Weihrauch, Computable Analysis. An Introduction, Springer, 2000. 6

[51] Lai-Sang Young. What are SRB measures, and which dynamical systems
have them? J. Stat. Phys., 108:733–754, 2002.

4, 10

30


	Introduction
	Computability on metric spaces
	Computability
	Algorithms and uniform algorithms
	Computable metric spaces

	Computability of invariant measures
	Invariant measures and statistical properties
	The transfer operator

	Computability of measures
	Computable invariant “regular” measures
	Computing the measure from a description of the system in the class of piecewise expanding maps
	Unbounded densities and non uniformly hyperbolic maps
	Julia sets and the Brolin-Lyubich measure

	Computable systems without computable invariant measures

	Computing the speed of ergodic convergence
	Convergence of random variables
	Effective almost sure convergence

	Computing pseudorandom points, constructive ergodic theorem
	Conclusions and directions

