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Automated Certification of Implicit Induction
Proofs

Sorin Stratulat Vincent Demange

LITA, Paul Verlaine-Metz University, Ile du Saulcy, 57000, Metz, France
{stratulat,demange}@univ-metz.fr

Abstract. Theorem proving is crucial for the formal validation of properties
about user specifications. With the help of the Coq proof assistant, we show
how to certify properties about conditional specifications that are proved
using automated proof techniques like those employed by the Spike prover, a
rewrite-based implicit induction proof system. The certification methodology
is based on a new representation of the implicit induction proofs for which
the underlying induction principle is an instance of Noetherian induction
governed by an induction ordering over equalities. We propose improvements
of the certification process and show that the certification time is reasonable
even for industrial-size applications. As a case study, we automatically prove
and certify more than 40% of the lemmas needed for the validation of a
conformance algorithm for the ABR protocol.

1 Introduction

Theorem proving is a crucial domain for validating properties about user specifi-
cations. The properties formally proved with the help of theorem provers are valid
if the proofs are sound. Generally speaking, there are two methods to certify (the
soundness of the) proofs: either i) by certifying the implementation of the inference
systems; in this way, any generated proof is implicitly sound, or ii) by explicitly
checking the soundness of the proofs generated by not-yet certified theorem provers
using certified proof environments like Coq [25].

We are interested in certifying properties about conditional specifications using
automated proof techniques like those employed by Spike [5,19,3], a rewrite-based
implicit induction proof system. The implementation of Spike’s inference system is
spread over thousands of lines of OCaml [12] code. Its certification, as suggested by
method i), would require a tremendous proving effort. For example, [11] reports a
cost of 20 person year for the certification of the implementation of another critical
software: an OS-kernel comprising about 8,700 lines of C and 600 lines of assembler.
For this reason, we followed the method ii), that has been firstly tested manually
in [24], then automatically on toy examples in [23]. The method directly translates
every step of a Spike proof into Coq scripts, which distinguishes it from previous
methods based on proof reconstruction techniques [7,10,13] that mainly transform
implicit into explicit induction proofs.

In this paper, we report improvements in order to certify implicit induction proofs
concerning industrial-size applications. The case study of our choice is the validation
proof of a conformance algorithm for the ABR protocol [14]. An interactive proof



using PVS [18] was firstly presented in [16], then it has been shown in [17] that more
than a third of the user interactions can be avoided using implicit induction tech-
niques, Spike succeeding to prove 60% of the user-provided lemmas automatically.
Now, a simpler but more restrictive version of the Spike inference system has been
shown powerful enough to prove 2/3 out of these lemmas. Moreover, any generated
proof has been automatically translated into a Coq script, then automatically cer-
tified by Coq. We stress the importance of the automatic feature since the proof
scripts are in many cases big and hard to manipulate by the users. The bottom-line
is that these improvements allowed us to certify big proof scripts in a reasonable
time, 20 times faster than in [23].1

The structure of the paper is as follows: after introducing the basic notions and
notations in Section 2, we present in Section 3 the restricted inference system and
a new representation of the implicit induction proofs for which the underlying in-
duction principle is an instance of Noetherian induction governed by an induction
ordering over equalities. The conformance algorithm and its Spike specification are
discussed in Section 4. In Section 5, we describe a full implicit induction proof of
one of the lemmas used in the ABR proof, then explain in Section 6 its translation
into Coq script following the new representation of the implicit induction proofs. We
detail the improvements we have made to speed-up the certification process and give
statistics about the certification of the proofs of any of the 33 lemmas proved with
the restricted inference system. Further improvements are discussed at the end of
the section, including the parallelisation of the certification process. The conclusions
and directions for future work are given in the last section.

2 Background and Notations

This section briefly introduces the basic notions and notations related to proving
properties about conditional specifications by implicit induction techniques. More
detailed presentations of them, and about equality reasoning in general, can be
found elsewhere, for example in [2].

We assume that F is an alphabet of arity-fixed function symbols and V is a
set of universally quantified variables. The set of functions symbols is split into
defined and constructor function symbols. We also assume that the function symbols
and variables are sorted and that for each sort s there is at least one constructor
symbol of sort s. The set of terms is denoted by T (F ,V) and the set of variable-
free (ground) terms by T (F). The sort of a non-variable term of the form f(. . .)
is the sort of f , where f ∈ F . Relations between terms can be established by the
means of equalities. An unconditional equality is denoted by s = t, where s and t
are two terms of same sort. Unconditional equalities and their negations are literals.
A clause is a disjunction of literals. Horn clauses, consisting of clauses with at most
one unconditional equality, are represented as implications. In its most usual form,
¬e1 ∨ . . . ∨ ¬en ∨ e is a conditional equality, denoted by e1 ∧ . . . ∧ en ⇒ e, where
ei (i ∈ [1..n]) are conditions and e is the conclusion. Sometimes, we emphasize a

1 The code of the Spike prover and the generated Coq scripts can be downloaded from
http://code.google.com/p/spike-prover/.

http://code.google.com/p/spike-prover/


particular condition ei w.r.t. the other conditions Γ by writing Γ ∧ ei ⇒ e. We
denote by e1 ∧ . . . ∧ en ⇒ an impossible set of conditions.

Equality reasoning may require transformations over equalities. A basic such
transformation is the substitution operation which consists in simultaneous replace-
ments of variables with terms. Formally, a substitution is represented as a finite
mapping {x1 7→ t1; . . . ;xn 7→ tn}, where xi ∈ V and ti ∈ T (F ,V). If σ is such a
substitution, and t a term (resp. e an equality), then tσ (resp. eσ) is an instance of
t (resp. e). In the following, we assume that the variables from the replacing terms
in σ are new w.r.t. the variables of t (resp. e). A term s matches a term t if there
exists a (matching) substitution σ such that sσ ≡ t, where ≡ is the identity rela-
tion. A unifier of two terms s and t is a substitution σ such that sσ ≡ tσ. In the
rest of the paper, we will consider only the most general unifiers (mgu), and write
σ = mgu(s, t) whenever sσ ≡ tσ. Another kind of transformation operation is the
replacement of a non-variable subterm of a term or equality by another term. The
replaced subterm can be uniquely identified by its position. If p is a position and e
(resp. t) an equality (resp. term), its subterm at position p is denoted by ep (resp.
tp). Formally, ep[s] (resp. tp[s]) states that s is a subterm of e (resp. t) at position p.

Any induction principle is based on an (induction) ordering. A quasi-ordering ≤ is
a reflexive and transitive binary relation. The strict part of a quasi-ordering is called
ordering and is denoted by<. We write x >(≥) y iff y <(≤) x. An ordering<, defined
over the elements of a nonempty set A, is well-founded if it is impossible to build an
infinite strictly descending sequence x1 > x2 > . . . of elements of A. A binary relation
R is stable under substitutions if whenever sR t then (sσ)R (tσ), for any substitution
σ. Induction orderings can be defined over terms as well as equalities. An example
of an induction ordering over terms is the recursive path ordering (for short, rpo),
denoted by ≺rpo, recursively defined from a well-founded ordering <F over F . If
s, t ∈ T (F ,V), we write t ≺rpo s if s ≡ f(s1, . . . , sm) and i) either si ≡ t or t ≺rpo si
for some si, i ∈ [1..m], or ii) t ≡ g(t1, . . . , tn), ti ≺rpo s for all i, i ∈ [1..n], and either
a) g <F f , or b) f ≡ g and (t1, . . . , tn) ≺≺rpo (s1, . . . , sn). ≺≺rpo is the multiset
extension of ≺rpo. Given two multisets of terms A1 and A2, we write A1 ≺≺rpo A2

if, after the pairwise elimination of the identical terms from A1 and A2, ∀s ∈ A1,
∃t ∈ A2 such that s ≺rpo t. An induction ordering over equalities, denoted by ≺, is
defined as follows: s1 = t1∧ . . .∧sn = tn ⇒ s = t ≺ s′1 = t′1∧ . . .∧s′m = t′m ⇒ s′ = t′

if {s1, t1, . . . , sn, tn, s, t} ≺≺rpo {s′1, t′1, . . . , s′m, t′m, s′, t′}. It can be shown that ≺ is
well-founded and stable under substitutions.

We are interested in proving properties, or conjectures, about conditional speci-
fications consisting in sets of conditional equalities defining (defined) function sym-
bols, also referred to as axioms. An axiom s1 = t1 ∧ . . . ∧ sn = tn ⇒ s = t can be
transformed into the (conditional) rewrite rule s1 = t1 ∧ . . . ∧ sn = tn ⇒ s → t if
{s1, t1, . . . , sn, tn, t} ≺≺rpo {s} and the variables of s1, t1, . . . sn, tn, t are among the
variables of s. Given a substitution σ, a rewrite rule a = b⇒ l→ r and an equality
e such that e[lσ]u, a rewrite operation replaces e[lσ]u by e[rσ]u, then enriches the
conditions of e[rσ]u with the new conditions aσ = bσ. A rewrite system R consists
of a set of rewrite rules. The rewrite relation →R denotes rewrite operations only
with rewrite rules from R and it can be shown well-founded. The equivalence closure
of →R is denoted by ∗↔R.



The equality s1 = t1 ∧ . . . ∧ sn = tn ⇒ s = t is an inductive theorem of a set of
axioms orientable into a rewrite system R if, for any of its ground instances s1σ =
t1σ ∧ . . . ∧ snσ = tnσ ⇒ sσ = tσ, whenever siσ

∗↔R tiσ, for each i ∈ [1..n], we have
sσ

∗↔R tσ. Tautologies are inductive theorems either of the form ∧isi = ti ⇒ t = t
or equalities for which the conclusion is among the conditions. An equality e1 is
subsumed by another equality e2 if there exists a substitution σ such that e2σ is a
sub-clause of e1, i.e. e1 is of the form e2σ ∨ Γ .

3 Noetherian Induction for Implicit Induction Proofs

Noetherian induction is a widely used induction principle. In its most general form,
it allows to prove the validity of a property φ for all elements of a potentially infi-
nite poset (S,<), provided that < is a well-founded ordering. The powerful of the
principle consists in the possibility to use in the proof of any φ(m), with m ∈ S, the
assumption that φ(k) is true, for all k ∈ S smaller than m. Formally,

(∀m ∈ S, (∀k ∈ S, k < m⇒ φ(k))⇒ φ(m))⇒ ∀m ∈ S, φ(m)

The soundness of the principle is guaranteed by the well-foundedness property of
<. The formulas φ(k), with k < m, can safely participate to the proof of φ(m) as
induction hypotheses.

The Noetherian induction principle can be used to prove properties about con-
ditional specifications if S is a set of equalities, φ(x) = x for all x ∈ S, and the
well-founded ordering is ≺, as defined in the previous section. In this case, the
Noetherian induction principle becomes a contrapositive version of the ‘Descente
Infinie’ induction principle we have previously used in [20,21,22,23]:

(∀ψ ∈ S, (∀ρ ∈ S, ρ ≺ ψ ⇒ ρ)⇒ ψ)⇒ ∀γ ∈ S, γ

This means that, in the proof of any equality, one can use smaller equalities.
To prove that a set of conditional equalities are inductive theorems w.r.t. a rewrite

system R, we will consider a simplified version of the Spike inference system [5,3],
represented in Fig. 1, that implements this particular case of Noetherian induction
in order to perform implicit induction proofs. The set S will consist of all ground
instances of the conjectures encountered in the proof of the inductive theorems,
defined as follows.

An implicit induction proof represents a finite sequence of states (E0, ∅) `
(E1, H1) ` . . . ` (∅, Hn), where Ei (i ∈ [0..n − 1]) are multisets of conjectures
and Hi (i ∈ [1..n]) are multisets of premises made of previously treated conjectures.
A step between two states is performed by the application of one of the Spike infer-
ence rules. Each rule transforms one of the conjectures, called current conjecture,
into a potentially empty set of new conjectures. Generate applies on equalities in-
corporating subterms that can unify with some lhs of the rewrite rules from R. Such
a subterm should be tested for unification against all the rewrite rules from R, each
mgu σ playing the role of test substitution. The resulted set of test substitutions is
expected to be complete. The method for computing the test substitutions has been



Generate: (E∪{e[t]p}, H) ` (E∪ (∪σ{eσ[rσ]p enriched with cond. aσ = bσ})), H∪{e})
if a = b⇒ l→ r ∈ R, σ = mgu(l, t).

Total Case Rewriting: (E∪{e[t]p}, H) ` (E∪(∪σ{cond. aσ = b added to e[rσ]p})), H)
if a = b⇒ l→ r ∈ R, lσ ≡ t, b is either True or False.

(Unconditional) Rewriting: (E ∪ {e}, H) ` (E ∪ {e′}, H)
if e→R∪L∪(H∪E)≺e e

′.

Augmentation: (E ∪ {Γ ∧ l⇒ s = t}, H) ` (E ∪ {Γ ∧ ∧kl′k ⇒ s = t}, H)
if, for each k, it exists a lemma u⇒ v and a substitution σ such that
uσ ≡ l, vσ ≡ l′k and l′k ≺ l.

Tautology: (E ∪ {e}, H) ` (E, H)
if e is a tautology.

Subsumption: (E ∪ {e}, H) ` (E, H)
if e is subsumed by some conjecture from H ∪ L.

Fig. 1. A simplified version of the Spike inference system.

presented in [3] and is different from the ‘test set’ method from [5]. Finally, the cur-
rent conjecture is added to the set of premises. Total Case Rewriting can apply
on equalities with subterms that are matched by some lhs of rewrite rules from R.
As for the unification test, the matching test should be done against all the rewrite
rules from R. The rewrite rules have the conditions restricted to the form a = True
or a = False in order to simplify the certification process [23]. Rewriting rewrites
an equality e with rewrite rules from R, lemmas L consisting of previously proved
conjectures, or smaller instances of premises H and conjectures E from the current
state, denoted by (H ∪E)≺e. Augmentation replaces one condition of the current
conjecture with smaller conditions. The fact that the replaced condition implies the
smaller conditions is stated by lemmas. Tautology deletes tautologies. The last
rule, Subsumption, deletes the equalities subsumed by either lemmas or premises.
The proof strategy indicating the application order of the Spike rules is the follow-
ing: on a given conjecture, Tautology is firstly tried, then Rewriting followed
by Augmentation, Subsumption and Total Case Rewriting. When none of
these rules works, Generate is finally applied.

The soundness property of the Spike inference system states that whenever a
proof is derived then the initial conjectures are inductive consequences of the axioms.
The inference system implements the ‘Descente Infinie’ principle such that whenever
a current conjecture from a proof step can be instantiated to a false ground formula,
there is another conjecture in the proof that can be instantiated to a smaller false
ground formula, under the following conditions: i) the rewrite systemR respects some
syntactic criteria to ensure its coherence, i.e. an equality and its negation cannot be
simultaneously consequences of the axioms, and ii) completeness, i.e. each function
is defined in any point of the domain. In [19], we have proposed a methodology for



a modular checking of the soundness of implicit induction inference systems. The
heart of the methodology is a very general inference system consisting only of two
rules, AddPremise and Simplify, which has been shown sound, like any system
built from instantiations of its rules. In our case, it can be shown that Generate
is an instance of AddPremise, and the other rules are instances of Simplify.

4 Case Study: Validation of a Conformance Algorithm for
the ABR Protocol

Available Bit Rate (ABR) [9] is one of the protocols for the ATM networks that fit
well to manage the data rates between several applications sharing simultaneously a
common physical link. What distinguishes ABR is its flexibility: the provider guaran-
tees a minimum rate to the user, but the rate can fluctuate over time: it can increase
if resources are available and should decrease if the network is congestioned. The
rate management is a complex task for the provider. Firstly, the user is informed
by the new rate values, then the user has to adapt the rates of its applications to
the new values. Finally, the provider should test that the user rates are conform to
a value which may vary in time, called conformity value, computed by the confor-
mance algorithm running on a device positioned between the provider and the user.
The new rate values arrive from the provider to the device by the means of Resource
Management (RM-) cells. The rate and the arrival time of RM-cells are stored in a
buffer such that the conformity value, at a given time, will depend on the rate values
and the arrival time of the stored RM-cells.

There are several conformance algorithms, but here we will mention only two:
Acr and Acr1. Both of them are ideal since they assume that the buffer can store
an infinite number of RM-cells in order to give optimal conformity control from the
user’s point of view, i.e. the users are informed a) as soon as possible when the rate
for their applications can augment, and b) as late as possible when the rate should
decrease. Acr [4] has been standardized by the ATM Forum and considered as a
landmark for the other algorithms. Defined later, Acr1 [14] is more efficient since it
provides the conformity value quasi-instantaneously. The idea is to schedule into the
future the rate of the RM-cell such that most of the computation is done at the time
when an RM-cell arrives to the device and not when the conformity value is really
needed. More exactly, at a given time t, the conformity value will be the rate of the
first cell from the scheduled cell buffer, assuming that all the cells scheduled in the
past (w.r.t. t) can be ignored or simply deleted.

Formally, a (RM- or scheduled) cell is a pair of naturals (t, er), where t is the
(arrival or scheduled) time of the cell and er is its rate. A buffer is a list of cells
[(t1, er1), (t2, er2), . . . , (tn, ern), . . .]. The RM-cell buffer is time-decreasing, i.e. t1 ≥
t2 ≥ . . . ≥ tn ≥ . . .. In [15,17], Acr1 has been shown equivalent to Acr, i.e. for
any configuration of the RM-cell buffer and any time t, both algorithms compute
the same conformity value. Before proving in the next subsection one of the lemmas
from the ‘equivalence’ proof, we introduce the following functions: i) time(c) - returns
the time value of the cell c, ii) timel(l) - gives the time value of the first cell from the
buffer l, iii) le(n1, n2) - tests if the natural n1 is less than or equal to the natural n2,
iv) sortedT (l) - returns true if the buffer l is time-decreasing, and v) insAt(l, t, e) -



deletes all the cells from the head of the buffer l having time values greater than t,
then adds a new cell with the rate e and time t to the head of the buffer.

4.1 The Spike Specification

We will use the sort NAT to represent naturals, BOOL for booleans, OBJ
for cells, and PLAN for lists of cells. The constructor symbols for the
sorts NAT , BOOL, OBJ and PLAN , together with their profiles, are: 0 :
NAT , S : NAT → NAT , True : BOOL, False : BOOL, C :
NAT NAT → OBJ , Nil : PLAN , and Cons : OBJ PLAN → PLAN .

The defined functions and their defining axioms are:

time : OBJ → NAT
[105] time(C(u1, u2)) = u1

timel : PLAN → NAT
[98] timel(Nil) = 0
[99] timel(Cons(u1, u2)) = time(u1)

le : NAT NAT → BOOL
[102] le(0, u1) = True
[103] le(S(u1), 0) = False
[104] le(S(u1), S(u2)) = le(u1, u2)

sortedT : PLAN → BOOL
[107] sortedT (Nil) = True
[108] sortedT (Cons(u1, Nil)) = True
[109] le(u1, u2) = True⇒ sortedT (Cons(C(u2, u3), Cons(C(u1, u4),

u5))) = sortedT (Cons(C(u1, u4), u5))
[110] le(u1, u2) = False⇒ sortedT (Cons(C(u2, u3), Cons(C(u1, u4),

u5))) = False

insAt : PLAN NAT NAT → PLAN
[130] insAt(Nil, u1, u2) = Cons(C(u1, u2), Nil)
[131] le(time(u1), u2) = True⇒ insAt(Cons(u1, u3), u2, u4) =

Cons(C(u2, u4), Cons(u1, u3))
[132] le(time(u1), u2) = False⇒ insAt(Cons(u1, u3), u2, u4) =

insAt(u3, u2, u4)

The axioms can be oriented from left to right using the rpo ordering based on
the following precedence over the function symbols: 0 <F S <F True <F False <F

C <F Nil <F Cons <F time <F timel <F le <F sortedT <F insAt. For sake of
simplicity, the axioms are referred to by unique identifiers that prefix them, like any
conditional equality from the next section.

5 An Example of Implicit Induction Proof

The conjecture [301] sortedT (u1) = True ⇒ sortedT (insAt(u1, u2, u3)) = True,
denoted by sorted insat1 in [17], will be proved with the inference system from
Fig. 1 and the axioms from subsection 4.1, using the lemmas



[159] le(u1, u2) = False ∧ le(u1, u2) = True⇒
[196] sortedT (Cons(u1, u2)) = True⇒ sortedT (u2) = True
[226] sortedT (Cons(u1, u2)) = True⇒ le(timel(u2), time(u1)) = True
[268] sortedT (u1) = True ∧ le(timel(u1), u2) = True⇒

sortedT (Cons(C(u2, u3), u1)) = True

The proof starts with the state ({[301]}, ∅). The conjecture [301] cannot be sim-
plified or deleted, so the only applicable rule is Generate. Firstly, the subterm
insAt(u1, u2, u3) is unified with the lhs of the axioms [130], [131] and [132] using
the test substitutions {u1 7→ Nil} (for [130]) and {u1 7→ Cons(u5, u6)} (for [131]
and [132]). Since u5 is an OBJ variable, it can be expanded to C(u8, u9). Then, the
resulted instances of [301] are rewritten with the corresponding axioms, respectively,
to

[328] sortedT (Nil) = True⇒ sortedT (Cons(C(u2, u3), Nil)) = True
[334] sortedT (Cons(C(u8, u9), u6)) = True ∧ le(time(C(u8, u9)), u2) =

True⇒ sortedT (Cons(C(u2, u3), Cons(C(u8, u9), u6))) = True
[340] sortedT (Cons(C(u8, u9), u6)) = True ∧ le(time(C(u8, u9)), u2) =

False⇒ sortedT (insAt(u6, u2, u3)) = True

The next proof state is ({[328], [334], [340]}, {[301]}). Each of the
conjectures are rewritten with Rewriting as follows: firstly, the term
sortedT (Cons(C(u2, u3), Nil)) from [328] to True by the axiom [108], then
time(C(u8, u9)) from [334] and [340] to u8 by [105]. The new conjectures are:

[343] sortedT (Nil) = True⇒ True = True
[346] sortedT (Cons(C(u8, u9), u6)) = True ∧ le(u8, u2) = True⇒

sortedT (Cons(C(u2, u3), Cons(C(u8, u9), u6))) = True
[349] sortedT (Cons(C(u8, u9), u6)) = True ∧ le(u8, u2) = False⇒

sortedT (insAt(u6, u2, u3)) = True

The conjecture [343] is deleted by Tautology. Notice that each of the remaining
conjectures are governed by the condition sortedT (Cons(C(u8, u9), u6)) = True, so
Augment can be applied with the lemmas [196] and [226], to yield, respectively

[371] le(u8, u2) = True ∧ sortedT (u6) = True ∧ le(timel(u6), time(C(u8,
u9))) = True⇒ sortedT (Cons(C(u2, u3), Cons(C(u8, u9), u6))) = True

[396] le(u8, u2) = False ∧ sortedT (u6) = True ∧ le(timel(u6),
time(C(u8, u9))) = True⇒ sortedT (insAt(u6, u2, u3)) = True

The term time(C(u8, u9)) from the newly added conditions is again rewritten to
u9 by [105]. Now, the new set of conjectures consists of:

[374] le(u8, u2) = True ∧ sortedT (u6) = True ∧ le(timel(u6), u8) = True⇒
sortedT (Cons(C(u2, u3), Cons(C(u8, u9), u6))) = True



[399] le(u8, u2) = False ∧ sortedT (u6) = True ∧ le(timel(u6), u8) =
True⇒ sortedT (insAt(u6, u2, u3)) = True

The conjecture [399] is deleted by Subsumption with the premise [301] using
the substitution {u1 7→ u6}. Total Case Rewriting is applied to the remaining
conjecture [374] on the term sortedT (Cons(C(u2, u3), Cons(C(u8, u9), u6))) using
the axioms [109] and [110], to give

[441] le(u8, u2) = True ∧ sortedT (u6) = True ∧ le(timel(u6), u8) =
True ∧ le(u8, u2) = True⇒ sortedT (Cons(C(u8, u9), u6)) = True

[445] le(u8, u2) = True ∧ sortedT (u6) = True ∧ le(timel(u6), u8) =
True ∧ le(u8, u2) = False⇒ False = True

[441] is subsumed by the lemma [268] using the substitution {u1 7→ u6;u2 7→
u8;u3 7→ u9}. Similarly, [445] is subsumed by [159] with {u1 7→ u8}.

The proof of sorted insat1 ends successfully into the state (∅, {[301]}).

6 Certifying Implicit Induction Proofs

The implicit induction proof from the previous section can be automatically checked
for soundness using the certified reasoning environment provided by Coq [25]. The
certification approach is based on the Noetherian induction principle from Section 3.

The Spike specification is firstly translated into a Coq script by the Spike prover
before dealing with the proof part. The sorts and the function definitions are manu-
ally translated by the user, the following code being inlined in the Spike specification.
Notice that only the types OBJ and PLAN have been defined by the user, nat and
bool being predefined data structures in Coq.

Inductive OBJ:Set := C: nat → nat → OBJ.
Inductive PLAN:Set := Nil | Cons: OBJ → PLAN → PLAN.

Fixpoint le (m n:nat): bool := Definition timel (o:PLAN): nat :=
match m,n with match o with
| 0, ⇒ true | Nil ⇒ 0
| S , 0 ⇒ false | Cons o p ⇒ time o
| S x, S y ⇒ le x y end.
end.



Definition time (o:OBJ) : nat Fixpoint sortedT (p:PLAN) : bool
:= :=
match o with match p with
| C t e ⇒ t | Nil ⇒ true
end. | Cons (C t1 e1 ) p1 ⇒

match p1
Fixpoint insAt (p:PLAN) (t e:nat) : with
PLAN := | Nil ⇒ true
match p with | Cons (C t2 e2 ) p2 ⇒
| Nil ⇒ Cons(C t e) Nil match le t2 t1 with
| Cons o pg ⇒ | true ⇒ sortedT p1
match le (time o) t with | false ⇒ false
| true ⇒ Cons (C t e) (Cons o pg) end
| false ⇒ insAt pg t e end
end end.

end.

The Spike induction ordering is syntactic and exploits the tree representation of
terms. In Coq, the syntactic representation is made explicit by abstracting the Coq
terms into terms built from a term algebra provided by COCCINELLE [6]. Some
information has to be fed in order to create operational term algebras, for example
the set of function symbols. This information can be automatically inferred, as the
rest of the transformations: each function symbol f is translated into id f.

Inductive symb : Set :=
| id 0 | id S | id true | id false | id C | id Nil | id Cons | id le
| id time | id timel | id sortedT | id insAt.

The type of abstracted terms is defined as Inductive term : Set := | Var :
variable → term | Term : symb → list term → term. Any Coq term can be
abstracted by model functions. They are defined by the user for each type.

Fixpoint model nat (n:nat) : term Definition model bool (b:bool) :
:= term :=
match n with match b with
| 0 ⇒ Term id 0 nil | true ⇒ Term id true nil
| S n’ ⇒ Term id S ((model nat n’ )::nil) | false ⇒ Term id false nil
end. end.

Definition model OBJ (o:OBJ) : term
:=

Fixpoint model PLAN (p:PLAN) :
term :=

match o with match p with
| C x y ⇒ Term id C | Nil ⇒ Term id Nil nil
((model nat x )::(model nat y)::nil) | Cons o p ⇒ Term id Cons ((

end. model OBJ o)::(model PLAN p)::nil)
end.



A Spike variable x of sort s can be transformed into the Coq variable x of type
s′, where s′ is the Coq type corresponding to s. A non-variable term f(t1, . . . , tn)
can be recursively transformed into the Coq term (f t′1 . . . t

′
n), where t′1, . . . , t′n are

the transformations of t1, . . . tn, respectively. The equality e1 ∧ . . . en ⇒ e can be
automatically translated into the Coq formula ∀x, e′1 → . . . → e′n → e′, where x is
the vector of all variables from the equality and e′1, . . . , e′n, e′ are the equalities issued
from the Coq transformations on the lhs and rhs of e1, . . . , en, e, respectively.

The proof part of the translation can be generated completely automatically. In
order to perform induction reasoning, we explicitly pair any Coq formula F produced
by the above transformations with a comparison weight W (F ) such that a formula
F1 is smaller than a formula F2 if W (F1) ≺ W (F2), where ≺ is a well-founded
and stable under substitutions ordering over weights. In our case, the weight of a
formula is given by the list of the COCCINELLE terms abstracting the terms the
formula is built from, as shown in [23]. The relation between a Coq formula and its
weight should be stable under substitutions. This property is achieved if the common
variables are factorized using functionals of the form (fun x⇒ (F,W )), where F is
the Coq formula translating the Spike conjecture, W its weight, and x the vector
of the common variables. The functional’s type is associated to a proof and has to
be general enough to represent all the conjectures from the proof. The type for the
functionals from the proof of sorted insat1 and labelled as [301] in the previous
section, an example of functional corresponding to [301], and all the functionals are:

Definition type LF 301 := PLAN → nat → nat → nat → nat → (Prop × (list
term)).

Definition F 301 : type LF 301:= (fun u1 u2 u3 ⇒ ((sortedT u1 ) = true →
(sortedT (insAt u1 u2 u3 )) = true, (Term id sortedT ((model PLAN u1 )::nil))::(Term
id true nil)::(Term id sortedT ((Term id insAt ((model PLAN u1 ):: (model nat u2 )::
(model nat u3 )::nil))::nil))::(Term id true nil)::nil)).

Definition LF 301 := [F 301, F 328, F 343, F 334, F 340, F 346, F 371, F 349,
F 396, F 374, F 441, F 445].

The Noetherian induction principle is represented as a Coq section, parameter-
ized by four variables and two hypotheses. The variables must be specified and the
hypotheses proved at each application of the theorem wf subset. In our case, the
variable T will correspond to (Prop × (list term)), R to an ordering on pairs, and
wf R to the lemma stating the well-foundedness of the ordering.

Section wf subset. Theorem wf subset: ∀ x, S x → P x.
Proof.

Variable T : Type. intro z ; elim (wf R z ).
Variable R : T → T → Prop. intros x H1x H2x H3x.
Hypothesis wf R: well founded R. apply S acc;
Variable S : T → Prop. intros y H1y H2y ; apply H2x ;
Variable P : T → Prop. trivial.
Hypothesis S acc : ∀ x, S x → Qed.
(∀ y, S y → R y x → P y) → P x. End wf subset.



The main lemma, denoted by main 301, states that all formulas from the func-
tionals of LF 301 are valid, assuming that for each formula one can use any smaller
formula as induction hypothesis. The functions fst and snd return the first and the
second projections of a pair, respectively, and less is the ordering over weights, pre-
sented in [23] and shown well-founded and stable under substitutions.

Lemma main 301 : ∀ F, In F LF 301 → ∀ u1, ∀ u2, ∀ u3, ∀ u4, ∀ u5, (∀ F’, In F’
LF 301 → ∀ e1, ∀ e2, ∀ e3, ∀ e4, ∀ e5, less (snd (F’ e1 e2 e3 e4 e5 )) (snd (F u1 u2
u3 u4 u5 )) → fst (F’ e1 e2 e3 e4 e5 )) → fst (F u1 u2 u3 u4 u5 ).

The heart of its proof consists of a case analysis on the functionals from LF 301.
As in [23], the associated formulas are proved using one-to-one translations of the
corresponding Spike inference steps from the implicit induction proof presented in
Section 5. We will detail only the translations for some applications of Augmenta-
tion and Subsumption rules. Similar translations for the applications of the other
rules can be found in [23].

We will firstly consider the application of Augmentation on [346]. In the current
state of the proof, F is instantiated with F 346, the last condition of the lemma is
denoted by Hind, and the variables from the conclusion renamed to correspond to
the conjecture [346] from the Spike proof. [371] is the result of the augmentation
operation. In the first step, we instantiate F’ from Hind with F 371 and denote it
by H. The variables of F 371 are renamed in HFabs0 to correspond to [371] from the
Spike proof. This instance can be used in the proof as long as it is smaller than [346],
according to H. The comparison between their weights is performed automatically by
the user-defined strategy solve rpo mul, once the weights have been normalized by
rewrite model. The strategy trivial in tests that F 371 is indeed at the sixth position
(starting from 0) in LF 301. In the last step, the instances of the lemmas [226] and
[196] are added as conditions and auto finally establishes the logical equivalence
between [371] and [346].

assert (H := Hind F 371). assert (HFabs0 : fst (F 371 u6 u2 u3 u8 u9 )). apply
H. trivial in 6. rewrite model. abstract solve rpo mul.

specialize true 226 with (u2 := u6 ) (u1 := (C u8 u9 )).
specialize true 196 with (u2 := u6 ) (u1 := (C u8 u9 )). auto.

The translation of the Subsumption application on [445] with lemma [159] is
simpler since it does not require weight comparisons. The subsuming instance of
[159] is contradicted and auto tests afterwards if it is a sub-clause of [445]. The sub-
sumption test performed by Spike assumes that the equality operator is symmetric,
which is not the case for Coq. For example, auto fails if we try to subsume a = b
with b = a. One solution is to apply symmetry before auto.

specialize true 159 with (u1 := u8 ) (u2 := u2 ). intro L. contradict L.
(auto || symmetry; auto).



Once the main proof is finished, we define the set S 301 of all instances of the
functionals from LF 301, then prove the theorem all true 301 stating that the asso-
ciated formulas are true. A critical step of this proof is the use of wf subset with the
variable S instantiated by S 301. Finally, we prove [301] in true 301.

Definition S 301 := fun f ⇒ ∃ F, In F LF 301 ∧ ∃ e1, ∃ e2, ∃ e3, ∃ e4, ∃ e5, f =
F e1 e2 e3 e4 e5.

Theorem all true 301: ∀ F, In F LF 301 → ∀ u1 : PLAN, ∀ u2 : nat, ∀ u3 : nat, ∀ u4 :
nat, ∀ u5 : nat, fst (F u1 u2 u3 u4 u5 ).

Theorem true 301: ∀ (u1 : PLAN) (u2 : nat) (u3 : nat), (sortedT u1 ) = true→ (sortedT
(insAt u1 u2 u3 )) = true.

The same inference system and proof strategy involved in the proof of
sorted insat1 have been applied to prove other Spike conjectures involved in the
ABR proof from [17]. In Table 1, we give some statistics about the proofs that have
been automatically certified by Coq. We firstly list the name of the conjectures, as
denoted in [17]. Then, for the proof of each conjecture, we show how many times
each of the Spike inference rules has been applied, the number of needed lemmas,
the size of the list of functionals for the main proof, and the global time of the certi-
fication process (lemmas + conjecture). For each conjecture, the Spike proof and its
Coq translation lasted less than one second. All tests have been done on a MacBook
Air featuring a 2.13 GHz Intel Core 2 Duo processor and 4 GB RAM.

6.1 Improvements

We have also tested the toy examples from [23] and found out that the certification
time has been considerably reduced. For example, the certification process concerning
the proofs about the validity of the sorting algorithm is now 20 times faster. We list
the main improvements that allowed us to achieve this performance.

Weaker conditions for weight comparisons. An important part of the cer-
tification time concerning the examples from [23] has been spent in doing arithmetic
reasoning, mainly using the expensive omega tactic. After fruitful discussions with
the developpers of COCCINELLE, we changed less to avoid the size comparisons
for the terms defining the compared weights. The size of the Coq scripts was also
dramatically reduced.

Functionals labeling.We discovered that the membership test of a functional in
a list of functionals is costly since it requires complex unification operations. We have
avoided this problem by explicitly labeling the functionals, as for the definition of
F 301. In this way, the membership test is performed on labels. Lots of comparisons
have been avoided by pointing out the exact position of the label in the list.

Other improvements include a better readability of the Coq scripts by the defini-
tion of tactics using Ltac [8], the redefinition of the term algebra, and the separation
between the specification (static) and proof (dynamic) parts.

Parallelisation of the certification process. The one-to-one translations
from the main lemma can be proved independently. We have tested for paralleli-
sation the proof of progat insat, the most complex ABR proof from Table 1, as



Table 1. Some statistics about the ABR proofs.

# Name Taut. Rew. Aug. Sub. Case Rew. Gen. Lemmas LF time (s)
1. firstat timeat 2 12 0 4 2 2 1 17 3.06
2. firstat progat 2 13 0 4 2 2 1 18 3.14
3. sorted sorted 2 1 0 0 0 1 0 6 1.58
4. sorted insat1 7 15 2 5 1 5 4 12 6.76
5. sorted insin2 7 22 2 5 1 5 4 20 7.54
6. sorted e two 2 1 0 0 0 1 0 6 1.57
7. member t insin 1 12 0 15 11 7 2 52 12.89
8. member t insat 1 6 0 8 7 4 2 24 5.99
9. member firstat 2 12 0 8 6 3 2 29 6.39
10. timel insat 3 7 0 0 0 1 0 11 2.02
11. erl insin 3 8 0 0 0 1 0 12 2.17
12. erl insat 3 7 0 0 0 1 0 11 2.02
13. erl prog 9 29 0 0 0 3 2 18 8.90
14. time progat er 2 11 0 2 1 2 1 15 2.50
15. timeat tcrt 4 6 0 1 2 1 0 16 3.40
16. timel timeat max 5 23 2 3 2 3 3 33 7.63
17. null listat 1 7 0 3 1 2 1 11 2.42
18. null listat1 2 0 0 0 0 1 0 4 1.38
19. cons insat 0 1 0 1 0 1 0 4 1.46
20. cons listat 2 0 0 0 0 1 0 4 1.39
21. progat timel erl 7 27 2 3 4 2 3 33 7.50
22. progat insat 11 85 1 23 26 4 4 134 57.09
23. progat insat1 8 30 1 7 7 4 3 42 15.31
24. timel listupto 3 4 0 0 0 1 0 8 1.81
25. sorted listupto 10 21 3 4 2 6 4 26 9.79
26. time listat 3 11 0 3 3 2 1 22 5.09
27. sorted cons listat 9 24 1 5 9 4 4 42 15.66
28. null wind2 1 0 0 1 1 2 1 8 3.66
29. timel insin1 1 9 0 2 1 2 1 12 2.8
30. null listupto1 1 0 0 0 0 1 0 4 1.38
31. erl cons 3 8 0 0 0 1 0 12 2.03
32. no time 2 19 0 6 4 2 2 29 7.56
33. final 4 4 0 8 5 2 3 13 3.90

follows. Firstly, we have manually split the list of 134 functionals in n adjacent parti-
tions such that the formulas from each partition i (i ∈ [1..n]) are proved in a process
pi. Another process pc will prove the main lemma using the previous results. Ide-
ally, under the assumption that there is only one process allotted per processor and
the generation of each process is done automatically and instantaneously, the total
certification time is max{t(pi) | i ∈ [1..n]}+ t(pc), where t(p) is the execution time
of the process p. We have experimented with different split strategies and found out
cases where the certification process of the main lemma of progat insat is 5 times
faster.



7 Conclusions and Future Work

We have proposed a new methodology for certifying implicit induction proofs. The
underlying induction principle is an instance of Noetherian induction based on an
ordering over equalities which represents a contrapositive version of the ‘Descente
Infinie’ induction principle from [23]. The soundness arguments are now fully con-
structive since there is no need to use additional hypotheses like the ‘excluded mid-
dle’ axiom required in the proof-by-contradiction argumentation inherent to the
‘Descente Infinie’ proofs.

We have also proposed improvements to automatize and speed-up the certifica-
tion process of implicit induction proofs in order to deal with industrial-size applica-
tions. Concerning the ABR proofs, they have been performed by a restricted version
of the Spike inference system and their certification was established within seconds
for most of them. Compared to the Spike proofs from [17], the arithmetic reason-
ing was simulated with lemmas instead of using the complex decision procedures
integrated into Spike [1]. Generating complete translations, i.e. valid Coq scripts
from any valid Spike proof steps, is challenging even for simple inference rules. For
example, the symmetry problem related to Subsumption was fixed only for the
conclusion and not for the conditions of subsuming equalities. Hopefully, the proof
of the main lemma is modular, so the failure of any one-to-one translation does not
affect the rest of the proof.

In the near future, we plan to devise complete translations of the Spike inference
rules and automatize the parallelisation process. A challenge will be to translate and
certify the proofs involved in the JavaCard platform validation [3].
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