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Abstract. This paper contributes to the theory and practice of automatic extrac-
tion of synchronization-free parallelism in nested loops.It extends the iteration-
space slicing framework to extract slices described by not only affine (linear) but
also non-affine forms. A slice is represented by a set of dependent loop state-
ment instances (iterations) forming an arbitrary graph topology. The algorithm
generates an outer loop to spawn synchronization-free slices to be executed in
parallel, enclosing sequential loops iterating over thoseslices. Experimental re-
sults demonstrate that the generated code is competitive with that generated by
state-of-the-art techniques scanning polyhedra.

1 Introduction and Related Work

Programming multicore systems is a very challenging process aimed at taking full ad-
vantage of the computing potential available in multicore-based computers. Paralleliz-
ing compilers extract parallelism automatically from existing sequential applications.
In this paper, we deal with synchronization-free parallelization obtained by creating a
thread of computations on each processor to be executed independently. This task is
critical for multiprocessors with shared memory as it allows us to compensate for the
overhead caused by exploiting parallelism and process synchronization.

Pugh and Rosser [29] introducediteration-space slicing, an extension of (scalar)
program slicing specialized for nested loops, to compute the precise set of statement
instances(iterations) associated with the definition of a givenarray element. This tech-
nique has obvious applications to synchronization-free parallelization: Beletska et al.
[4, 5] demonstrated how to extract synchronization-free threads described only by affine
forms.

According to Yu et at. [34], 46% of the nested loops in the SPECfp95 benchmark
contain non-uniform data dependences. Furthermore, coupled array subscripts, i.e., in-
dices that appear in both dimensions, often cause non-uniform dependences as well.
A study of 12 other benchmarks shows that about 45% of two dimensional array refer-
ence pairs are coupled linear subscripts. Including one-dimensional arrays, about 12.8%
of the coupled subscripts in the SPECfp95 benchmarks generate non-uniform depen-
dences. Examples of such programs containing non-uniform dependences can be found
in Linpack, Eispack, Itpack, and Fishpak benchmarks [26], ADI and SYR2K bench-
marks [27].



Non-uniform dependences can result in slices being described not only by affine
forms but also by non-affine ones, e.g., by non-linear expressions.

Yu et al. [34] present an approach tackling non-uniform loops and permitting for
scanning chains only; the approach does not permit for extracting synchronization-free
slices of an arbitrary topology.

Theaffine transformation framework(ATF) [13, 14, 18, 22] unifies a large class of
loop transformations and is considered one of the most powerful frameworks to extract
both coarse- and fine-grained parallelism today. But it is associated with significant
limitations restricting its expressiveness and its ability to extract synchronization-free
parallelism in a significant proportion of loop nests [6]. Inparticular, it fails to extract
slices in most practical non-uniform loops and cannot find slices that are described with
non-affine expressions. Theiteration-space slicingframework is more expressive in
terms of parallelism extraction as it is not restricted to affine partitions.

Iteration-space slicing techniques proposed by Beletska et al. in [4, 5] are restricted
to the extraction of synchronization-free parallelism that can be represented as unions of
affine expressions; this is mostly due to the limitations of state-of-the-art code genera-
tion algorithms [1, 2, 10, 19, 30, 32]. Although those algorithms can successfully par-
allelize many real-world loops, they cannot extract synchronization-free parallelism
available in non-uniform loops and being presented by slices described with non-affine
forms. Bielecki et al. [7] showed how to deal with such slicesand how to generate paral-
lel code when dependences form the chain or the tree topology. In the current paper, we
extend those results to the most general case of imperfectlynested loops with (affine)
dependences forming an arbitrary graph topology. We present a technique that permits
to extract synchronization-free slices described by not only affine but alsonon-affine
forms and to generate efficient parallel code scanning slices.

2 Background

In this paper, we deal withstatic-control loop nests, where lower and upper bounds as
well as conditionals and array subscripts are affine functions of symbolic parameters
and surrounding loop indices. We consider arbitrary (imperfect) loop nestings. Astate-
ment instanceis a particular execution of a statement of the loop body. A statement
instanceS(I ) is formed of the statementS itself and itsiteration vector I, composed of
the values of the surrounding loop indices.

Two statement instancesS1(I ) andS2(J) are dependent if both access the same mem-
ory location and if at least one access is a write. Provided that S1(I ) is executed before
S2(J), they are respectively called thesourceanddestinationof the dependence. The
sequential execution ordering of statement instances, denoted asS2(J)≺ S2(J), is in-
duced by the lexicographic ordering of iteration vectors5 and the textual ordering of
statements when the instances share the same iteration vector.

Our approach to extract parallelism assumes an exact representation of loop-carried
dependences and consequently an exact dependence analysiswhich detects a depen-

5 Lexicographic ordering is an ordering for the Cartesian product (denoted as×) of any two sets
A andB with order relations< A and< B, respectively, such that if (a1,b1) and (a2,b2) both
belong to A×B, then (a1,b1)<(a2,b2) iff either (a1 < Aa2) or (a1 = a2 andb1 < Bb2).



dence if and only if it actually exists at runtime between twogiven instances.6 To de-
scribe and implement our algorithms at a high level, we represent dependences by re-
lations whose constraints are described in Presburger arithmetic (built of affine expres-
sions, logical and existential operators); we use the Omegacalculator for computations
over such relations [24].

Following Omega’s conventions, a dependence relation is a tuple relation of the
form

{[input list] → [output list] | constraints},

where input list and output list are lists of variables and/or expressions used to de-
scribe input and output tuples andconstraintsis a Presburger formula describing the
constraints imposed uponinput list andoutput list. We use standard operations on re-
lations and sets, such as intersection (∩), union (∪), difference (−), domain of rela-
tion (domain(R)), range of relation (range(R)), identity relation (I ), relation application
(given a relationRand setS, R(S) = {[e′] | ∃e∈ S,e→ e′ ∈ R}), positive transitive clo-
sure (given a relationR, R+ = {[e]→ [e′] | e→ e′ ∈R∨∃e′′,e→ e′′ ∈R+∧e′′ → e′ ∈R}),
transitive closure (R∗ = R+∪ I ).

Iteration-space slicing [29] takes dependence information as input to find all state-
ment instances that must be executed to produce the correct values for the specified
array elements. In this paper, a dependence graph always refers to the extensive set of
dependences of a loop nest, described by dependence relations in Presburger arithmetic.
We define an (iteration-space) slice as follows.

Definition 1. Given a (possibly unbounded/parameterized) dependence graph defined
by a set of dependence relations, aslice S is a weakly connected component of this
graph, i.e., a maximal subgraph such that for each pair of vertices in the subgraph
there exists a directed or undirected path.

If there exist two or more slices in a dependence graph, the above definition guaran-
tees that all these slices aresynchronization-freewhen executed as concurrent threads
(there is no dependence between them).

Definition 2. An ultimate dependence source (resp. destination)is a source (resp. des-
tination) that is not the destination (resp. source) of another dependence. Ultimate de-
pendence sources and destinations represented by relationR can be found by means of
the following calculations: domain(R)− range(R) and range(R)−domain(R), respec-
tively7.

The set of ultimate dependence source(s) of a slice forms theso-calledsource(s)of
the slice.

The topology of a slice can be a chain, tree, or arbitrary graph (neither tree nor
chain). Examples of slices of the different topologies are shown in Figure 1.

6 A non-exact yet conservative (instancewise) representation of dependences is also possible,
at the expense of parallelism extraction, while this work focuses on extracting the maximal
degree of synchronization-free parallelism.

7 Parametric Integer Programming (PIP) [25] allows to compute these sets very efficienty.



Fig. 1.Slices of the different topologies

In this paper, we present an algorithm to extract synchro-nization-free slices of an
arbitrary graph topology and generate parallel code scanning such slices.

Notice that statement instances can be split into independent and dependent ones;
extracting slices deals with dependent statement instances only: given a relationRcap-
turing all dependences of a loop nest, the iteration space that we consider is domain(R)∪
range(R).

3 Motivating Example

In particular, non-uniform dependences occur when array subscripts contain expres-
sions of the forma× i, wherea >1 andi is a loop index variable. According to Shen et
al. [31], such expressions are present in 9% of single-nest loops, 2% of double-nested
loops, and 16% of triple-nested loops from the studied by authors 12 benchmark suites.
Let us consider the loop nest in Figure 2 containing the expression2*i in the array
subscripts.

for (i=1; i<=n; i++)
for (j=1; j<=m; j++)

a[i][j] = a[2*i][j] + a[i][j-1];

Fig. 2. Motivating example

This loop is associated with the following non-uniform dependence relation (see
Figure 3 for the graphical representation forn = 8 andm= 4):

R= {[i, j] → [2i, j] | 2≤ 2i ≤ n∧1≤ j ≤ m}∪
{[i, j] → [i, j +1] | 1≤ i ≤ n∧1≤ j < m}.



Fig. 3. Dependences in the motivating example

From Figure 3, we observe that forn = 8 andm= 4 there exist 4 synchronization
free slices (statement instances of different slices are printed with different colors).
Increasing the value ofn results in increasing the number of slices:⌈n/2⌉ in general.

In order to find an affine transformation extracting synchro-nization-freeparallelism
for this example, the model proposed by Lim et al. [22] applied to the above relations
yields the following system of equations:

{

C11× i +C12× j +c1 = C11×2i + C12× j +c1

C11× i +C12× j +c1 = C11× i + C12× j +C12+c1

The solutions to this system for alli, j are of the form[C11,C12,c1] = [0,0,c] for
all non-negative integerc. Such a solution means that the affine transformation frame-
work fails to extract two or more slices for this example because slices are described
by non-affine forms. We are unaware of any other technique allowing us to extract
synchronization-free parallelism available in this loop nest.

In the following sections we show how to extract and generatecode for all slices
available in this example.

4 Extracting synchronization-free slices

Our approach to extract synchronization-free slices takestwo steps. First, for each slice,
a representative statement instance is defined (it is the lexicographically minimal state-
ment instance – one of the sources – of the slice). Next, slices are reconstructed from
their representatives and code scanning these slices is generated.

Given dependence relationR representing all (preprocessed) dependences in a loop
nest, we can find a setSUDS of statement instances, describing all ultimate dependence
sources as the difference between the domain ofR and the range ofR:

SUDS = domain(R)− range(R)



In order to find which elements ofSUDS are representatives of slices8, we build a
relationRUSC that describes all pairs(e,e′) of the ultimate dependence sourcesSUDS

that are transitively connected in a slice, i.e.,R∗(e)∩R∗(e′) is non-empty. Formally,

RUSC= {[e]→ [e′] | e,e′ ∈ SUDS∧e≺ e′∧R∗(e)∩R∗(e′) 6= ∅}

The set domain(RUSC) contains all but the lexicographically maximal sources of
slices with multiple sources, while the set range(RUSC) contains all but the lexicograph-
ically minimal sources of such slices. In order to find setSrepr of representatives of each
slice (their lexicographically minimal statement instances [25]), we have to perform the
following calculation:

Srepr = SUDS− range(RUSC)

For the motivating example:

R∗ = {[i, j] → [2k1 × i, j +k2] | ∃k1,k2 ≥ 1∧ 1≤ i ∧2k1 × i ≤ n
∧1≤ j ∧ j +k2 ≤ m}∪{[i, j] → [i, j] | 1≤ i ≤ n∧1≤ j ≤ m}

SUDS = {[i,1] | ∃α,2α = i +1∧ 1≤ i ≤ min(n,2n−3)}
RUSC= ∅
Srepr = SUDS

Notice the exponential (hence non-affine) symbolic bound 2k1 × i. Since there does
not exist a general algorithm to compute the transitive closure of an affine relation,
some of the above computations may not always be tractable. In the following, we
only consider dependence relations where a closed form forR∗, RUSC andSrepr can
be computed. Nevertheless, as illustrated on the motivating example,such closed form
expressions may not necessarily be affine.

Practical means to compute non-affine transitive closures have been proposed for
the sake of induction variable analysis and classification [33, 12]. Beyond compilation
purposes, it is related with decision procedures in formal verification (through timed
automata and hybrid automata [16]) and can also be computed with formal calculus
tools (Maple, Mathematica, etc.); see the work of Boigelot and Wolper [9], Comon and
Jurski [11].

8 If a slice has multiple sources, then although all its sources belong toSUDS, only the lexico-
graphically minimal source is the representative of a slice.



4.1 Code generation for a general graph topology

Input: relation R representing all dependences in a loop nest; setSrepr of representatives of
synchronization-free slices; relationRUSC describing sources of slices that are connected.

Output: code scanning synchronization-free slices preserving alldependences

// Generate code to scan slice representatives and to spawn synchronization-free threads
gen code( Srepr) {

NEXTrepr = {[e] → [e′] | e,e′ ∈ Srepr∧e≺ e′ ∧∄e′′ ∈ Srepr,e≺ e′′ ≺ e′};
I = domain(NEXTrepr)− range(NEXTrepr)
// Generate inner loop to scan slice representative
do {

// Create a thread to run the slice represented byI
asynchronous spawn(gen slice(I));
// UpdateI to define the next slice representative
I = NEXTrepr(I) ;

} while (I ∈ domain(NEXTrepr)) ;
asynchronous spawn(gen slice(I));

}

// Scan statement instances in the slice represented byI
gen slice(I) {

// Compute the set of all statement instances in the slice
Sinst = ( R∗ ◦RUSC

∗)(I );
NEXTinst = {[e] → [e′] | e,e′ ∈ Sinst∧e≺ e′ ∧∄e′′ ∈ Sinst,e≺ e′′ ≺ e′ ∧e′′};
// Generate inner loop to scan statement instances while satisfying dependences
do {

// Run the loop statement for instanceI
execute(I) ;
// UpdateI to define the next statement instance
I = NEXTinst(I) ;

} while (I ∈ domain(NEXTinst)) ;
// Run the loop statement instanceI
execute(I) ;

}

Fig. 4. Code generation based on forming a single dependence relation

Figure 4 presents our algorithm to generate code scanning synchronization-free
slices that are described with general non-affine forms, andhave an arbitrary graph
topology.

Important syntactic convention: the underlined font denotes code to be emitted by
the algorithm, while the normal font denotes static computations to emit the proper
code.

The main idea of this algorithm is to build a “next representative” relationNEXTrepr

and a “next instance” relationNEXTinst to iterate through sets of instances described



by non-affine constraints. As an additional design property, the “next instance” relation
NEXTinst walks through each slice while preserving all dependences of the directed
acyclic graph. The most canonical way consists in followingthe sequential execution
order of the source program; this order is a total (chain topology) super-order of the
partial dependence order. We define these relations as follows:

NEXTrepr = {[e] → [e′] | e,e′ ∈ Srepr∧e≺ e′∧ ∄e′′ ∈ Srepr,e≺ e′′ ≺ e′}

NEXTinst = {[e] → [e′] | e,e′ ∈ Sinst∧e≺ e′∧ ∄e′′ ∈ Sinst,e≺ e′′ ≺ e′}

Based on these relations, it is possible to spawn concurrentthreads for all slices and
to generate relatively simple and efficient code scanning elements of those slices. This
idea is the reminiscent of a similar approach to scanning static-control loop nests by
Boulet and Feautrier [15]; they used parametric integer linear programming to compute
a “next instance” relation over unions of polyhedra.

So far, we relied on the computation of closed form expressions forSrepr andRUSC,
assuming the effective computability of the transitive closure of the dependence rela-
tion. We also assume that closed form expressions exist forNEXTrepr andNEXTinst,
since the “next representative” and “next instance” relations can be obtained from sim-
ple operations like composition, intersection and difference. Indeed, let(≺) denote the
relation capturing the sequential execution order, one maydefine a relationRrepr (resp.
Rinst) mapping representatives (resp. instances) into the subsequent ones, and compute
the “next representative” (resp. “next instance”) relation as follows:

Rrepr = (Srepr×Srepr)∩ (≺)
Sinst = R∗ ◦RUSC

∗(I)
Rinst = (Sinst×Sinst)∩ (≺)

NEXTrepr = Rrepr−Rrepr◦Rrepr

NEXTinst = Rinst−Rinst◦Rinst

Assuming intersection with(≺), composition and difference result in closed form ex-
pressions forSrepr and Sinst, these equations allow us to derive closed form expres-
sions forNEXTrepr andNEXTinst. In Section 4.3 we study practical classes of non-affine
closed forms that support these composition, intersection, and difference operations.
The intuition is that ifR∗ can be computed, it is very likely that these operations willbe
computed as well.

On the other hand, this algorithm can be enhanced to detect whenSrepr or RUSChap-
pen to be constrained by affine forms only, triggering more efficient polyhedral scanning
techniques [1, 19, 10, 30, 2, 32].

4.2 Illustration on the motivating example

Let us illustrate the code generation algorithm in Figure 4 using the motivating example
of Figure 2.

Figure 5 shows the sequential execution order: elements of each synchronization-
free slice are scanned according to the algorithm in Figure 4.



Fig. 5. Scanning iterations in parallel slices

The first step consists in emitting outer loops to scan sources of slices. Because set
Srepr is defined with affine constraints, this can be achieved by means of Omega’s code
generator “codegen” [19, 24]; therefore,asynchronous spawn() can be substituted
with a forall loop.

forall (t=1; t<=min(n,2*n-3); t+=2) {
// I= [i, j ] = [t,1]

gen slice(t,1);
}

Then, we compute
NEXTinst = {[i, j] → [i, j + 1] | 1≤ i ≤ n∧1≤ j < m}∪ {[i, j] → [2i,1] | 1≤ i ∧2i ≤
n∧ j = m}
and generate code that can be represented with the pseudo-code in Figure 6.

forall (t=1; t<=min(n, 2*n-3); t+=2) {
[i,j]=[t,1]; // I= I= [i, j ] is a representative source of each slice
do {

a[i][j] = a[2*i][j] + a[i][j-1];
if (1<=i<=n && 1<=j<m) {

// If I belongs to domain(NEXTinst), as implied by the first disjunct ofNEXTinst

j=j+1; // I= [i, j ] = NEXTinst(I)
} else if (1<=i && 2*i<=n && j==m) {

// If I belongs to domain(NEXTinst), as implied by the second disjunct ofNEXTinst

i=i*2; j=1; // I= [i, j ] = NEXTinst(I)
}

} while (1<=i<=n && 1<=j<m || 1<=i && 2*i<=n && j==m);
a[i][j] = a[2*i][j] + a[i][j-1];

}

Fig. 6. Parallel pseudo-code for the motivating example



4.3 Approach applicability

The proposed approach allows us to parallelize not only uniform but also non-uniform
loops. We have already mentioned that the two following kinds of array subscripts cause
non-uniform data dependences

1. a× ik, wherea >1 is the integer constant andik, k ∈ {1,2, ...,n}, is the loop index
variable.

2. coupled subscriptsa1× i1 + a2× i2 + ...+ an× in, wherea1,a2, ...,an ≥ 0 are the
integer constants at least two of which are greater than or equal to 1, andi1, i2, ..., in
are the loop index variables.

Dependence relations caused by the both kinds of array subscripts can be illustrated
with the following relationsR1 andR2, respectively

R1 = {[i] → [a× i] | L ≤ i,a× i ≤U},

R2 = {[i1, i2] → [i1, i1 + i2] | L ≤ i1, i2, i1 + i2 ≤U},
whereL andU are the symbolic constants defining the domain and range of relations
R1 andR2.

Our approach to extract synchronization-free slices described with non-affine forms
requires transitive closure of non-uniform dependence relations.

Bielecki et al. in [8] show how to compute the transitive closure of a single depen-
dence relation caused by array subscripts of both the first and second kinds. The exact
transitive closure calculation is based on resolving a system of recurrence equations
being formed from the input and output tuples of a dependencerelation. Applying that
technique, the transitive closure of relationR1 is of the form

R∗
1 = {[i] → [ak× i] | ∃k : L ≤ i,ak× i ≤U}

while that of relationR2 is the following

R∗
2 = {[i1, i2] → [i1,k× i1 + i2] | ∃k : L ≤ i1, i2,k× i1+ i2 ≤U}.

R∗
1 is a non-affine relation, but because of the properties of theexponential function,

it clearly defines a class of relations that is closed for the operations we need to generate
code (◦, ∩, -).

Dealing with unions involving relations of both kinds is much more difficult – there
is no known closed-form expression for the transitive closure of a union of affine depen-
dence relations in general. Nevertheless, Beletska et al. in [3] propose an approach to
compute the transitive closure of a union of affine relations, assuming that transitive clo-
sure of each single relation can be computed. They introducea sufficient and necessary
condition defining a class of relations for which the exact computation is possible.

RelationR in the motivating example is the union of two relations that satisfy the
sufficient and necessary condition presented in [3]. Thus, approach described in [3] can
be applied to computeR∗. Again, since the exponential and affine components ofR∗

occupy orthogonal subspaces, this relations also belongs to a class supporting our three
operations (◦, ∩, -).



5 Experiments

In order to study the performance of programs generated by the proposed algorithm, we
produced parallel code in OpenMP for the motivating exampleas well as 8 computa-
tionally heavy loop nests from the NAS benchmarks[23].

We measured the execution time of the parallel programs on 1,2, 4 and 8 proces-
sors in the following environment: Intel Xeon 1.6 Ghz, 8 processors (two quad-core
processor, 4MB cache), 2 GB RAM, Ubuntu Linux, showing both speedup (ith respect
to original sequential code) and efficiency numbers.

Table 1 presents the results for the motivating example on 1,2, 4, and 8 processors:
column “N” shows the value of the upper bounds of the loop indices, column “original”
shows the execution time (in seconds) of the originalfor loop on 1 processor, column
“while ” shows the execution time of the generatedwhile -based code on 1 processor,
columns “time[s]”, “S” and “E” show the time of the execution, speedup, and efficiency
of the generated parallel code on 2, 4, and 8 processors.

1 CPU 2 CPU 4 CPU 8 CPU
N original while time[s] S E time[s] S E time[s] S E

1000 0.024 0.024 0.016 1.4860.743 0.014 1.7270.432 0.012 1.9320.242
1500 0.054 0.054 0.033 1.6170.808 0.026 2.0690.517 0.022 2.4230.303
2000 0.096 0.096 0.052 1.8440.922 0.037 2.5870.647 0.034 2.8250.353
2500 0.149 0.150 0.079 1.8880.944 0.051 2.9320.733 0.044 3.4050.426
3000 0.215 0.216 0.110 1.9590.979 0.064 3.3580.839 0.061 3.5240.440

Table 1.Results for the motivating example applying the proposed code generation algorithm

1 CPU 2 CPU 4 CPU 8 CPU
N original while time[s] S E time[s] S E time[s] S E

1024 0.347 0.384 0.235 1.4790.740 0.178 1.9510.488 0.187 1.8530.232
1280 0.658 0.702 0.392 1.6760.838 0.317 2.0750.519 0.397 1.6570.207
1536 1.066 1.177 0.661 1.6140.807 0.559 1.9060.477 0.691 1.5430.193
1792 1.902 2.132 1.480 1.2850.643 1.281 1.4850.371 1.206 1.5770.197
2048 3.210 3.607 2.097 1.5310.765 1.951 1.6460.411 1.807 1.7770.222

Table 2.Results forLU HP pintgr.f2p 2 applying the proposed code generation algorithm

Data in Table 1 demonstrate that there is no significant difference in the execution
time of the originalfor loop and that of the correspondingwhile -based loop on a sin-
gle processor. Increasing the value ofN results in increasing the speedup and efficiency
of the generated parallel code. The reason is the performance of the shared memory
parallel program depends considerably on the volume of calculations executed per slice



1 CPU 2 CPU 4 CPU 8 CPU
N original codegentime[s] S E time[s] S E time[s] S E

1024 0.347 0.359 0.196 1.7680.884 0.152 2.2770.569 0.152 2.2790.285
1280 0.658 0.660 0.389 1.6930.846 0.301 2.1830.546 0.394 1.6680.209
1536 1.066 1.153 0.649 1.6430.822 0.531 2.0090.502 0.659 1.6180.202
1792 1.902 2.031 1.179 1.6130.807 0.912 2.0850.521 1.284 1.4810.185
2048 3.210 3.442 2.025 1.5850.793 1.594 2.0130.503 1.798 1.7850.223

Table 3.Results obtained forLU HP pintgr.f2p 2 using Omega’s codegen

(the product of the volume of calculations represented by the loop statements and the
number of the loop iterations). We get positive speedup (S> 1) when the time of useful
calculations (presented by the loop statement instances) is greater than the time over-
head incurred by thewhile -based code plus additional thread management and memory
bandwidth limitations of the multiprocessor environment.

For all examined NAS benchmarks (8 loop nests in total), we compared the exe-
cution times of original loops and those of thewhile -based code on a single proces-
sor. These execution times were all very similar (the maximal difference was less than
17%). Furthermore, the parallelization of all programs resulted in positive speedups.

We report the detailed results for theLU HP pintgr.f2p 2 loop nest of the NAS
benchmark. Because this loop features uniform dependences, we were able to generate
parallel code not only applying the proposed algorithm but also using Omega’s codegen
[19, 4]. The results of experiments with these codes are presented in Table 2 and Table 3,
respectively. As we can see from these tables, the proposed algorithm does not introduce
significant overhead in comparison to Omega’s codegen.

We may conclude that while well-known parallelization and code generation tech-
niques fail to extract synchronization free slices described with non-affine forms and
having an arbitrary graph topology, the approach presentedin this paper permits for
producing code scanning such slices. The generated code is based on awhile loop and
its performance is similar to that of code based on afor loop.

6 Conclusions and Future Work

In this paper, we have presented an approach to extract synchronization free slices be-
ing represented by an arbitrary topology graph of dependentloop statement instances.
It permits for generatingwhile loop based code that allows us to scan slices even when
they are described with non-affine expressions. The proposed algorithm is based on
building a single dependence relation describing all the dependences of a slice in the
lexicographic order, then this relation is used to produce awhile loop scanning syn-
chronization free slices of an arbitrary graph topology. Wecarried out experiments with
code generated by means of the presented approach, demonstrating that its performance
is similar to that of static control code withfor loop.

In order to extract sources of synchronization-free slicesthat are described with
non-affine forms and have an arbitrary graph topology, we should be able to calculate



the transitive closure of a union of non-uniform dependencerelations. We currently
investigate the two following approaches to this problem.

1. The symbolic computation of the exact transitive closureof a parameterized affine
relation (such a relation describes an infinite graph) is notpossible in general [20].
The case of convex uniform relations is well known and yieldsaffine transitive
closures [20], but other relevant cases may allow the symbolic computation of non-
affine representations as well. A symbolic representation of non-affine slices may
allow for even more efficient code generation schemes.

2. When the exact transitive closure cannot be computed symbolically, one may still
try to approximate it. Only very coarse approximations havebeen proposed so far,
especially in the (common) case of non-convex iteration sets. Approximations will
lead to suboptimal extraction of parallelism; the induced loss of scalability will
need to be investigated.
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