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Abstract. This paper contributes to the theory and practice of autécrettrac-
tion of synchronization-free parallelism in nested loopgxtends the iteration-
space slicing framework to extract slices described by nbt affine (linear) but
also non-affine forms. A slice is represented by a set of digperioop state-
ment instances (iterations) forming an arbitrary graph etggy. The algorithm
generates an outer loop to spawn synchronization-freeslio be executed in
parallel, enclosing sequential loops iterating over thatiees. Experimental re-
sults demonstrate that the generated code is competititrethat generated by
state-of-the-art techniques scanning polyhedra.

1 Introduction and Related Work

Programming multicore systems is a very challenging proeaésed at taking full ad-
vantage of the computing potential available in multicbesed computers. Paralleliz-
ing compilers extract parallelism automatically from ¢ixig sequential applications.
In this paper, we deal with synchronization-free paralkgion obtained by creating a
thread of computations on each processor to be executegendently. This task is
critical for multiprocessors with shared memory as it abows to compensate for the
overhead caused by exploiting parallelism and processsgnization.

Pugh and Rosser [29] introducédration-space slicingan extension of (scalar)
program slicing specialized for nested loops, to computethcise set of statement
instancegiterations) associated with the definition of a give@ray elementThis tech-
nigue has obvious applications to synchronization-fraalfeization: Beletska et al.
[4, 5] demonstrated how to extract synchronization-freedts described only by affine
forms.

According to Yu et at. [34], 46% of the nested loops in the SPRE benchmark
contain non-uniform data dependences. Furthermore, eduptay subscripts, i.e., in-
dices that appear in both dimensions, often cause non+amifiependences as well.
A study of 12 other benchmarks shows that about 45% of two déioaal array refer-
ence pairs are coupled linear subscripts. Including oneedsional arrays, about 12.8%
of the coupled subscripts in the SPECfp95 benchmarks geneoa-uniform depen-
dences. Examples of such programs containing non-unifepemidences can be found
in Linpack, Eispack, Itpack, and Fishpak benchmarks [2@)] And SYR2K bench-
marks [27].



Non-uniform dependences can result in slices being destrilot only by affine
forms but also by non-affine ones, e.g., by non-linear exjoes.

Yu et al. [34] present an approach tackling non-uniform Bapd permitting for
scanning chains only; the approach does not permit for ektigasynchronization-free
slices of an arbitrary topology.

Theaffine ransformation famework(ATF) [13, 14, 18, 22] unifies a large class of
loop transformations and is considered one of the most daWeameworks to extract
both coarse- and fine-grained parallelism today. But it Beisted with significant
limitations restricting its expressiveness and its apliit extract synchronization-free
parallelism in a significant proportion of loop nests [6] darticular, it fails to extract
slices in most practical non-uniform loops and cannot fifmeslthat are described with
non-affine expressions. Theeration-space slicingramework is more expressive in
terms of parallelism extraction as it is not restricted fiinafpartitions.

Iteration-space slicing techniques proposed by Beletskh & [4, 5] are restricted
to the extraction of synchronization-free parallelisnt tten be represented as unions of
affine expressions; this is mostly due to the limitationstafesof-the-art code genera-
tion algorithms [1, 2,10, 19, 30, 32]. Although those algfuris can successfully par-
allelize many real-world loops, they cannot extract syoairation-free parallelism
available in non-uniform loops and being presented by sli@scribed with non-affine
forms. Bielecki et al. [7] showed how to deal with such sliaad how to generate paral-
lel code when dependences form the chain or the tree topdlothe current paper, we
extend those results to the most general case of imperfeetited loops with (affine)
dependences forming an arbitrary graph topologie present a technique that permits
to extract synchronization-free slices described by ndy affine but alsonon-affine
forms and to generate efficient parallel code scanningsslice

2 Background

In this paper, we deal witktatic-control loop nestavhere lower and upper bounds as
well as conditionals and array subscripts are affine funstiof symbolic parameters
and surrounding loop indices. We consider arbitrary (irfgat) loop nestings. Atate-
ment instancés a particular execution of a statement of the loop body. skeshent
instanceS(l) is formed of the stateme®itself and itsiteration vector | composed of
the values of the surrounding loop indices.

Two statement instanc&g(l) andS;(J) are dependent if both access the same mem-
ory location and if at least one access is a write. ProvidatSt{l) is executed before
$(J), they are respectively called tlseurceand destinationof the dependence. The
sequential execution ordering of statement instanceytdérasS(J)< S(J), is in-
duced by the lexicographic ordering of iteration vectaaad the textual ordering of
statements when the instances share the same iteratiam.vect

Our approach to extract parallelism assumes an exact egegi®n of loop-carried
dependences and consequently an exact dependence andligisdetects a depen-

5 Lexicographic ordering is an ordering for the Cartesiardpam (denoted as) of any two sets
A andB with order relations< A and < B, respectively, such that ibg,b;) and @p,b,) both
belong to AxB, then @y,b1)<(az,by) iff either (ay < Aap) or (ag = ap andby < Bhy).



dence if and only if it actually exists at runtime between igen instance$.To de-
scribe and implement our algorithms at a high level, we regmedependences by re-
lations whose constraints are described in Presburgénsetic (built of affine expres-
sions, logical and existential operators); we use the Oroalgallator for computations
over such relations [24].

Following Omega’s conventions, a dependence relation igpke trelation of the
form

{[inputlist] — [outputlist] | constraintg,

whereinputlist and outputlist are lists of variables and/or expressions used to de-
scribe input and output tuples ardnstraintsis a Presburger formula describing the
constraints imposed upadnputlist andoutputlist. We use standard operations on re-
lations and sets, such as intersection, (union (), difference (), domain of rela-
tion (domairfR)), range of relation (rangR)), identity relation (), relation application
(given a relatiorRand setS, R(S) = {[€] | Je€ S,e— € € R}), positive transitive clo-
sure (given arelatioR, Rt = {[e] — [¢] |e— € e RVIe, e~ €& cR" A&’ — € €R}),
transitive closureR* = Rt UI).

Iteration-space slicing [29] takes dependence informad®input to find all state-
ment instances that must be executed to produce the coakmsvfor the specified
array elements. In this paper, a dependence graph alwagys tefthe extensive set of
dependences of a loop nest, described by dependencenslatiBresburger arithmetic.
We define an (iteration-space) slice as follows.

Definition 1. Given a (possibly unbounded/parameterized) dependemrgngtefined
by a set of dependence relationsslice S is a weakly connected component of this
graph, i.e., a maximal subgraph such that for each pair ofiges in the subgraph
there exists a directed or undirected path.

If there exist two or more slices in a dependence graph, tbeeatbefinition guaran-
tees that all these slices agnchronization-fre&hen executed as concurrent threads
(there is no dependence between them).

Definition 2. Anultimate dependence source (resp. destinat®a)source (resp. des-
tination) that is not the destination (resp. source) of drertdependence. Ultimate de-
pendence sources and destinations represented by reRtan be found by means of
the following calculations: domaiRR) — ranggR) and rangéR) — domair{R), respec-
tively’.

The set of ultimate dependence source(s) of a slice formsatwalledsource(spf
the slice.

The topology of a slice can be a chain, tree, or arbitrary lyrf@gither tree nor
chain). Examples of slices of the different topologies &@ in Figure 1.

6 A non-exact yet conservative (instancewise) represemaif dependences is also possible,
at the expense of parallelism extraction, while this workufses on extracting the maximal
degree of synchronization-free parallelism.

7 Parametric Integer Programming (PIP) [25] allows to corathese sets very efficienty.
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Fig. 1. Slices of the different topologies

In this paper, we present an algorithm to extract synchratidn-free slices of an
arbitrary graph topology and generate parallel code sogrsch slices.

Notice that statement instances can be split into indeperadel dependent ones;
extracting slices deals with dependent statement inssaodg: given a relatiolR cap-
turing all dependences of a loop nest, the iteration spatevd consider is domajR) U
rang€R).

3 Motivating Example

In particular, non-uniform dependences occur when arrég@ipts contain expres-
sions of the forma x i, wherea >1 andi is a loop index variable. According to Shen et
al. [31], such expressions are present in 9% of single-oegis, 2% of double-nested
loops, and 16% of triple-nested loops from the studied bl@nst12 benchmark suites.
Let us consider the loop nest in Figure 2 containing the esgio@2*i in the array
subscripts.

for (i=1; i<=n; i++)
for (j=1; j<=m; j++)

afili] = af2*if] + afilf-1];

Fig. 2. Motivating example

This loop is associated with the following non-uniform degence relation (see
Figure 3 for the graphical representation foe 8 andm = 4):

R={]
{

]—2i,j]|2<2i<nAl<j<mju

i
Lil—,i+1|1<i<nAl<j<m}.



Fig. 3. Dependences in the motivating example

From Figure 3, we observe that for= 8 andm = 4 there exist 4 synchronization
free slices (statement instances of different slices airgqut with different colors).
Increasing the value afresults in increasing the number of slicés/2] in general.

In order to find an affine transformation extracting synchization-free parallelism
for this example, the model proposed by Lim et al. [22] apgpti® the above relations
yields the following system of equations:

Ciixi+Ciox j+c1=C11x2i+Ciax j+C1
Crixi+Crox j+c1=Cyixi+Crox j+Cra+0c1

The solutions to this system for allj are of the form|Cy1,Ci2,¢1] = [0,0,c] for
all non-negative integeas. Such a solution means that the affine transformation frame-
work fails to extract two or more slices for this example hessaslices are described
by non-affine forms. We are unaware of any other techniquavaily us to extract
synchronization-free parallelism available in this logsn

In the following sections we show how to extract and genecatie for all slices
available in this example.

4 Extracting synchronization-free slices

Our approach to extract synchronization-free slices takesteps. First, for each slice,
a representative statement instance is defined (it is theolgeaphically minimal state-
ment instance — one of the sources — of the slice). Next,sslce reconstructed from
their representatives and code scanning these slicesésajed.

Given dependence relatidrepresenting all (preprocessed) dependences in a loop
nest, we can find a s&ps of statement instances, describing dfimate dependence
sources as the difference between the domaiR afd the range dr:

Sups = domair(R) — rangéR)



In order to find which elements &ps are representatives of slidesve build a
relation Rysc that describes all pairge, €) of the Utimate dependenceparcesSps
that are transitively@nnected in a slice, i.eR"(e) NR*(€/) is non-empty. Formally,

Rusc={[e] — [€]| e € € Supshe< € AR (e)NR'(€) # &}

The set domaifRysc) contains all but the lexicographically maximal sources of
slices with multiple sources, while the set ra(i@gsc) contains all but the lexicograph-
ically minimal sources of such slices. In order to findSgjy of representatives of each
slice (their lexicographically minimal statement instaa¢25]), we have to perform the
following calculation:

Sepr = Sups — rang&Rusc)
For the motivating example:

R*Z{[i,j]—>[2k1xi,j+k2]|3k17k221/\1§i/\2k1><i§n
A< jAj+ke <mPU{fi,j] =[] [1<i<nAl<j<m}
Sups= {[i,1] | Ja,2a =i+ 1A 1<i < min(n,2n—3)}
Rusc= @
Srepr:SUDS

Notice the exponential (hence non-affine) symbolic bouada. Since there does
not exist a general algorithm to compute the transitive wlef an affine relation,
some of the above computations may not always be tractablnel following, we
only consider dependence relations where a closed fornfRfpRysc and Sepr can
be computed. Nevertheless, as illustrated on the motiyatkamplesuch closed form
expressions may not necessarily be affine

Practical means to compute non-affine transitive closuaee been proposed for
the sake of induction variable analysis and classificatd®) 12]. Beyond compilation
purposes, it is related with decision procedures in forneaification (through timed
automata and hybrid automata [16]) and can also be computadavmal calculus
tools (Maple, Mathematica, etc.); see the work of Boigefat ®olper [9], Comon and
Jurski [11].

8 |f a slice has multiple sources, then although all its sositmelong toSyps, only the lexico-
graphically minimal source is the representative of a slice



4.1 Code generation for a general graph topology

Input: relation R representing all dependences in a loop nest;Segt of representatives of
synchronization-free slices; relatiétysc describing sources of slices that are connected.
Output: code scanning synchronization-free slices preservindeglendences

// Generate code to scan slice representatives and to spyaetwenization-free threads
gen_code( Sepr) {
NEXTepr = {[e] = [€]]| €€ € SeprAe< € NPE’ € Sepr,e< €' <€}
I = domair(NEXTepr) — ranggNEXTepr)
// Generate inner loop to scan slice representative
do {
// Create a thread to run the slice representetl by
asynchronous _spawn(gen _slice(l));
// Updatel to define the next slice representative
I = NEXTrepr(l) ;
} while (I € domaiNEXTepr)) ;
asynchronous _spawn(gen _slice(l));

}

// Scan statement instances in the slice representéd by
gen _slice(l) {
// Compute the set of all statement instances in the slice
Snst = (R oRysc)(1);
NEXTihst = {[e = [€] | &€ € SnstAe< & AFE € Snere< € < A€’}
// Generate inner loop to scan statement instances whitygaf) dependences
do {
// Run the loop statement for instarice
execute(l) ;
// Updatel to define the next statement instance
| = NEXTinstl)
} while (I € domainNEXTinst)) ;
// Run the loop statement instarice
execute() ;

Fig. 4. Code generation based on forming a single dependenceorelati

Figure 4 presents our algorithm to generate code scanninghsynization-free
slices that are described with general non-affine forms, teavé an arbitrary graph
topology.

Important syntactic convention: the underlined font desatode to be emitted by
the algorithm, while the normal font denotes static comiorna to emit the proper
code.

The main idea of this algorithm is to build a “next represémd relationNEX Trepr
and a “next instance” relatioNEXTj,g; to iterate through sets of instances described



by non-affine constraints. As an additional design prop#rg/“next instance” relation
NEXTinst walks through each slice while preserving all dependenédkeodirected
acyclic graph. The most canonical way consists in followting sequential execution
order of the source program; this order is a total (chain ltwgpg super-order of the
partial dependence order. We define these relations asviollo

NEXTrepr = {[€] — [€] | €€ € SeprNe< € A PE' € Sepr,e< €' <€}

NEXTinst = {[e] — [e’] | e,e( € SpstAe= éA ﬂe(’ € Snst, €< g < e’}

Based on these relations, it is possible to spawn concutrezads for all slices and
to generate relatively simple and efficient code scanniemehts of those slices. This
idea is the reminiscent of a similar approach to scannintcstantrol loop nests by
Boulet and Feautrier [15]; they used parametric integeairprogramming to compute
a “next instance” relation over unions of polyhedra.

So far, we relied on the computation of closed form expressior Sepr andRysc,
assuming the effective computability of the transitivesciee of the dependence rela-
tion. We also assume that closed form expressions exisfETepr and NEXTinst,
since the “next representative” and “next instance” retagican be obtained from sim-
ple operations like composition, intersection and diffe Indeed, let<) denote the
relation capturing the sequential execution order, one dediyie a relatiomRepr (resp.
Rinst) mapping representatives (resp. instances) into the gubséones, and compute
the “next representative” (resp. “next instance”) relats follows:

Rrepr = (Srepr X Srepr) N (*)

Sinst = R* o Rusc*(l)

Rinst = (Smst X Snst) N (‘<)
NEXTrepr = Rrepr - Rrepro Rrepr
NEXTinst = Rinst — Rinst© Rinst

Assuming intersection witki<), composition and difference result in closed form ex-
pressions forSepr and Spst, these equations allow us to derive closed form expres-
sions forNEXTrepr andNEXTinst. In Section 4.3 we study practical classes of non-affine
closed forms that support these composition, intersectiod difference operations.
The intuition is that ifR* can be computed, it is very likely that these operationshvll
computed as well.

On the other hand, this algorithm can be enhanced to detet 84y or Rysc hap-
pen to be constrained by affine forms only, triggering mofieieht polyhedral scanning
techniques[1, 19,10, 30, 2, 32].

4.2 lllustration on the motivating example

Let us illustrate the code generation algorithm in Figursihg the motivating example
of Figure 2.

Figure 5 shows the sequential execution order: elementaalf synchronization-
free slice are scanned according to the algorithm in Figure 4



Fig. 5. Scanning iterations in parallel slices

The first step consists in emitting outer loops to scan seuwtslices. Because set
Sepr is defined with affine constraints, this can be achieved bynseaOmega’s code
generator “codegen” [19, 24]; thereforasynchronous _spawn() can be substituted
with aforall  loop.

forall (t=1; t<=min(n,2*n-3); t+=2) {
71 =i,jl=1[t,1
gen _slice(t,1);

}

Then, we compute
NEXTinst={[i,j] = [I,J+1 | 1<i<nAl< j<m}U{fi,jl—[2,]]|1<in2i <
nAj=m}
and generate code that can be represented with the pseddandeigure 6.

forall (t=1; t<=min(n, 2*n-3); t+=2) {
[i,j1=1t,1]; /1 =1 =i, ]] is a representative source of each slice
do {
alilil = a[2#li] + afilf-1];
if (1<=i<=n && 1<=j<m) {
//If | belongs to domaiiNEXTnst), as implied by the first disjunct AEXTinst
jFitl; /1 =i, j] = NEXTinst(1 )
} else if (1<=i && 2*<=n && j==m) {
//If | belongs to domaiiNEXTnst), as implied by the second disjunctEXTst
i=i2; =1, /1 =i, j] = NEXTnst(l )
}
} while (1<=i<=n && 1<=j<m || 1<=i && 2*i<=n && j==m);
} alili] = af2#i] + afil(-1l;

Fig. 6. Parallel pseudo-code for the motivating example



4.3 Approach applicability

The proposed approach allows us to parallelize not onlyoamifout also non-uniform
loops. We have already mentioned that the two following kiafiarray subscripts cause
non-uniform data dependences

1. ax ik, wherea >1 is the integer constant amd k € {1,2,...,n}, is the loop index
variable.

2. coupled subscripts x i1 +ap xi2+ ...+ an X in, Whereas, ap, ...,a, > 0 are the
integer constants at least two of which are greater thanwaleq 1, andy, iz, ...,in
are the loop index variables.

Dependence relations caused by the both kinds of array sptsscan be illustrated
with the following relationdR; andRy, respectively

Ri={[i]—[axi]|L<i,axi<U},

Ro = {[i1,i2] — [i1,i1 +i2] | L <iy,iz,ia+i2 <U}Y,
whereL andU are the symbolic constants defining the domain and rangdaifaes
Ry and Ro.

Our approach to extract synchronization-free slices d@sdmwith non-affine forms
requires transitive closure of non-uniform dependencicgis.

Bielecki et al. in [8] show how to compute the transitive clasof a single depen-
dence relation caused by array subscripts of both the ficsssanond kinds. The exact
transitive closure calculation is based on resolving aesgsbf recurrence equations
being formed from the input and output tuples of a dependezlation. Applying that
technique, the transitive closure of relati@pis of the form

Ri = {[i] = [@xi]|Fk:L<i,axi<U}
while that of relatiorR; is the following

RE = {[il,iz] — [il,kx i1—|—i2] | Jk:L<ig,ig,kxig+in < U}.

R; is a non-affine relation, but because of the properties ofxpenential function,
it clearly defines a class of relations that is closed for {herations we need to generate
code f,N, -).

Dealing with unions involving relations of both kinds is niumore difficult — there
is no known closed-form expression for the transitive ctesaf a union of affine depen-
dence relations in general. Nevertheless, Beletska et 8] ipropose an approach to
compute the transitive closure of a union of affine relati@ssuming that transitive clo-
sure of each single relation can be computed. They introdwstdficient and necessary
condition defining a class of relations for which the exacehpatation is possible.

RelationR in the motivating example is the union of two relations thetisfy the
sufficient and necessary condition presented in [3]. Thyssaach described in [3] can
be applied to computB®*. Again, since the exponential and affine component&‘of
occupy orthogonal subspaces, this relations also belongslass supporting our three
operationsd, N, -).



5 Experiments

In order to study the performance of programs generatedebgribposed algorithm, we
produced parallel code in OpenMP for the motivating exanaglevell as 8 computa-
tionally heavy loop nests from the NAS benchmarks[23].

We measured the execution time of the parallel programs @y4 and 8 proces-
sors in the following environment: Intel Xeon 1.6 Ghz, 8 mssors (two quad-core
processor, 4MB cache), 2 GB RAM, Ubuntu Linux, showing bqteedup (ith respect
to original sequential code) and efficiency numbers.

Table 1 presents the results for the motivating example @n4,,and 8 processors:
column ‘N” shows the value of the upper bounds of the loop indices,roaltoriginal”
shows the execution time (in seconds) of the origfoal loop on 1 processor, column
“while " shows the execution time of the generatddle -based code on 1 processor,
columns “time[s]”, “S” and “E” show the time of the executimpeedup, and efficiency
of the generated parallel code on 2, 4, and 8 processors.

1CPU 2 CPU 4 CPU 8 CPU

N |originalwhile |time[s] S E |time[s] S E |time[s] S E
1000 0.024|0.024| 0.016(1.4860.743 0.014|1.7270.432 0.012|1.9320.242
1500 0.054|0.054| 0.033|1.6170.808 0.026|2.0690.517 0.022(2.4230.303
2000 0.096 |0.096| 0.052|1.8440.922 0.037|2.5870.647 0.034|2.8250.353
2500 0.149|0.150| 0.079|1.8880.944 0.051|2.9320.733 0.044|3.4050.42¢
3000 0.215|0.216| 0.110|1.9590.979 0.064 |3.3580.839 0.061|3.5240.44Q

Table 1. Results for the motivating example applying the proposete@eneration algorithm

1CPU 2 CPU 4 CPU 8 CPU

N |originalwhile |time[s] S E |time[s] S E |time[s] S E
1024 0.347|0.384| 0.235|1.4790.74Q 0.178(1.9510.488 0.187|1.8530.232
1280 0.658|0.702| 0.392|1.6760.838 0.317{2.0750.519 0.397|1.6570.207
1536 1.066|1.177| 0.661|1.6140.807 0.559(1.9060.477 0.691(1.5430.193
1792 1.902|2.132( 1.480|1.2850.643 1.281(1.4850.371 1.206|1.5770.197
2048 3.210(3.607| 2.097(1.5310.765 1.951|1.6460.411 1.807|1.7770.222

Table 2. Results folLlU_HPpintgr.f2p 2 applying the proposed code generation algorithm

Data in Table 1 demonstrate that there is no significantmiffee in the execution
time of the originafor loop and that of the correspondimgile -based loop on a sin-
gle processor. Increasing the valueNofesults in increasing the speedup and efficiency
of the generated parallel code. The reason is the perforenainthe shared memory
parallel program depends considerably on the volume ofitations executed per slice



1CPU 2 CPU 4CPU 8 CPU

N |originalicodegeftime[s]| S E |time[s] S E |time[s] S E
1024 0.347| 0.359 | 0.196|1.7680.884 0.152(2.2770.569 0.152|2.2790.285
1280 0.658| 0.660 | 0.389(1.6930.8464 0.301|2.1830.546 0.394|1.6640.209
1536 1.066| 1.153 | 0.649|1.6430.823 0.531|2.0090.502 0.659|1.6180.202
1792 1.902| 2.031 | 1.179|1.6130.807 0.912(2.0850.521 1.284|1.4810.185
2044 3.210| 3.442 | 2.025(1.5850.793 1.594|2.0130.503 1.798|1.7850.223

Table 3. Results obtained fdrtU_HP_pintgr.f2p  _2 using Omega’s codegen

(the product of the volume of calculations represented kydbp statements and the
number of the loop iterations). We get positive speedip () when the time of useful
calculations (presented by the loop statement instansageater than the time over-
head incurred by thehile -based code plus additional thread management and memory
bandwidth limitations of the multiprocessor environment.

For all examined NAS benchmarks (8 loop nests in total), wapmred the exe-
cution times of original loops and those of thBile -based code on a single proces-
sor. These execution times were all very similar (the makaliféerence was less than
17%). Furthermore, the parallelization of all programs resdiin positive speedups.

We report the detailed results for the_HPpintgr.f2p  _2 loop nest of the NAS
benchmark. Because this loop features uniform dependeaneesere able to generate
parallel code not only applying the proposed algorithm sdg asing Omega’s codegen
[19, 4]. The results of experiments with these codes arespted in Table 2 and Table 3,
respectively. As we can see from these tables, the proptgaithm does not introduce
significant overhead in comparison to Omega’s codegen.

We may conclude that while well-known parallelization atdle generation tech-
niques fail to extract synchronization free slices destitwith non-affine forms and
having an arbitrary graph topology, the approach presentéldis paper permits for
producing code scanning such slices. The generated codeésl fon avhile loop and
its performance is similar to that of code based der aloop.

6 Conclusions and Future Work

In this paper, we have presented an approach to extract ymzhtion free slices be-
ing represented by an arbitrary topology graph of dependeptstatement instances.
It permits for generatinghile loop based code that allows us to scan slices even when
they are described with non-affine expressions. The prapakprithm is based on
building a single dependence relation describing all theeddences of a slice in the
lexicographic order, then this relation is used to produesi® loop scanning syn-
chronization free slices of an arbitrary graph topology.dafried out experiments with
code generated by means of the presented approach, deatioigdtnat its performance
is similar to that of static control code wiftr loop.

In order to extract sources of synchronization-free sliteg are described with
non-affine forms and have an arbitrary graph topology, weikhioe able to calculate



the transitive closure of a union of non-uniform dependemtations. We currently
investigate the two following approaches to this problem.

1. The symbolic computation of the exact transitive closafre parameterized affine

relation (such a relation describes an infinite graph) igpessible in general [20].
The case of convex uniform relations is well known and yiedffine transitive
closures [20], but other relevant cases may allow the syimbomputation of non-
affine representations as well. A symbolic representatfaroa-affine slices may
allow for even more efficient code generation schemes.

When the exact transitive closure cannot be computed sljcally, one may still
try to approximate it. Only very coarse approximations hHasen proposed so far,
especially in the (common) case of hon-convex iteratios. #ghproximations will
lead to suboptimal extraction of parallelism; the inducestl of scalability will
need to be investigated.
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