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Abstract—Optimizing compilers apply numerous inter-
dependent optimizations, leading to the notoriously difficult
phase-ordering problem — that of deciding which trans-
formations to apply and in which order. Fortunately, new
infrastructures such as the polyhedral compilation framework
host a variety of transformations, facilitating the efficient explo-
ration and configuration of multiple transformation sequences.
Many powerful optimizations, however, remain external to the
polyhedral framework, including vectorization. The low-level,
target-specific aspects of vectorization for fine-grain SIMD has
so far excluded it from being part of the polyhedral framework.

In this paper we examine the interactions between loop
transformations of the polyhedral framework and subsequent
vectorization. We model the performance impact of the dif-
ferent loop transformations and vectorization strategies, and
then show how this cost model can be integrated seamlessly
into the polyhedral representation. This predictive modelling
facilitates efficient exploration and educated decision making
to best apply various polyhedral loop transformations while
considering the subsequent effects of different vectorization
schemes. Our work demonstrates the feasibility and benefit of
tuning the polyhedral model in the context of vectorization.
Experimental results confirm that our model has accurate
predictions, providing speedups of over 2.0x on average over
traditional innermost-loop vectorization on PowerPC970 and
Cell-SPU SIMD platforms.

I. INTRODUCTION

Fine-grain data level parallelism is one of the most

effective ways to achieve scalable performance of numerical

computations. Automatic vectorization for modern short-

SIMD instruction sets, such as Altivec, Cell SPU and

SSE, has been a popular topic, with successful impact on

production compilers [1], [2], [3], [4]. Exploiting subword

parallelism in modern SIMD architectures, however suffers

from several limitations and overheads (involving alignment,

redundant loads and stores, support for reductions and more)

which complicate the optimization dramatically. Automatic

vectorization was also extended to handle more sophisticated

control-flow restructuring including if-conversion [5] and

outer-loop vectorization [6]. Classical techniques of loop

distribution and loop interchange [7] can dramatically impact

the profitability of vectorization. To be successful, it is

vital to avoid inapt strategies that incur severe overheads.

Nevertheless, little has been done to devise reliable profit

models to guide the compiler through this wealth of loop

nest transformation candidates, vectorization strategies and

code generation techniques. Our main goal in this paper is

to propose a practical framework for such guidance.

Modern architectures must exploit multiple forms of par-

allelism provided by platforms while using the memory

hierarchy efficiently. Systematic solutions to harness the

interplay of multi-level parallelism and locality are emerg-

ing, by advances in automatic parallelization and loop nest

optimization [8], [9]. These rely on the polyhedral model

of compilation to facilitate efficient exploration and appli-

cation of very complex transformation sequences. However,

exploiting subword parallelism by vectorization is excluded

from the polyhedral model due to its low-level machine-

dependent nature. As a result, there remains a gap in pro-

viding a combined framework for exploring complex loop

transformation sequences together with vectorization. In this

work we help bridge this gap by incorporating vectorization

considerations into a polyhedral model. This methodology

could be extended in the future to consider the effects of

additional transformations within the polyhedral framework.

The contributions of this work are fourfold:

• Cost model for vectorization. We developed a fast

and accurate cost model designed to compare the per-

formance of various vectorization alternatives and their

interactions with other loop optimizations.

• Polyhedral modelling of subword parallelism. We

demonstrate how to leverage the polyhedral compilation

framework naturally and efficiently to assess oppor-

tunities for subword parallelism in combination with

complex loop transformation sequences.

• Evaluation in a production compiler. Our model is

fully automated and implemented based on GCC 4.4.

• Studying the interplay between loop transforma-

tions. We provide a thorough empirical investigation

of the interplay between loop interchange with array

expansion and loop nest vectorization of both inner and

outer loops on modern short-SIMD architectures.

The rest of this paper is organized as follows: Section II

discusses related work. Section III studies a motivating

example. Section IV provides an overview, introduces some

notation and captures loop interchange and vectorization

variants as affine transformations. Section V describes the

optimization process in detail. Section VI describes the

cost function. Section VII exposes performance results, and

Section VIII concludes.



II. RELATED WORK

Vectorization Cost-Model Related Work. Leading op-

timizing compilers recognize the importance of devising a

cost model for vectorization, but have so far provided only

partial solutions. Wu et al. conclude [1] regarding the XL

compiler that “Many further issues need to be investigated

before we can enjoy the performance benefit of simdization

... The more important features among them are ... the

ability to decide when simdization is profitable. Equally

important is a better understanding of the interaction be-

tween simdization and other optimizations in a compiler

framework”. Likewise, Bik stresses the importance of user

hints in the ICC vectorizer’s profitability estimation [2],

to avoid vectorization slowdowns due to “the performance

penalties of data rearrangement instructions, misaligned

memory references, failure of store-to-load forwarding, or

additional overhead of run-time optimizations to enable

vectorization.”; on the other hand opportunities may be

missed due to overly conservative heuristics.

These state-of-the-art vectorizing compilers incorporate a

cost model to decide whether vectorization is expected to

be profitable. These models however typically apply to a

single loop or basic-block, and do not consider alternatives

combined with other transformations at the loop-nest level.

This work is the first to incorporate a polyhedral model to

consider the overall cost of different vectorization alterna-

tives in a loop-nest, as well as the interplay with other loop

transformations.

Loop-nest auto-vectorization in conjunction with loop-

interchange has been addressed in prior art [10], [7], [11].

This however was typically in the context of traditional vec-

tor machines (such as Cray), and interchange was employed

as a preprocessing enabling transformation. Overheads re-

lated to short-SIMD architectures (such as alignment and

fine-grained reuse) were not considered.

Costs of specific aspects of short-SIMD vectorization

were addressed in more recent works. Realignment and

data-reuse were considered together with loop-unrolling

[12], but in the context of straight-line code vectorization,

and not for the purpose of driving loop vectorization. A cost

model for vectorization of strided-accesses was proposed

in [13], but it does not consider other overheads or loop

transformations.

Polyhedral-Model Related Work. Bondhugula et al. [8]

integrate inner-loop vectorization as a post-pass of their

tiling heuristic, and leverage the interchangeability of inner

loops to select one that is vectorizable. Their method does

not take into consideration the respective vectorization over-

heads, nor does it model reductions. Nevertheless, their tiling

hyperplane and fusion algorithm can serve as a complemen-

tary first pass for our technique, favoring the extraction of

interchangeable inner loops.

Pouchet et al. demonstrate how one can systematically

study the interplay of loop transformations with backend op-

timizations (including vectorization) and complex microar-

chitectures by constructing huge search spaces of unique,

valid transformation sequences [9]. These search spaces

are tractable using carefully crafted heuristics that exploit

the structure of affine schedules. An analytical performance

model capable of characterizing the effect of such complex

transformations (beyond loop interchange, and accommodat-

ing for large-scale locality effects) does not currently exist.

Known analytical cache models for loop transformations

are quite mature in some domains, loop tiling in particular

[14], yet remain sensitive to syntactic patterns and miss key

semantical features such as loop fusion effects [15], [16].

III. MOTIVATING EXAMPLE

for (v = 0; v < N; v++)

for (h = 0; h < N; h++) {

S1: s = 0;

for (i = 0; i < K; i++)

for (j = 0; j < K; j++)

S2: s += image[v+i][h+j] * filter[i][j];

S3: out[v][h] = s >> factor;}

Figure 1. Main loop kernel in Convolve

The first and foremost goal of a vectorization cost-

model is to avoid performance degradations while not miss-

ing out on improvement opportunities. In addition, a cost

model should also drive the selection of a vectorization

strategy, assuming there exist a profitable one. Given

a loop-nest, a compiler needs to choose which loop to

vectorize, and at which position, employing one of several

strategies (innermost- or outer-loop vectorization, in-place

or based on innermosting, as explained below). This in-

turn brings to play other loop-transformations, most notably

loop-interchange but also loop-peeling and others. Searching

among all these alternatives becomes a non-trivial problem.

This problem is especially apparent in computations featur-

ing deep loop nests that can be vectorized in several ways,

and are amenable to other loop optimizations.

Figure 1 introduces the Convolve kernel – a simple

example of a loop nest exhibiting the above features. We

use this example in the rest of the paper to demonstrate our

techniques.

There are d possible vectorization alternatives for a loop-

nest of depth d (in our case d = 4), without involving

any other loop-transformation: we can vectorize any of the

j, i, h or v loops “in-place” – i.e. in their original position

(loop-level). For instance, we can vectorize the j-loop in

its innermost position (as shown in Figure 2a), which is the

common practice of vectorizing compilers. Employing loop-

interchange to permute one loop (inwards or outwards) into

a specific position within the loop nest and vectorizing it

there (keeping the other loops intact), increases the search-

space to d ·d possibilities. Figures 2b and 2c show examples



for (v = 0; v < N; v++)

for (h = 0; h < N; h++) {

s = 0;

for (i = 0; i < K; i++) {

vs[0:7] = {0,0,...,0};

for (vj = 0; vj < K; vj+=8) {

vs[0:7] +=

image[v+i][h+vj:h+vj+7]

* filter[i][vj:vj+7];

}

s += sum(vs[0:7]);

}

out[v][h] = s >> factor;

}

(a) j-loop vectorized at level 4

for (v = 0; v < N; v++)

for (h = 0; h < N; h++)

out[v][h] = 0;

for (v = 0; v < N; v++)

for (i = 0; i < K; i++) {

for (j = 0; j < K; j++) {

c = filter[i][j];

vfilter[0:7] = {c,c,...,c};

for (vh = 0; vh < N; vh+=8) {

out[v][vh:vh+7] += vfilter[0:7]

* image[v+i][vh+j:vh+7+j];

}

}

}

for (v = 0; v < N; v++)

for (h = 0; h < N; h++)

out[v][h] = out[v][h] >> factor;

(b) h-loop vectorized at level 4

for (v = 0; v < N; v++)

for (h = 0; h < N; h++)

out[v][h] = 0;

for (v = 0; v < N; v++)

for (i = 0; i < K; i++) {

for (vh = 0; vh < K; vh+=8) {

vs[0:7] = {0,0,...,0};

for (j = 0; j < K; j++) {

c = filter[i][j];

vfilter[0:7] = {c,c,...,c};

vs[0:7] += vfilter[0:7]

* image[v+i][vh+j:vh+j+7]

}

out[v][vh:vh+7] += vs[0:7];

}

}

for (v = 0; v < N; v++)

for (h = 0; h < N; h++)

out[v][h] = out[v][h] >> factor;

(c) h-loop vectorized at level 3

Figure 2. Convolve Vectorization Examples

of vectorizing the h-loop after permuting it to the innermost

and next-to-innermost positions, respectively. Using loop-

permutation more aggressively to reorder the loops of a nest

according to a specific permutation, and then vectorizing one

of them, results in a total of d(d!) combinations. If we also

employ loop peeling to align memory accesses, the search

space grows to d(d!)V F where V F is the Vectorization

Factor (number of elements operated upon in parallel in a

vector). In our case this amounts to 768 alternatives.

The search space becomes quite large even for modest

depths and only few transformations (interchange and peel-

ing), as shown, and can easily reach much higher volumes

if deeper loop nests and/or more loop-transformations are

considered. Also note that programs often contain many

loop-nests, where each loop-nest should be optimized.

Approaches that generate each alternative and rely on its

(possibly simulated) execution or on performance evaluation

at a later low-level compilation stage, are competitive in

terms of accuracy but are significantly inferior in terms of

scalability to analytical approaches that reason about costs

and benefits without actually carrying out the different loop

transformations beforehand. Operating on the polyhedral

representation itself, rather than relying on code generation,

is therefore a key ingredient. Hybrid approaches can provide

a more practical solution by combining the feedback-based

approach with classical analytical models to narrow the

search space. The modest compile-time requirements of

our purely analytical approach (about 0.01s to build the

model and search for the optimal vectorization strategy for

Convolve) facilitates its integration in a production compiler.

A complementary challenge to dealing with the very large

search-spaces, is how to evaluate the costs and benefits

associated with each alternative efficiently and accurately.

Some tradeoffs are clearly visible in Figure 2. For example,

variants (b,c) use loop-permutation, which in this case incurs

an overhead of extra memory traffic to/from the out array.

On the other hand variant (a) incurs a reduction epilog

overhead (see sum operation) in each iteration of the i-

loop. Outer-loop vectorization (vectorizing a loop other that

innermost-loop) is used in (c), implying that more code

is vectorized. The innermost j-loop in this case continues

to advance sequentially, operating simultaneously on values

from V F = 8 consecutive h-loop iterations. On the other

hand (b) has better temporal locality (filter[i][j] is invariant

in the innermost loop) and the misalignment is fixed (this is

explained in more detail later). Overall the speedup factors

obtained by transformations a, b, c on PPC970 (relative

to the original sequential version shown in Figure 1) are

2.99, 3.94, 3.08 respectively. On the Cell SPU the respective

speedups are 2.59, 1.44, 3.62.

The following sections describe our approach and demon-

strate how our cost model computes its predictions within

the analytical polyhedral-based model, considering different

loop transformations and metrics. Final cost-model predic-

tions for Convolve and analysis of the speedups are given in

Section VII-A, where we show that the cost model is able to

correctly predict the best vectorization option for both PPC

and SPU.

IV. BACKGROUND AND NOTATION

Most compiler internal representations match the induc-

tive semantics of imperative programs including syntax tree,

call tree, control-flow graph and SSA. In such reduced

representations of the dynamic execution trace, each state-

ment of a high-level program occurs only once, even if

it is executed many times (e.g., when enclosed within a

loop). Representing a program this way is not convenient

for aggressive loop optimizations which operate at the level

of dynamic statement instances.



Compile-time constraints and lack of adequate algebraic

representation of loop nest semantics prevent traditional

compilers from adapting the schedule of statement instances

of a program to best exploit architecture resources. For

example, compilers typically cannot apply loop transforma-

tions if data dependences are non-uniform [11] or simply

because profitability is too unpredictable.

A. Polyhedral Compilation

A well known alternative approach, facilitating complex

loop transformations, represents programs in the polyhedral

model. This model is a flexible and expressive representation

for loop nests with statically predictable control flow. Such

loop nests, amenable to algebraic representation, are called

static control parts (SCoP) [17], [18]; their control and data

flow are split into three components:

1. Iteration domains capture the dynamic instances of

all statements — all possible values of surrounding loop

iterators — through a set of affine inequalities. Each dy-

namic instance of a statement S is denoted by a pair

(S, i) where i is the iteration vector containing values for

the loop indices of the surrounding loops, from outermost

to innermost. The dimensionality of iteration vector i is

dS . If loop bounds are affine expressions of outer loop

indices and global parameters (usually, symbolic constants

representing problem size) then the set of all iteration vectors

i relevant for statement S can be represented by a polytope

DS =
{

i | DS×(i, g, 1)T ≥ 0
}

which is called the iteration

domain of the statement S, where g is the vector of global

parameters whose dimensionality is dg.

For example, the domain DS2 of the statement S2 in

Figure 1 has the following iteration domain representation:

DS2 = {(v, h, i, j) | 0 ≤ v, h ≤ N − 1 ∧ 0 ≤ i, j ≤ K − 1}

2. Memory access functions capture the locations of data

on which statements operate. In static control parts, memory

accesses are performed through array references. For each

statement S we define two sets —WS and RS — of (M, f)
pairs. Each pair represents a reference to a variable M being

written or read by the statement S and f is the access

function mapping iteration vectors in DS to the memory

locations in M. The access function f , defined by a matrix

F such that:

f(i, g) = F× (i, g, 1)T (1)

is a vector valued function whose dimensionality is equal to

that of array M. Statement S2 in Figure 1 has the following

access function sets:

WS2=∅,RS2=















(

image,

[

1010 00 0
0101 00 0

]

)

[

v + i

h+ j

]

,

(

filter,

[

0010 00 0
0001 00 0

]

)

[

i

j

]















3. Scheduling function. Iteration domains define the set of

dynamically executed instances of each statement. However,

this algebraic structure does not describe the order in which

each statement instance has to be executed with respect to

other statement instances [9]. We should not rely on the

inductive semantics of the sequence and loop iteration for

this purpose, of course, as that would break the algebraic

reasoning about loop nests.

A convenient way to express execution order is by giving

each statement instance an execution date. It is obviously

impractical to define all dynamic instances explicitly. An

appropriate solution is to define a scheduling function θS

for each statement S which maps instances of S to totally

ordered multidimensional timestamps (vectors), explained in

the next subsection. For tractability reasons, we restrict these

functions to be affine.

B. Polyhedral Transformations

Each loop-nest transformation in the polyhedral model is

represented as a schedule transformation or as a domain

transformation. All transformations are applied statement-

wise.

We define the multidimensional scheduling function as

an affine form of the outer loop iterators i and the global

parameters g:

θS(i) = ΘS × (i, g, 1)T (2)

where ΘS is the scheduling matrix of constant integers.

Statement instance (Si, i
Si) executes before statement in-

stance (Sj , i
Sj ) if and only if θSi(iSi) ≪ θSj (iSj ), where

≪ denotes the lexicographic order of schedule vectors.

Every static control part has a multidimensional affine

schedule [19]. By providing different scheduling functions

for individual statements we can perform affine-by-statement

transformations, improving over unimodular and classical

syntax-tree based transformations [19], [20], [21], [18].

Efficient algorithms and tools exist to regenerate code from

a polyhedral representation according to (modified) multidi-

mensional affine schedules [22], [18].

Scheduling encodings using 2dS + 1 positions were pre-

viously proposed by Feautrier [19] and later by Pugh and

Kelly [20]. These encodings were generalized to handle

arbitrary compositions of affine transformations by Girbal et

al. [18], using the following format of scheduling matrices:

ΘS =























0 · · · 0 0 · · · 0 βS
0

AS
1,1 · · · A

S
1,dS ΓS

1,1 · · · Γ
S
1,dg

ΓS
1,dg+1

0 · · · 0 0 · · · 0 βS
1

AS
2,1 · · · A

S
2,dS ΓS

2,1 · · · Γ
S
2,dg

ΓS
2,dg+1

...
. . .

...
...

. . .
...

...

AS
dS ,1· · ·A

S
dS ,dS ΓS

dS ,1· · ·Γ
S
dS ,dg

ΓS
dS ,dg+1

0 · · · 0 0 · · · 0 βS
dS























(3)



Scheduling matrix Θ is composed of three components:

• Component A is an invertible matrix capturing the rela-

tive ordering of iteration vectors. Changing coefficients

of this component corresponds to loop interchange,

skewing and other unimodular transformations.

• Column β reschedules statements statically, at all nest-

ing levels. It expresses code motion, loop fusion and

fission.

• Component Γ captures loop shifting (pipelining) ef-

fects.

Referring again to Figure 1, multidimensional affine

scheduling functions for statements S1 and S2 are:

θS1(v, h)T = (0, v, 0, h, 0)T

θS2(v, h, i, j)T = (0, v, 0, h, 1, i, 0, j, 0)T

Those schedules correspond to the execution order of the

original loop nest. Note that odd positions in the scheduling

function are constants (0 and 1 in this example) that corre-

spond to the textual order of the statements, whereas even

positions correspond to loop counters. For a given values

of loop counters v and h the two scheduling vectors are

lexicographically equal up to the fourth position. The value

at fifth position of the schedule for statement S1 is 0 and for

statement S2 is 1, meaning that for the same given values of

loop counters v and h an instance of statement S2 is always

executed after an instance of statement S1.

The corresponding scheduling matrix for statement S1 is:












0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0













·













v

h

N

K

1













=













0
v

0
h

0













where component A is identity matrix (no rescheduling), the

component Γ is zero matrix (schedule does not depend on

global parameters) and the β matrix is encoding the static

position of the statement inside loop nest.

This decomposed statement scheduling representation for-

mat allowed Girbal et al. to enforce invariants upon which

long sequences of transformations can be constructed. It also

guarantees that any sequence of transformations results in a

fully determined sequential schedule [18]. We leverage this

property to build a cost model that handles any affine-by-

statement transformation sequence.

In this work we concentrate on loop interchange, loop

distribution and loop strip-mining. The Graphite1 framework

we use supports the full-fledged 2dS + 1 scheduling matrix

format, hence we can easily express arbitrary compositions

of these transformations. The polyhedral equivalent of inter-

changing the loop at level k with that at level p consists of

1http://gcc.gnu.org/wiki/Graphite

interchanging rows k and p in the component AS of each

statement schedule. As we are performing transformations

statement-wise, we can easily perform loop interchange of

non-perfect nests; statements not deeper than k or p remain

unaffected by the transformation.

V. DRIVING THE OPTIMIZATION PROCESS

To select an optimal vectorization strategy one needs to

construct and traverse the relevant search space. We want to

do so without generating different syntactic versions of the

code and then vectorizing each of them, which is inefficient

and sometimes infeasible. Our proposal uses an analytical

cost model, and constructs the finite optimization search

space of chosen loop transformations expressed in terms of

modified affine schedules θ′S and modified iteration domains

D′S of statements. For each point in the search space we

compute an associated cost using a cost function φ(x).
We model the scheduling of each individual statement

independently. Each point in the search space corresponds

to a vector x = [θ′S1 , . . . , θ′Sn ,D′S1 , . . . ,D′Sn ] of modified

schedules and domains for each of the n statements of the

SCoP. The total cost for a given point x in the space is the

sum of costs of executing dynamic instances of all SCoP

statements according to a new schedule and domain:

φ(x) =

n
∑

i=1

c(D′Si , θ′Si). (4)

The parameters for the cost function for the single state-

ment Si are its iteration domain D′Si (number of dynamic

instances of a statement depends on its iteration domain) and

its scheduling θ′Si (cost of accessing memory by a statement

instance depends on execution order of other instances).

Section VI describes this cost function in detail.

The optimization goal is to search for a vector of trans-

formations xmin that minimizes the cost function φ(x):

xmin = min
x∈X

φ(x) (5)

Vector xmin represents an optimal program version in the

polyhedral model.

A. Search Space Construction

After extracting the SCoPs and building the polyhedral

representation of all statements by the Graphite framework,

we perform the optimization of each SCoP according to

Algorithm 1: first we compute the base cost for the un-

modified (input program) representation, by computing the

cost of executing all dynamic instances of all statements Si

in the original scheduling order. The current optimal cost is

stored in costmin and is updated incrementally by applying

different transformations (skipping over infeasible ones) on

the polyhedral model (stored in vector x) and computing the

new costs using cost function φ(x). Besides the schedule

transformation, performed by permuting (PERMUTE) the

columns of the component A of the schedule, each possible



level v is strip-mined, which is the way to model the

vectorization at level v. At the end of this process the optimal

scheduling representation is available in xmin.

Note that Algorithm 1 shows only one possible way

of constructing a search space. We chose to consider all

combinations of loop interchanges due to their impact on

vectorization. This small (yet expressive) search space makes

it compatible with the constraints of a production compiler.

Algorithm 1 Main optimizing driver

d← level of a deepest statement S in a SCoP

n← number of statements in a SCoP

{Start with the original schedules and iteration domains}
xmin ← [θS1 , . . . , θSn ,DS1 , . . . ,DSn ]
costmin ← φ(xmin)
for all σ ∈ (set of d-element permutations) do

for i = 1 to n do

θ′Si ← PERMUTE(σ, θSi)
dSi ← level of loop nesting for statement Si

for v = 1 to dSi do

D′Si ← STRIPMINE(v,DSi)
x← [θ′S1 , . . . , θ′Sn ,D′S1 , . . . ,D′Sn ]
if φ(x) < costmin then

costmin ← φ(x); xmin ← x

end if

end for

end for

end for

B. Implementation

We implemented the loop nest optimization targeting

vectorization within the Graphite framework of the GCC

compiler. Polyhedral information is extracted from GIMPLE

GCC’s intermediate three-address representation. Static con-

trol parts are extracted from the SSA-form of GIMPLE. For

each statement in a SCoP we extract its polyhedral model

components: iteration domains DS , scheduling functions

corresponding to original program semantics θS , and data

access affine subscript functions. We then proceed with

search space construction, traversal and cost modeling. The

total run time, including exploration of the search space

takes at most 0.01s for all loop nests considered.

VI. POLYHEDRAL MODELLING OF VECTORIZATION

METRICS

Several key costs impact the expected performance of

vectorized code, including: strides of accesses to memory,

memory access alignment, loop trip counts, reduction oper-

ations across loop iterations and more. These factors depend

on the modified scheduling θ′S and on the modified iteration

domain D′S of each statement.

The underlying assumption of vectorization is that the

kernel of a loop usually executes faster if vectorized than if

not, but that associated overheads may hinder the vectorized

version, diminishing its speedup compared to the original

scalar version, and more so for loops that iterate a small

number of times.

A. Modelling the Access Patterns

Recall from Section IV that access functions for array

references are represented as a vector of affine expressions,

but there is no notion of the data layout of an array.

One may combine this access function with the data

layout of the array. For each array reference, one may form

a linearized memory access function ℓ, capturing the stream

of memory access addresses as a function of the iteration

vector:

ℓ(i) = b+ (Li|Lg|ω)× (i, g, 1)T = b+ Li
i+ Lgg + ω (6)

where b is the base address2 of the array and (Li|Lg|ω)
is the row vector of coefficients that encodes the layout

information (assuming row-major data layout). This vector

is composed of three parts: Li is scheduling-dependent, Lg

depends on global parameters, and ω is the constant offset

part.

Assuming that matrix M is defined as M[r1][r2] . . . [rm],
we can construct the vector R encoding the strides along

each subscript3. Then the following equation holds:

(Li|Lg|ω) = R× F (7)

(recall that matrix F defines the access function f ).

For example, assuming array image is defined as

image[144][144], the linearized access for the array image

in the statement S2 of Figure 1 can be represented as:

ℓ(v, h, i, j) = b+ 144v + h+ 144i+ j.

B. Access Pattern Sensitivity to Scheduling

Based on the scheduling matrix representation in Equa-

tion (3) the rescheduled time-stamp vector t is expressed as

follows (for modelling purposes we can ignore β):

t = (A|Γ)× (i, g)T = Ai+ Γg (8)

thus the original iteration vector is i = A−1(t− Γg) which

together with Equation (6) gives us the new, transformed

linearized access function:

ℓ′(t) = b+ LiA−1
t+ (Lg − LiA−1Γ)g + ω. (9)

Taking as an example the kernel in Figure 1, the linearized

access function for array image with the original scheduling

t = i = (v, h, i, j) is:

ℓimage(t = i) = b+ 144v + h+ 144i+ j

2b is typically not known at compilation time; nevertheless, we are only
interested in its alignment modulo the VF, which is generally available.

3R = (
∏

m−1

i=1
ri,

∏

m−1

i=2
ri, . . . ,

∏

m−1

i=m−1
ri, 1).



After interchanging levels 3 and 4 (expressed as a transfor-

mation on component A of the schedule) the new access

function become:

ℓimage(t = (v, h, j, i)) = b+ 144v + h+ i+ 144j

Notice that strides with respect to the new scheduling

dimensions have changed. This has dramatic impact on the

performance of the vectorized code. Indeed, if we chose to

vectorize the level 3 (which now corresponds to original

loop j) the vectorized code will suffer from a very costly

memory access operations: the stride is 144, so the elements

of a vector cannot be loaded in one vector-load instruction.

C. Cost Model Function

Our cost model is based on modelling the total execution

time of all statement instances, given the modified iteration

domain D′S and the modified schedule θ′S of each statement

S. We compute the cost function for 4 statement S as

follows:

c(D′S , θ′S) =
|D′S |

VF
(
∑

cvect instr) +

∑

m∈(WS)

(ca +
|D′S |

VF
(cvect store + fm)) +

∑

m∈(RS)

(ca +
|D′S |

VF
(cvect load + cs + fm))

where |D′S | denotes the integer cardinality of the iteration

space (total number of dynamic instances of S) and VF is

the vectorization factor. Factor cs considers the penalty of

load instructions accessing memory addresses with a stride

across the loop being vectorized. The memory access stride

δd w.r.t. a schedule dimension d can be determined directly

from vector Li by looking at its d-th component. Vector

registers of SIMD architectures can be directly loaded with

consecutive memory addresses only. Accesses to non-unit

strided addresses require additional data unpack and/or pack

operations [13].

More precisely, loading VF memory addresses with a

stride δdv
across the loop being vectorized may require δdv

vector loads (each with cost c1), followed by δdv
− 1 vector

extract odd or extract even instructions (each with cost c2),

to produce just one vector register holding the desired VF

elements. If δdv
= 0, then the same value needs to be

replicated to fill a vector register using a “splat” instruction

(with cost c0). Factor cs is thus defined as follows:

cs =







c0 : δdv
= 0

0 : δdv
= 1

δdv
· c1 + (δdv

− 1) · c2 : δdv
> 1







(10)

4please note that this cost function applies only if dS > δdv is satisfied,
i.e., the statement is nested within vectorized level. Please also note that
this cost function, for lack of space, is simplified with respect to the cost
function that is implemented into GCC – it does not show the reduction
costs and the vector store with strides for example.

Factor ca considers the alignment of loads and stores. Typ-

ically, accesses to memory addresses that are aligned on VF-

element-boundaries are supported very efficiently, whereas

other accesses may require loading two aligned vectors from

which the desired unaligned VF elements are extracted (for

loading) or inserted (for storing). This alignment overhead

may be reduced considerably if the stride δ of memory

addresses accessed across loop dimensions5 dv + 1, . . . , dS

is a multiple of VF, because then the misalignment offset

becomes invariant w.r.t. the vectorized loop. In these cases

there is the opportunity to reuse loaded vectors and use

invariant extraction masks.

It is easy to check if the misalignment inside the vec-

torized loop is invariant by considering the transformed

linearized access function:

ℓ(i) = b+Li
1i1+. . .+Li

dv
idv

+· · ·+Li
dS idS +Lgg+ω (11)

— all coefficients from Li
dv+1 to Li

dS (corresponding to

strides of all inner loops of the vectorized loop) have to

be divisible by VF.

If the misalignment is invariant in the vectorized loop

we also check if the base address accessed on each first

iteration of the vectorized loop (dv) is known to be aligned

on VF-element-boundary; if so there is no need for re-

aligning any data: ca = 0. This is done by considering

initial alignment properties and strides across outer-loops

(enclosing the vectorized loop). The strides of enclosing

outer loops maintain alignment invariance if coefficients

Li
1,L

i
2, . . . ,L

i
dv−1 are all divisible by VF.

Putting all considerations for alignment together, the

alignment cost can be modelled as:

ca =















0 : aligned

|DS |(c1 + c3 + c4) : var. misalign.

|DS
1..dv−1|(c1 + c3)+

|DS |(c1 + c4)
: fixed misalign.















(12)

where c3 represents the cost of building a mask based on

the misalignment amount, c4 is the cost of extraction or

insertion and c1 is the vector load cost. |DS
1..dv−1| denotes

the number of iterations around the vectorized loop level.

The vectorization factor VF of a loop is determined

according to the size of the underlying vector registers and

the smallest data-type size operated on inside the loop. Each

individual vector register will thus hold VF values of this

small size. However, if there are variables in the loop of

larger size, storing VF copies of them will require multiple

vector registers, which in turn implies that the associated

instructions need to be replicated. Factor fm records the

extra overhead associated with this replication. Additional

factors that depend on specific machine resources available

may also impact the performance of vectorization, such as

5Dimensions correspond to loops nested in a vectorized loop



the size of register files, available ILP, and complex vector

instructions.

To summarize, the above vectorization profitability met-

rics can be classified into three classes: (1) Scheduling

invariant metrics: these are not affected by changes to the

execution order of statement instances. The cost of vector

to scalar reduction and of multiple type support belong

to this category. (2) Scheduling sensitive metrics: these

are affected by changes to the execution order of state-

ment instances. Costs associated with strided and unaligned

memory accesses, as well as spatial locality, belong to this

category. (3) Code generation dependent metrics: these

depend on the actual code-generation strategy implemented

in a compiler. Costs related to idiom recognition belong to

this category.

Our approach of integrating the cost model within the

polyhedral framework handles the first two categories quite

naturally, and is especially powerful in dealing with the

second category whose metrics vary with changes to the

scheduling order, and are thus affected by loop transforma-

tions such as interchange. Category 3 is less suitable for our

design, because it relies on generating the compiler’s internal

structures from the modified polyhedral representation; yet

no significant performance factor belongs to this category,

according to our experiments. The metrics that have the

greatest impact are those that depend on the scheduling

function θS , which are well handled by our model.

VII. EXPERIMENTAL RESULTS

N1 N2 N3 N4 δ1 δ2 δ3 δ4
interp fp 512 16 1,2 1,0,2

interp 512 16 1,2 1,0,2

bkfir 512 32 1,0 1,1

dct 8,8 8,8 8,8 8,0 0,1 1,8

convolve 128 128 16 16 128, 1, 128, 1,

0, 0, 16, 1,

128 1 0 0

H264 12,7 12,7 1 1

dissolve 128 128 1 128

alvinn 512,32 32,32 1,1 512,512

MMM 16 16 16 16,0 0,1 1,16

MMMT 16 16 16 16,0 0,1 1,16

Table I
BENCHMARKS

We evaluate our approach by introducing our model

into the polyhedral framework of GCC and comparing its

performance estimates for different loop interchanges and

vectorization alternatives against actual execution runs of

a set of benchmarks. Table I summarizes the main rel-

evant features of the kernels used in our experiments: a

rate 2 interpolation (interp), block finite impulse response

filter (bkfir), an 8 × 8 discrete cosine transform (dct [23]),

2D-convolution (convolve), a kernel from H.264 (H264),

video image dissolve (dissolve), weight-update for neural-

nets training (alvinn) and a 16× 16 matrix-matrix multiply

(MMM) (including a transposed version MMMT ).

The first four columns of Table I show the number of

iterations Ni of loops nested within the main loop-nest of

each benchmark, starting with N1 for the outermost loop

and moving inwards. Loop nests with less that 4 nested

loops have empty entries (e.g., N2 refers to the innermost

loop in the doubly-nested bkfir). Multiple values in an entry

represent multiple distinct loop nests.

Similarly, the next four columns of Table I show the

strides δi of the memory references across each of the nested

loops, with multiple values in an entry representing the

strides of different memory references. For example, strides

of 8, 512 and 16 are found in the innermost loops of dct,

alvinn and MMM respectively, where columns of 2D arrays

are scanned resulting in strides at the length of the rows.

Lastly, zero strides imply that duplication of a single value

across a vector is required.

We first evaluate the cost-model qualitatively, demonstrat-

ing that the scores it computes are consistent using one de-

tailed example (subsection VII-A). The following subsection

evaluates the model relative to actual experiments on a set of

kernels, analyzing the mispredictions and showing that over-

all the relative performance ordering of the variants is largely

preserved. Finally subsection VII-C demonstrates the impact

of using a polyhedral-model guided vectorization compared

to using one of three default vectorization schemes: inner-

most loop vectorization, innermosting (permuting a loop to

the innermost position and vectorizing it there), and in-place

outer-loop vectorization with realignment optimization. We

show that no single approach is best for all benchmarks,

hence the need for a sophisticated cost model.

A. Qualitative Evaluation

We use the convolve kernel qualitatively (see Figure 1,

Section III). For lack of space, we study only a small subset

of the search space described in Section III and Algorithm 1,

restricting our attention to the d×d combinations of shifting

each loop inwards/outwards and vectorizing it there, plus

the option to vectorize each of the d loops without any

interchange. Note however that our technique opens up a

much larger (polyhedral) transformation space and the driver

described in Section V can compute scores for all d(d!)
combinations, if desired.

The results of running our model against the d× d = 16
combinations, estimating the performance of each combina-

tion for a Cell/SPU and a PowerPC system are shown in

Table II and Table III respectively. The loops are numbered

in the tables from 1 (outer-most) to 4 (inner-most). Entry

(i, j) shows the estimated speedup over the sequential ver-

sion, obtained by shifting loop j to position i followed by

vectorizing loop j at new position i. Thus entries along the

diagonal refer to vectorization with no interchange. Entries

(4,4), (4,2), (3,2) (in bold) correspond to the vectorization

alternatives shown in Figures 2a, 2b, 2c respectively.



Figure 3. Cost model evaluation: comparison of predicted and actual impact of vectorization alternatives on the Cell SPU

Figure 4. Cost model evaluation: comparison of predicted and actual impact of vectorization alternatives on PPC970

loop-level 1(v) 2(h) 3(i) 4(j)

1 0.26 4.00 0.24 4.00

2 0.26 4.06 0.24 4.21

3 0.26 4.34 0.23 4.56

4 0.27 3.76 0.24 3.72

Table II
CONVOLVE: SPU ESTIMATED SPEEDUP FACTORS

loop-level 1(v) 2(h) 3(i) 4(j)

1 0.21 3.21 0.19 3.21

2 0.21 3.21 0.19 3.38

3 0.21 3.18 0.19 3.70

4 0.21 3.37 0.20 2.99

Table III
CONVOLVE: PPC ESTIMATED SPEEDUP FACTORS

The convolve entry in Table I reveals the key factor for the

performance degradations predicted for loops v, i (columns

1 and 3) — there are very large strides along these loops

(δ1, δ3 = 128). The overhead involved in vectorizing these

loops and strides is described in Section VI. The remaining

candidate loops for vectorization are therefore loops 2 and

4 (h and j). The best speedup is predicted for entry (3,

4) which corresponds to using outer-loop vectorization to

vectorize the j-loop after shifting it to level 3. The original

i-nest is a perfect nest (there are no operations outside

the innermost loop within that nest) and so there are no

overheads incurred by this interchange (as opposed to inter-

changing an imperfect-nest like the h-loop, e.g. as in cases

(4,2),(3,2)/Figures 2b,2c, which involve scalar expansion and

loop-distribution costs). In addition, outer-loop vectorization

avoids reduction-epilog costs and also increases the portion

of the code that is being vectorized compared to vectorizing

the j-loop in its original innermost location. Note that this

choice is different from the traditional approach: compilers

usually either apply inner-most loop vectorization (entry

(4, 4) in the tables) or apply innermosting (entries (4, ∗)).
Partial experimental evaluation of convolve confirms these

predictions. In Figure 5 we show the obtained speedups

relatively to the cost model estimations (denoted exp,model

respectively) for PPC970 and Cell SPU for entries (3, 2),
(4, 2), (3, 4) and (4, 4) in the tables. The relative ordering

of the speedups for both platforms is accurate 6 and the cost

model is able to identify the best choice among the three.

B. Experimental Evaluation

We now validate quantitatively the estimates produced by

the cost model. For each benchmark we report two sets of

results: one showing the experimentally observed speedups,

and the other showing estimated speedups computed by the

cost model (denoted exp,model respectively in Figures 3, 4).

When a given vectorization technique cannot be applied due

to limitations of our current implementation of vectorization

in the GCC compiler, the scalar performance is reported.

This happens in some cases of strided accesses that are

6The low 1.44x measured speedup on the Cell SPU for alternative (4, 2)
(corresponding to Figure 2b) is due to an aliasing bug in GCC that results
in bad scheduling. The out-of-order wide-issue (5 slots) PowerPC970 is
less sensitive to this, but on the in-order 2-width-issue SPU performance
drastically suffers as a result. The cost model obviously cannot (and should
not) predict compiler bugs, however it can, as in this case, help reveal them.



Figure 5. Cost model evaluation: comparison of predicted and actual
impact for convolve kernel on PPC970 and Cell SPU

Figure 6. Predicted optimal vs. 4 fixed strategies on SPU

Figure 7. Predicted optimal vs. 4 fixed strategies on PPC

not yet fully supported (and that would certainly degrade

performance).

We evaluate the relative speedup of four different vec-

torization alternatives: innermost-loop vectorization (inner),

interchange followed by innermost-loop vectorization (in-

nermosting), and in-place outer-loop vectorization, with and

without optimized realignment using unrolling (outer and

outer-opt).

The experiments were generated automatically using an

enhanced version of GCC. Speedup are measured over

the sequential version of the benchmark, compiled with

the same optimization flags. Interchange, when used, was

applied manually. Time is measured using the getrusage

routine on powerpc970, and the decrementer utility on the

SPU. Experiments were performed on the IBM PowerPC

PPC970 processor with Altivec, and an SPU of the Cell

Broadband Engine. Both architectures have 128 bit wide

vector registers, and similar explicit alignment constraints.

The first set of kernels (interp, bkfir, dct and MMM) is

expected to gain most from in-place outer-loop vectorization

with realignment optimization, as they consist of imperfect

loop-nests (and therefore get penalized for interchange), and

exhibit high data-reuse opportunities across the (vectorized)

inner-loop that can be exploited by the unrolling optimiza-

tion. They also have inner-loop reductions (which are gen-

erally done more efficiently using outer-loop vectorization),

and two of the benchmarks in this set (dct and MMM)

also have large strides in the innermost loop (as the access

is column-wise). Alvinn has a perfect nest and no reuse

opportunities, and therefore in-place outer-loop vectorization

should not gain over traditional interchange, but innermost

loop vectorization should be avoided due to the large stride.

The last group of benchmarks (MMMT , dissolve and H264)

have consecutive access in the innermost loop, but strided

access in the outer-loop, and so for these we expect inner-

loop vectorization to be the best technique.

This behavior can be clearly observed in the SPU

speedups in Figure 3, where overall the exp and model

graphs are largely consistent, with the preservation of the

relative performance ordering of the variants. Exceptions are

due to low-level target-specific factors that our model does

not take into account. Most notable is the misprediction in

the first set of benchmarks, where bkfir and dct are the only

benchmarks for which outer-loop vectorization is inferior to

innermost loop vectorization due to an SPU specific issue

(unhinted branch).

Target-specific issues come to play also on the PPC970

(Figure 4). The most significant one appears in the fixed-

point bkfir and interp where inner-loop vectorization em-

ploys a specialized Altivec instruction to compute a dot-

product pattern. We have not yet incorporated idioms into

the cost-model and so it does not anticipate this behavior.

The model also does not try to estimate register pressure, and

therefore does not predict the degradation in performance

incurred by the unrolling optimization on interp due to

register spilling (this problem does not occur for SPU having

128 vector registers, compared to the 32 Altivec registers

of PowerPC970). Lastly, in some cases interchange can

be done with smarter scalar-expansion (hoisting), whereas

the model estimates the associated overhead of a naive

scheme. This sometimes pessimizes the predicted speedup

of interchanged versions both on PPC and the SPU.

C. Performance Impact

Lastly, we evaluate the overall benefit of using a cost-

model for loop-nest vectorization. In Figures 6, 7 we com-

pare the speedups obtained by the following four fixed strate-



gies: (1) always leave the loops sequential, (2) always apply

innermost loop vectorization, (3) always apply innermosting

(followed by innermost loop vectorization), and (4) always

apply optimized outer-loop vectorization. This is compared

to the 5th and last strategy which is to pick the vectorization

scheme recommended by the cost model. The last set of bars

in each figure shows the geometric mean of the speedups

obtained by each of these 5 strategies across all benchmarks.

On the SPU, in all but one case (alvinn) the model

correctly predicted the best vectorization technique. Us-

ing the cost-model driven approach, we obtain an average

speedup factor of 3.5 over the scalar version, which is an

improvement of 36% over the optimized in-place outer-

loop vectorization technique, and 2.3 times faster than the

innermost vectorization approach, on average.

On the PPC970, the cost model mispredicts in 3 cases (in-

terp, bkfir and alvinn). The Overall speedup factor obtained

by the cost-model driven approach is 2.9 over the scalar

version, an improvement of 50% over outer-opt, and 2.3

times faster than innermost loop vectorization, on average.

VIII. CONCLUSIONS

We presented a cost model and a loop transformation

framework to extract subword parallelism opportunities and

to select an optimal strategy among them. This framework

is based on polyhedral compilation, leveraging its represen-

tation of memory access patterns and data dependences as

well as its expressiveness in building complex sequences of

transformations. The main factors contributing to the prof-

itability of vectorization can be captured by the polyhedral

representation itself, alleviating the cost of code genera-

tion when iteratively searching for an optimal vectorization

strategy. The framework is implemented in GCC 4.4 and

was validated on a number of representative loop nests

and on multiple architectures with slightly different SIMD

computation capabilities.

ACKNOWLEDGMENT

This research is supported by the SARC, ACOTES and

HiPEAC European grants. Part of the work was done while

the first author visited the IBM Haifa Research Lab on

HiPEAC internship. We would also like to thank Sebastian

Pop, AMD and other contributors of the Graphite project.

REFERENCES

[1] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao, “An
integrated Simdization framework using virtual vectors,” in
ICS, 2005.

[2] A. J. C. Bik, The Software Vectorization Handbook. Applying
Multimedia Extensions for Maximum Performance. Intel
Press, 2004.

[3] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian, “Automatic
intra-register vectorization for the Intel architecture,” IJPP,
vol. 30, no. 2, pp. 65–98, 2002.

[4] D. Nuzman and A. Zaks, “Autovectorization in GCC – two
years later,” in the GCC Developer’s summit, June 2006.

[5] J. Shin, M. Hall, and J. Chame, “Superword-level parallelism
in the presence of control flow,” in CGO, March 2005.

[6] D. Nuzman and A. Zaks, “Outer-loop vectorization - revisited
for short SIMD architectures,” in PACT, October 2008.

[7] R. Allen and K. Kennedy, Optimizing Compilers for Modern
Architectures. Morgan Kaufmann Publishers, 2001.

[8] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan, “A practical automatic polyhedral parallelization and
locality optimization system,” in PLDI, Jun. 2008.

[9] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iter-
ative optimization in the polyhedral model: Part II, multidi-
mensional time,” in PLDI, Jun. 2008.

[10] R. Allen and K. Kennedy, “Automatic translation of fortran
programs to vector form,” ACM Tr. on Prog. Lang. and
Systems, vol. 9, no. 4, pp. 491–542, 1987.

[11] M. Wolfe, High Performance Compilers for Parallel Comput-
ing. Addison Wesley, 1996.

[12] J. Shin, J. Chame, and M. W. Hall, “Compiler-controlled
caching in superword register files for multimedia extension
architectures,” in PACT, September 2002.

[13] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of
interleaved data for simd,” in PLDI, 2006.

[14] P. Boulet, A. Darte, T. Risset, and Y. Robert, “(Pen)-
ultimate tiling?” in IEEE Scalable High-Performance Com-
puting Conf., May 1994.

[15] C. Cascaval, L. Derose, D. A. Padua, and D. A. Reed,
“Compile-time based performance prediction,” in LCPC,
1999.

[16] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Probabilistic
miss equations: Evaluating memory hierarchy performance,”
IEEE Trans. Comput., vol. 52, no. 3, pp. 321–336, 2003.

[17] P. Feautrier, “Array expansion,” in ICS, St. Malo, France, Jul.
1988.

[18] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam, “Semi-automatic composition
of loop transformations for deep parallelism and memory
hierarchies,” Intl. J. of Parallel Programming, vol. 34, no. 3,
pp. 261–317, Jun. 2006, special issue on Microgrids.

[19] P. Feautrier, “Some efficient solutions to the affine scheduling
problem, part II, multidimensional time,” Intl. J. of Parallel
Programming, vol. 21, no. 6, pp. 389–420, Dec. 1992, see
also Part I, one dimensional time, 21(5):315–348.

[20] W. Kelly and W. Pugh, “A framework for unifying reordering
transformations,” University of Maryland, Tech. Rep. CS-TR-
3193, 1993.

[21] A. Lim and M. Lam, “Maximizing parallelism and mini-
mizing synchronization with affine transforms,” in PoPL’24,
Paris, Jan. 1997, pp. 201–214.

[22] C. Bastoul, “Code generation in the polyhedral model is easier
than you think,” in PACT, Sep. 2004.

[23] C. G. Lee, “UTDSP benchmarks,” http://www.eecg.toronto.
edu/∼corinna/DSP/infrastructure/UTDSP.html, 1998.


