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Towards certification of TLA+ proof obligations

with SMT solvers
Stephan Merz and Hernán Vanzetto∗

INRIA Nancy Grand-Est & LORIA
Nancy, France

Abstract

TLA+ is a formal specification language that is based on Zermelo-Fränkel set theory and the
Temporal Logic of Actions TLA. The TLA+ proof system tlaps assists users in deductively
verifying safety properties of TLA+ specifications. tlaps is built around a proof manager,
which interprets the TLA+ proof language, generates corresponding proof obligations, and
passes them to backend verifiers. In this paper we present a new backend for use with SMT
solvers that supports elementary set theory, functions, arithmetic, tuples, and records. We
introduce a typing discipline for TLA+ proof obligations, which helps us to disambiguate
the translation of expressions of (untyped) TLA+, while ensuring its soundness. Our work
is a first step towards the certification of proofs generated by proof-producing SMT solvers
in Isabelle/TLA+, which is intended to be the only trusted component of tlaps.

1 Introduction

TLA+ [8] is a language for specifying and verifying concurrent and distributed algorithms and
systems. It is based on a variant of Zermelo-Fränkel set theory for specifying the data struc-
tures, and on the Temporal Logic of Actions TLA for describing the dynamic system behavior.
Recently, a first version of the TLA+ proof system tlaps [4] has been developed, in which users
can deductively verify safety properties of TLA+ specifications. TLA+ contains a declarative
language for writing hierarchical proofs, and tlaps is built around a proof manager, which in-
terprets this proof language, expands the necessary module and operator definitions, generates
corresponding proof obligations (POs), and passes them to backend verifiers, as illustrated in
Figure 1. While tlaps is an interactive proof environment that relies on users guiding the proof
effort, it integrates automatic backends to discharge proof obligations that users consider trivial.

The two main backends of the current version of tlaps are Zenon [3], a tableau prover
for first-order logic and set theory, and Isabelle/TLA+, a faithful encoding of TLA+ in the
Isabelle [11] proof assistant, which provides automated proof methods based on first-order rea-
soning and rewriting. Zenon is not part of the trusted code base of tlaps, but outputs proof
scripts in Isar syntax for the theorems that it proves. These proofs are passed to Isabelle for
verification. In this way, Isabelle/TLA+ is used both as a standalone backend prover and as the
certification engine of proof scripts produced by other backends.

The currently available backends also include a generic translation to the input language
of SMT solvers, focusing on quantifier-free formulas of linear arithmetic (not shown in Fig. 1).
This SMT backend has occasionally been useful because the other verifiers perform quite poorly
on obligations involving arithmetic reasoning. However, it covers a rather limited fragment
of TLA+, which heavily relies on modeling data using sets and functions. Assertions mixing
arithmetic, sets and functions arise frequently in TLA+ proofs. In the work reported here we
present a new SMT-based backend for (non-temporal) TLA+ formulas that encompasses set-
theoretic expressions, functions, arithmetic, records, and tuples. By evaluating the performance
of the backend over several existing TLA+ proofs we show that it achieves good coverage for
“trivial” proof obligations.
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Figure 1: General architecture of tlaps.

The new modules comprising our backend appear shaded in Figure 1. We consider two target
languages for our translation: SMT-LIB [2], the de facto standard input format for SMT solvers,
and the native input language of the SMT solver Yices [6]. Using SMT-LIB as the target of our
translation, tlaps can be independent of any particular solver. On the other hand, the Yices
language provides useful concepts such as sub-typing or a direct representation of tuples and
records. The considered TLA+ formulas are translated to quantified first-order formulas over
the theory of linear integer and real arithmetic, extended with free sort and function symbols.
In particular, we make heavy use of uninterpreted functions, and we do not restrict ourselves
to quantifier-free formulas. All SMT solvers mentioned in this paper produce proofs, although
each one has its specific output format.

TLA+ is an untyped language, which makes it very expressive and flexible, but also makes
automated reasoning quite challenging [9]. Since TLA+ variables can assume any value, it
is customary (and recommended) to start any verification project by proving a so-called type
invariant that constrains the values that variables of the specification may assume. Most higher-
level correctness proofs rely on the type invariant. It should be noted that TLA+ type invariants
frequently express more sophisticated properties than what could be ensured by a decidable
type system. In contrast, our target languages are multi-sorted first-order languages, which are
supported by dedicated decision procedures in SMT solvers. The first challenge is therefore to
assign an SMT sort to each expression that appears in the proof obligation. We make use of
this type assignment during the translation of expressions, which may depend on the types of
the subexpressions involved. For example, equality between integer expressions will be handled
differently from equality between sets or functions.

During a first phase, our translation attempts to infer types for all subexpressions of a proof
obligation. This phase may fail because not every set-theoretic expression is typable according
to our typing discipline, and in this case the backend aborts. Otherwise, the proof obligation is
translated to an SMT formula. Observe that type inference is relevant for the soundness of the
SMT backend: a proof obligation that is unprovable according to the semantics of untyped TLA+

must not become provable due to incorrect type annotation. As a trivial example, consider the
formula x+ 0 = x, which should be provable only if x is known to be in an arithmetic domain.
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Type inference essentially relies on assumptions that are present in the proof obligation and that
constrain the values of symbols (variables or operators).

A type system for TLA+ together with a concise description of the type inference algorithm
is presented in the next section. Section 3 describes the translation. Finally, results for some
case studies and conclusions will be given in Sections 4 and 5.

2 Type inference for TLA+

We define a type system for TLA+ expressions that underlies our SMT translation. We consider
types τ according to the following grammar.

τ ::= i | o | Str | Nat | Int | Real | P τ | τ → τ | Rec {field i 7→ τi} | Tup [τi]

The atomic types are i (terms of unspecified type), o (propositions), strings, and natural, integer
and real numbers. Complex types are sets (of base type τ), functions, records (defined by a
mapping from field names to types) and tuples (as a list of types).

For this type system, we define an inference algorithm that is based on a recursive, bottom-up
operator [[e, ε]]I whose arguments are a TLA+ expression e and an expected (minimum) type ε
that e should at least have, according to a predefined partial order relation on types that includes
relations such as Nat < Int or i < τ , for any type τ 6= i. The computation either returns the
inferred type or aborts. The operator recurses over the structure of TLA+ expressions, gathering
information in a typing environment type : Id 7→ τ , that maps each TLA+ symbol to its type.

The operator [[·]]I is applied iteratively on the list of hypotheses H1, . . . ,Hn, until a fixpoint is
reached: note that later hypotheses may provide additional information for symbols that occur
in earlier ones.

Initially, we consider that every symbol has the unspecified type i, which can be thought of as
a bottom type. Recursive calls to the operator [[·]]I may update the type of symbols as recorded
in type by new types that are greater than the previous ones. A type assignment is definitive
only when types for all expressions in the proof obligation have been successfully inferred. For
example, consider the hypotheses S = {} and S ⊆ Int . After evaluating the first one, S will
have type P i, but it will be updated to P Int when the second hypothesis is processed.

When type inference succeeds, the environment variable type will contain the resulting final
type assignments. As we discuss below, there are two cases where the inference algorithm can
fail: (1) when a symbol an expression depends on does not have an assigned type, and (2) when
a constraint stating that two or more expressions need to be of the same type cannot be solved.

The operator [[·]]I assigns types to complex expressions based on the types of their con-
stituents. Although expressions such as {a} ∪ 0 or 3 + true appear silly, they are allowed in
TLA+, yet their meaning is unknown. Certain TLA+ operators are defined in such a way that
the result type is fixed, aiding type inference. For example, logical operators always return
Boolean values, whatever are the types of their operands. Similarly, an expression S ∪ T is of
type P i; if S and T are known to be sets of elements of the same type τ , then we obtain the
more precise type P τ . Arithmetic operators guarantee the result type only if their arguments
are in the arithmetic domain.

TLA+ expressions such as e1 = e2, e1 ⊆ e2, if p then e1 else e2 are critical in the sense
that their constituents e1 and e2 must have the same type in order to express them in the sorted
format of the SMT solvers. Similarly, the expression e1 ∈ e2 requires that e2 be of type P τ , and
e1 of type τ , for some τ . For similar reasons, we do not allow functions (or operators) to return
values of different types. Type inference for this kind of expressions makes use of the function
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S([e1, . . . , en], ε), that given a list of expressions e1, . . . , en and an expected type ε, returns their
unique type and fails when some pair [[e1, ε]]I , . . . , [[en, ε]]I cannot be equated.

As a concrete example, consider the proof obligation (¬¬P ) = P , where P is a defined
operator whose definition is hidden (i.e., its definition cannot be used in the proof obligation).
We know that ¬¬P is Boolean, and the typing rule for equality requires that the expressions
on both sides must be of equal type. Without any information on the type of P , the obligation
should be rejected by type checking. In particular, we are not allowed to infer that P is of type
Boolean. Indeed, P might be defined as the integer 42, and we do not know if (¬¬42) = 42 is
true in TLA+. We therefore derive the type assignment only from available facts, i.e., hypotheses
of the proof obligation, of the forms id ⊗ e and ∀x ∈ S : id(x)⊗ e, for ⊗ ∈ {=,∈,⊆}. In these
expressions, id is a constant, variable or operator, and e is an expression whose type can already
be inferred1.

3 From TLA+ to SMT

Once we have determined a type assignment for a TLA+ proof obligation, it can be translated
to the input languages of SMT solvers. Our target languages (SMT-LIB and Yices) are similar,
and the translation proceeds along the same lines. We define the operator [[·]]T that translates
a TLA+ expression, using the type information gathered previously, to its corresponding SMT
formula extended with λ-terms. The typing discipline ensures that all resulting λ-abstractions
can be β-reduced before obtaining the definitive translation of the original expression.

A symbol’s translation depends on its inferred type. It is translated to an SMT variable or
function name, which has to be declared in the output produced by the translation, together
with its type. Purely arithmetic and first-order expressions are translated to the corresponding
built-in operators of the target languages, except for quantified expressions, where quantified
variables are introduced temporarily in the context with their types inferred accordingly. In this
way, for the expression ∀x : e, the value [[e, o]]I is evaluated to obtain the type assignment for
the variable x, so it can be properly declared in the translation of the quantified expression.

Sets and functions are translated to uninterpreted functions. The encoding of a set S rep-
resents its characteristic predicate (“is a member of set S”), allowing for the direct translation
of the set membership relation. In this way, [[S]]T is a λ-abstraction which will be applied to
a value to detect if it is an element of the set or not, consequently [[e ∈ S]]T ≡ ([[S]]T [[e]]T).
Similarly, function application reduces to [[f [e]]]T ≡ ([[f ]]T [[e]]T). A function [x ∈ S 7→ exp],
whose domain is S, is translated to λy. [[exp(x/y)]]T , where x is replaced by y in the expression
exp (the domain S is represented separately, as we will see below).

For example, a function f that returns a set of type P τ it will be translated as a λ-abstraction
where the first parameter is the function’s argument and the second is a value of type τ . Then
the translation is defined as [[f ]]T ≡ λx y.(f x y), where f denotes the symbol’s name in the
SMT output. The translation of equality depends on the types of the two subexpressions, which
must have the same type by type-inference. For example:

[[e1 = e2]]T ≡ [[∀x : x ∈ domain e1 ⇔ x ∈ domain e2 when e1 is of type →
∧ (x ∈ domain e1 ⇒ e1[x] = e2[x])]]T

[[e1 = e2]]T ≡ [[∀f, g : (f ∈ e1 ∧ g ∈ e2)⇒ f = g]]T when e1 is of type P ( → )

1For variables, these kind of expressions are usually given by the type invariant. Our backend requires similar
type-correctness lemmas for hidden operators.
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More generally, n-ary functions or operators returning a (simple) set are represented as
predicates of arity n+1 with their last argument being the set members. We only consider simple
sets, i.e. sets of individuals, in order to remain in the realm of first-order logic. Any hypotheses
of a proof obligation that fall outside this class are discarded. For example, hypotheses of the
form x ∈ S where S is of type PP τ are useful during type inference in order to determine the
type of x but are then dropped during the SMT translation.

Because SMT-LIB has no notion of function domain, we associate with each function f a
set domain f (as a characteristic predicate). For every function application that occurs in the
proof obligation, we check that the argument values are in the domain: otherwise the value of
the function application would be unspecified. To this end, we define an auxiliary operator [[·]]F
that computes corresponding proof obligations. In particular, for function applications we let
[[f [e]]]F ≡ [[f ]]F ∧ [[e]]F ∧ e ∈ domain f and [[Qx ∈ S : e]]F ≡ ∀x ∈ [[S]]T : [[e]]F for Q ∈ {∀,∃}.
The remaining clauses in the definition of [[·]]F collect all function applications that occur in an
expression. In particular, [[x]]F ≡ true for an atomic expression x. An expression e depending
on subexpressions e1, . . . , en, is evaluated as [[e(e1, . . . , en)]]F ≡ [[e1]]F ∧ . . . ∧ [[en]]F .

The main difference between the SMT-LIB and Yices translations is the encoding of tuples
and records. In Yices, they are natively supported, whereas SMT-LIB currently does not have a
pre-defined theory. To encode (fixed-size) tuples and records in the first-order logic of SMT-LIB,
we treat each of their components separately. A symbol t of type Tup[τi] is translated as λi. t i,
introducing the new symbols t i with types τi to the context, corresponding to the i-th component
of the tuple t. For example, [[t = 〈e1, e2〉]]T ≡ [[t 1 = e1 ∧ t 2 = e2]]T . The translation of records
is analogous, with field names taking the place of tuple indexes. Currently, all constituents of
tuples and records must be of basic types.

4 Experimental results

We have used our new backend with good success on several examples taken from the tlaps
distribution. For example, the non-temporal part of the invariant proof for the well-known N -
process Bakery algorithm [7], which mainly uses set theory, functions and arithmetic over the
natural numbers, could be reduced from around 320 lines of interactive proof to a completely
automatic proof. The resulting obligation generates an SMT-LIB file containing 105 quantifiers
(many of them nested), which has been proved by the CVC3 [1] SMT solver in around 10 seconds
and by Z3 [5] in less than a second on a standard laptop (whereas the original, interactive proof
takes around 24 seconds to process). On the other hand, Yices cannot handle the entire proof
obligation at once, and it was necessary to split the theorem into separate cases per subaction;
it then takes about 8 seconds to prove the resulting obligations.

More interestingly, the Yices backend (with better support for records) could handle sig-
nificant parts of the type and safety invariant proofs of the Memoir system [10], a generic
framework for executing modules of code in a protected environment. The proofs were almost
fully automated, except for three sub-proof that required manual Skolemization of second-order
quantifiers. In terms of lines of proof, they were reduced to around 10% of the original size. In
particular, the original 2400 lines of proof for the complete type invariant theorems were reduced
to 208 lines.
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5 Conclusions

We defined a translation of certain TLA+ proof obligations into SMT-LIB 2 and into the native
language of Yices. The translation relies on a typing discipline for TLA+, which is untyped, and a
corresponding type inference algorithm. This discipline restricts the class of TLA+ expressions
that can be translated. Nevertheless, a significant fragment of the source language can be
handled. In particular, we support first-order logic, elementary set theory, functions, integer and
real arithmetic, tuples and records. Sets and functions are represented as lambda-abstractions,
which works quite efficiently but excludes handling second-order expressions involving sets of sets
or quantification over complex types. Universal set quantifiers that occur at the outermost level
can easily be removed by the user of tlaps, by introducing Skolem constants. An automatic
pre-processing of such terms would further improve the backend. The current SMT-LIB backend
provides only limited support for tuples and records.

In future work, we intend to study the question of interpreting proofs provided by SMT
solvers for reconstructing them (as well as the type assignment) in the trusted object logic of
Isabelle/TLA+. We also envisage extending our translation to the native input languages of
other SMT solvers such as Z3 [5]. These are similar to the ones that we considered here, and
therefore their translation will be straightforward once the types are assigned.
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