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Effect of population size in a Prey-Predator model

Fabien Campillo∗ Claude Lobry∗

November 28, 2011

Abstract

We consider a stochastic version of the basic predator-prey differen-
tial equation model. The model, which contains a parameter ω which
represents the number of individuals for one unit of prey - If x denotes
the quantity of prey in the differential equation model x = 1 means
that there are ω individuals in the discontinuous one - is derived from
the classical birth and death process. It is shown by the mean of sim-
ulations and explained by a mathematical analysis based on results
in singular perturbation theory (the so called theory of Canards) that
qualitative properties of the model like persistence or extinction are
dramatically sensitive to ω. For instance, in our example, if ω = 107

we have extinction and if ω = 108 we have persistence. This means
that we must be very cautious when we use continuous variables in
place of jump processes in dynamic population modeling even when
we use stochastic differential equations in place of deterministic ones.
Keywords: Prey-predator model; Ordinary Differential Equations;
Diffusion Equations; Gillespie algorithm; Birth and Death processes

1 Introduction

Consider the standard prey-predator model :

Σ











dx

dt
= f(x)− µ(x)y

dy

dt
= (c µ(x)− δ)y

(1)

where x stands for the concentration of preys and y for the concentration
of predators. It is well known that this kind of modeling with differential
equations is valid only if one unity of x (or y) represents a large number
of prey (or predator) individuals. On the other hand, when the number of
individual is too small, everybody agree that one must switch to some kind
of individually based modeling of stochastic nature.

∗EPI Modemic INRA/INRIA, SupAgro, 2 place Viala, 34060 Montpellier Cedex 2,
France

1



What means large is generally not specified but it is widely admitted that
around 103 the law of large numbers begins to do its job and that figures
like 106 are completely safe if one wants to use continuous variables and
differential equations.

The objective of this paper is to show that the threshold of 103 is not always
acceptable and that, in some circumstances, even 106 cannot be considered
as secure when we deduce biological consequences, like persistence, from the
behavior of a model with continuous variables. For that purpose we propose
a stochastic model, where the dynamic of the prey is governed by a birth
and death process while, for mathematical simplicity, we keep the predator
variable as a continuous one. The development will make clear that this
simplification does not affect the conclusions of the paper. The proposed
model is such that the dynamic of the process is locally approximated (when
the number of preys is large) by a differential system which is precisely of
predator-prey type like (1). We agree that, in many respects, our model is
biologically questionable but our objective is not to contribute to biologi-
cal understanding of prey-predator relationship but just to point out some
mathematical phenomenon which is likely to be present in many models and
which might be responsible for erroneous interpretations.

The first section is devoted to the presentation of the stochastic model,
the second to the presentation of some surprising simulations, the third to
the analysis of the differential system that governs the dynamics of the mean
of the stochastic process and the forth to the explanations of the surprising
aspects of the simulations. The last two sections are devoted to method-
ological and bibliographical comments.

From the mathematical point of view the material and results presented
here are classical. The paper is intended principally for non mathemati-
cally oriented readers who are not necessarily aware of these questions. We
tried to avoid all mathematical technicalities and for this purpose we made
an important use of results from computer simulations. All the references
to existing literature related to these questions are rejected to the last two
sections.

2 The model.

The variable ω x(t) is an integer which is the number of preys at time t.
This variable performs the following birth and death (actually here “death”
means “capture” by a predator) process.

• At any time, the epoch τ of the next event (birth or death) is a random
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variable Z which follows an exponential law of parameter :

λ =
ω

ε
(f(x) + µ(x)y) (2)

• At the epoch τ we have one birth with probability f(x)
f(x)+µ(x)y or one

death with the complementary probability :

P (ω x(τ+) = ω x(τ−) + 1) =
f(x(τ−))

f(x(τ−)) + µ(x(τ−))y(τ−)

P (ω x(τ+) = ω x(τ−)− 1) =
µ(x(τ−))y(τ−)

f(x(τ−)) + µ(x(τ−))y(τ−)

(3)

The variable y is a continuous variable which evolves according to :

y(t+ dt) = y(t)− dtmy(t) + ε{number of captures during [t, t+ dt]} (4)

Thus the predator dynamics is an exponential decay associated to a growth
proportional to the number of prey disappearing during the elapsed time.
The parameter ε accounts for different time scale for the prey and the preda-
tor dynamics.

Assume that dt = 10−4, ω = 109, ε = 10−1 and f(x) + µ(x)y is of the
order of unity. Then, during elapsed time dt the number of events (death or

birth) is of the order of λ dt = ω
ε
(f(x) +µ(x)y)dt ≈ 105

ε
≈ 106. This is a bit

lengthy to simulate (at least with a desk computer) but, due to that great
number of events, the process defined by (2), (3), (4) is accurately approxi-
mated on the interval [t, t+ dt] by the diffusion process (see appendix A for
a derivation) :

{

x(t+ dt) = x(t) + dt
ε
[f(x(t))− µ(x(t))y(t)]− σxWt

y(t+ dt) = y(t) + dt[(µ(x(t))−m)y(t)] + σyWt

(5)

where W1dt,W2dt,W3dt, ...... is a sequence of independent Gaussian variables
with mean 0 and standard deviation 1 with :

σx =

√

4dt

ωε

√

f(x(t)µ(x(t))y(t)

f(x(t)) + µ(x(t))y(t)

σy =

√

dtε

ω

√

f(x(t)µ(x(t))y(t)

f(x(t)) + µ(x(t))y(t)

This diffusion process is not a good approximation of the jump process when
x is small. For an accurate description one must switch to the jump process
for small values of x but, since this is not our point here, we restrict us to
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the consideration of the stochastic (with continuous variables) diffusion like
process :











if x(t) ≤ 1
ω

then x(t+ dt) = 0 else

x(t+ dt) = x(t) + dt
ε
[f(x(t))− µ(x(t))y(t)] + σxWt

y(t+ dt) = y(t) + dt[(µ(x(t))−m)y(t)] + σyWt

(6)

The first line in (6) states that when the number of prey is smaller than 1
it has to be 0 . It is necessary to specify this because now the variable x is
continuous in the diffusion process but we want to keep the meaning of x as
a number of individuals . Thus, 1

ω
must be an absorbing barrier for (6). For

x ≥ 1
ω
one sees that the recurrence equation for the mean of x(t) and y(t)

is approximated by :

{

E[x(t+ dt)] = E[x(t)] + dt
ε
[f(x(t))− µ(x(t))y(t)]

E[y(t+ dt)] = E[y(t)] + dt[(µ(x(t)−m)y(t)]
(7)

which is the Euler scheme for the differential system :











dx

dt
= 1

ε
[f(x)− µ(x)y]

dy

dt
= (µ(x)−m)y

(8)

Thus, to conclude this paragraph, we have constructed a diffusion-like model
defined by equations (6). This model depends on a parameter ω. This model
has the following properties :

• Since the model is derived from the birth and death process ω x is
interpreted as the number of individuals for x units of preys.

• The standard deviation is proportional to
√

1
ω
: the biggest is ω the

more “deterministic” is the process.

• The diffusion process is degenerate (i.e. the dimension of the random
noise is not 2 but 1). This is due to the fact that only x is considered
as a discrete variable, not y.

• When ω x is large (greater than 103) the dynamic of the model is
accurately approximated (at least for small durations) by the classical
deterministic differential prey-predator model (8) which is the same as
system (1) with c = ε, εm = δ after a change of time units.

We shall first simulate this system and then explain the observed simula-
tions.
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Figure 1: Above : ω = 1012 ; below ω = 1010

3 Simulations

In this section we fix f , µ, ε and m as :

• f(x) =
1

2
x (2− x)

• µ(x) =
x

0.4 + x

• ε = 0.02

• m = 0.6645

On Fig.1 one sees one run of the process (6). The duration is 200 and ω
is fixed at 1012 (above) and 1010 (below). One sees regular oscillations for
the population of prey (in red) and predator (in black). We do not see any
difference between the two records. These regular oscillations are those pre-
dicted by the deterministic prey-predator model. Since the value of x during
the oscillations is around 1 which corresponds to such a great number of in-
dividuals we are definitely not surprised that the continuous deterministic
system is a good approximation.

But, on Fig.2 we observe a dramatic change with ω = 108 which is still a big
figure. We observe a mixed mode oscillation with a random successions of
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Figure 2: Above : ω = 108 ; below ω = 106

large and small oscillations which could not be produced by a deterministic
two dimensional system. With ω = 106 we observe an extinction of the two
populations which is confirmed on Fig.3 where we observe that none of 20
runs for ω = 106 is persistent at time T = 200.

Let us denote by T the time of extinction for the predator (defined as the
time where y(t) reaches the value 1

ω
). Let us say that there is extinction

when the time of extinction is smaller than 1000. On Tab. 1 we have the
empirical probabilities of extinction with respect to ω (computed on 1000
runs) and mean and standard deviation of T computed on trajectories end-
ing with extinction for t < 1000 . We can see that the transition is very
sharp from extinction with probability one (ω = 4.0 106) to non extinc-
tion with probability one (ω = 2.0 7). It seems surprising that with about
ω = 2.0 107 prey-individuals the system is definitely (say up to 1000 units of
time) safe and definitely unsafe for 4.0 106 which is still a big figure. This is
a problem since in most case, in population dynamics models, we have poor
information on the actual size of a population. We come back later on this
issue. Notice also that the standard deviation of T is very large for small
values of ω which makes predictions very imprecise.
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Figure 3: Twenty runs with ω = 106

4 The dynamics of the continuous deterministic

model

1

1

x

y

?

?

Figure 4:

In this section we describe the dynamics of the deterministic model (8) which
approximate the evolution of the mean of the diffusion model (7). All the
material in this section is classical and known as the theory of “canards”
(see the section “literature comments” for more details).

The first step in the understanding of a planar system like our is to draw
the two nullclines (sometimes called “zero growth isoclines”), that is the sets
defined by :

• The nullcline of the prey : {(x, y) : 1
ε
[f(x)− µ(x)y] = 0}

• The nullcline of the predator :{(x, y) : (µ(x)−m)y = 0}

In our simulations the parameter ε is small (0.02) and, by the way, except
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ω E[T ] σ(T ) P (T ≤ 1000)

105 30.46 6.75 1

106 39.02 11.30 1

2.0 106 47.74 19.62 1

4.0 106 79.05 51.79 1

6.0 106 143.54 121.42 0.999

8.0 106 259.76 222.64 0.983

9.0 106 311.70 247.58 0.964

107 554.21 319.94 0.867

1.1 107 555.17 351.75 0.741

1.2 107 681.31 324.12 0.649

1.3 107 745.83 321.95 0.481

1.4 107 815.46 296.26 0.384

1.5 107 867.54 273.60 0.255

1.6 107 906.10 238.55 0.182

1.7 107 928.68 221.50 0.120

1.8 107 964.05 143.82 0.072

1.9 107 975.48 110.09 0.059

2.0 107 > 1000 0

Table 1: Empirical probabilities of extinction according to ω

when the quantity
[f(x)− µ(x)y]

is small, of the order of ε, the right member in the first equation in (8) is
large compared to the second one. This means that the vector velocity of
(8) is almost horizontal. From this it follows that, a first approximation the
solutions of our system is shown by the hand-drawn schemes on Fig.4 and
Fig.5 : Outside of the parabola and the y axe which is the nullcline of the
prey the trajectories are taken as horizontal.

• On Fig.4 one sees that the nullcline of the predator (in blue) is on the
left of the maximum of the nullcline of the prey (the black parabola
curve). Along the nullcline of the prey the motion is down-up on the
right of the vertical blue nullcline and up-down on the left. From this
we see that there is a tendency for the trajectories to join the y-axe
on its attractive part (above the black curve), to follow it in the up-
down direction and there is some indeterminacy to where it will leave
it after having crossed the the parabola. From this scheme we suspect
the existence of a periodic limit-cycle cycle which, actually, can be
proven to be the case.

• On Fig.5 the situation is somewhat easier to understand. The blue
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1

1

x

y

Figure 5: Schematic representation of solutions of (8)

vertical null-cline of the predator being on the right the motion along
the parabola converges to a limit point which apparently is a stable
attracting point for all initial conditions.

• Notice that an attracting equilibrium and an attracting limit-cycle are
qualitatively different picture and that the transition between the two
cases occurs when m crosses the value 0.666.... (when the blue line
crosses the parabola at its maximum).

2

1

x

y

m= 0.6
2

1

x

y

m= 0.75

2

1

x

y

m= 0.66442561
2

1

x

y

m= 0.6645

limit cycle

limit cycle

equilibrium

limit cycle

Figure 6: Phase portrait of system (8) for different values of m

Let us now comment on Fig.6. The pictures are not hand-drawn schemes
but actual simulations with ε = 0.02 ; we observe the great similarity with
the schemes.
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• m = 0.6 : One large limit cycle (the direction of the motion is counter
clockwise). Trajectories above the limit cycle are of two kinds : some
hit the limit cycle and then follow it and the others hit the vertical axe,
then they follow it up-down and reappear below, run left to right hit
the parabola and then join the limit cycle. Actually “true” trajectories
never meet but, due to the limit of our drawing, they seem to meet.
All trajectories follow for a while the y axe and then x(t) is potentially
small.

• m = 0.75 : We have an attracting equilibrium. Some trajectories go
directly to the equilibrium, some other follow the y axe.

• m = 0.6645 : We have a small periodic limit cycle circling around the
unstable equilibrium which is very close to the periodic orbit. Along
the periodic orbit we stay very far from the y axe (and, by the way,
x(t) is never small) but one sees that near the unstable equilibrium, a
very small perturbation leads to a trajectory which follows the y axe
and x(t) can become small.

• m = 0.66442561 : In this case we have a limit cycle which is of inter-
mediate size between “large” (follows the y axe for a while and small
(remains far fro the y axe) ; it just hits the y-axe. The point is that it
needs very sharp values for m (8 digits in our case) to obtain this inter-
mediate cycle called a “canard cycle”. See in the section “comments”
some informations about the mathematical theory of “canards”.

All along this description we said that x(t) is potentially small when the
trajectory follows the y axe. But how small ? A simple way to enlarge what
is going on along this axe is to plot, not the point (x(t), y(t)), but (ξ(t), y(t))
with :

ξ(t) = εln(x(t))

This is done on Fig.7 and Fig.8. We represent the (x, y) and and the (ξ, y)

1

x

y

10 -910 -6

1
22
33
4

4 5
5

Figure 7: (x, y) and (ξ, y) variables on the same axes : m = 0.6

trajectories in the same system of axes ; (x, y) trajectories are in red, (ξ, y)
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Figure 8: (x, y) and (ξ, y) variables on the same axes : m = 0.6445

are in green and both limit cycles in the two systems of representation in
blue. The two vertical red lines correspond to x = 10−9 and 10−6. There
are 19 trajectories starting from (2, 0.5± k 0.05) k = 0, 1, ..., 9.

Let us compare the two simulations.

• Fig.7. We look at the “large” limit cycle in the (ξ, y) variables and we
see that the minimum of ξ corresponds to x = 10−9 ; for the trajectory
labeled 1 the minimum is about 10−17. These incredibly small values
are easily explained in Appendix B.

• Fig.8. The “small” limit cycle is almost not visible in the (ξ, y) vari-
ables. In both the (ξ, y) and the (x, y) variables the trajectories labeled
1 to 4 look very similar. But, in Fig.8, trajectory 5 remains above 10−9

which is not the case in Fig.7 and trajectory 6 does not exist in Fig.7
.

The main difference between the case m = 0.6 and the case m = 0.6645
is that, in the first case, every trajectory is such that the minimum of x
is smaller than 10−9 unlike in the second case where there are two set of
trajectories : Those that start above trajectory 6 for which the minimum
will be smaller than 10−6 before reaching the limit cycle and the others for
which x(t) remains greater than 10−6. Notice that this trajectory 6 is in
some places very close to the limit cycle.

The observed differences between m = 0.6 and m = 0.6645 are not specific
of these values. In particular the same behavior with two type of trajec-
tories separated by a sharp transition is true for all values of m between
m = 0.66442561 and m = 0.6666..... This behavior is summarized by the
description of the “safety funnel” shown in Fig.9 by the green arrow and
that we explain now. Assume that for some reason we do not accept to
pursue a trajectory such that the min of x(t) is smaller than α = 10−k (it
may be because we think that the size of the population is to low in order
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to survive or because we want to switch to a different - stochastic - model).
The form 10−k is by no mean essential for α, it is just to emphasize that α
is small. It exists a unique y0 such that the solution issued from (∞, y0) (in
practice 2 is a good infinite), which we call the “α-safety trajectory”, is such
that x(t) first decreases and attains a first local minimum equal to 10−k.
This is the red trajectory on the scheme of Fig.9. This trajectory, when
x(t) ≈ µ−1(m) will be very close to the limit cycle (the blue trajectory) .
We call ρ(ε, k) the distance between the two curves ; this can be evaluated
from the value of ε and k. The “safety funnel” is defined by the parts of
red and blue curves on the right of the vertical x = µ−1(m). If a trajectory
which enters the funnel is perturbed, as long as it remains in the funnel,
the (future) minimum of x will remain greater the 10−k. If not, there is a
danger to reach values smaller than 10−k.

1

x

y

10
-k

Figure 9: The “safety funnel”

5 The diffusion process in the variables (x, y) and

(ξ, y)

ω 109 108 107 106

ρ(ε, k) 1.2 10−3 9.0 10−5 5.5 10−5 5.3 10−5

σx
√
dt 4.2 10−5 1.4 10−5 4.2 10−5 1.4 10−4

σy
√
dt 4.9 10−9 1.4 10−7 4.9 10−7 1.4 10−6

Table 2: Width of the funnel and corresponding σx and σy.

On the four simulations shown on Fig.10 to 13 we have performed 10 runs of
20 time units duration of the process (6) starting from (−2, 0.5). The results
are presented in both (x, y) and (ξ, y) variables (black trajectories). In the
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Figure 10: ω = 109

s

x

1 10 3

safety trajectory

Figure 11: ω = 108

same variables we have simulated from system (8) the “safety trajectory”
corresponding to 1000 individuals, that is to say : The “safety trajectory”
was obtained by dichotomy and the observed width ρ(ε, k) of the funnel
is given on the table 2 with corresponding rough evaluations of σx and σy
around the funnel.

• Fig.10: All the runs are widely below the “safety trajectory”.

• Fig.11: All the runs are below the “safety trajectory” but we observe
that some runs are close to it.

• Fig.12: All the runs are above the “safety trajectory” and some are
closse to the vertical line corresponding to 10 individual.

• Fig.12: All the runs are widely above the “safety trajectory” and
reach ultimately the vertical line corresponding to 1 individual.

We observe that when ω decreases the strength of the randomness increases
and at the same time the width of the funnel decreases. These opposite
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Figure 12: ω = 107
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x
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Trajectoire de sécurité

Figure 13: ω = 106

trends are responsible for the sharp transition from extinction to persistence
as ω grows from 4.0 106 to 2.0 107.

6 Methodological comments

6.1 About the question of size of populations.

We are used to the fact that continuous differential models works rather well
in fluid dynamics and chemical kinetics despite the ultimate discrete nature
of fluids. We know that this efficiency is related to the very large number of
atoms in the process. Von Foerster, Lotka, Volterra and others popularized
the formalism of chemical kinetics in the domain of population dynamics
; they were certainly aware of the limits of such an approach but, in the
absence of computers and with a far less developed probability theory, it
was a way to progress.

Now, thanks to computers and probability theory, we have good models
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for small populations. Unfortunately these models are still expensive in
term of computer time and deterministic or diffusion models (stochastic
differential equations) with continuous variable are still unavoidable. In a
diffusion model the size of the population considered is directly related to
the strength (standard deviation) of the random term.

The example of prey-predator interaction presented here shows that the qual-
itative behavior of such models may depend strongly on the size of the pop-
ulation even when it is very large.

6.2 About the generality of the example

The deterministic prey-predator model (8) approximate the dynamics for
E[x] and E[y] of the birth and death model defined by (2), (3), (4) and its
diffusion approximation (6). This model (8) is the very classical determin-
istic prey-predator model which is proposed in every text book as a first
improvement of the Lotka-Volterra model. The separation of time scales for
prey and predator dynamics introduced by the presence of the parameter ε
in the first equation has the following classical explanation. Using a change
of time unit (8) rewrites :











dx

dτ
= [f(x)− µ(x)y]

dy

dτ
= ε(µ(x)− δ)y ; εm = δ

If we use the same mass unit for x and y then ε is a yield factor. A yield
factor like 0.02 is acceptable in ecology (one needs 50 kg. of dry grass to get
1 kg. of cow). For bigger ε like 0.1 the sharp transition that we presented
is still present but less spectacular.

As previously said we admit that our birth and death model is question-
able with respect to its biological signification. There are certainly many
different models for individual behavior with the same deterministic equa-
tion approximating the mean of the process. Since our point relies on the
diffusion approximation for such models our conclusions are valid as long as
such approximation is correct. In the case of birth and death processes it
works provided that the number of individuals is greater than 103-104 which
is our case. For more elaborated models at the individual scale (for instance
physiologically structured preys) this point remains to be considered.
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6.3 About the existence of “canard ” solutions in the model.

Let us say two words about “canard solutions ”. In a system with two time
scales like :











dx

dt
= 1

ε
[f(x, y)]

dy

dt
= g(x, y)

consider the curve Γ defined by the equation f(x, y) = 0 ; this curve split in
two regions :

• the attracting one made of points such that, in the neighborhood, the
vector field converges to Γ,

• the repelling one made of points where, in the neighborhood, the vector
field diverges from Γ,

separated by equilibria. A “canard ” solution is a solution of the differen-
tial system which follows, for some duration, the attracting part of Γ at a
distance of the order of ε and, after that, follows also the repelling part at
a distance of order ε. Some “ canards ” are robust which means that they
persist under small changes in the model, others are not.

The presence of a “safety funnel” like the one described in section 3 is
related to the presence of two “canard solutions” in (8).

• The solution t → (x(t) = 0, y(t) = y(0)e−mt) which corresponds to the
absence of prey,

• a solution following the cubic from the right to the left, which has no
analytic expression but which existence can be proved by continuity
arguments.

The first “canard” is robust but the second is not. This is the reason why,
the sharp transition between 4.0 106 and 2.0 107 individuals occurs for a
rather short interval of values of the parameter m. As a consequence, to
some extend, our example is exceptional, not “generic”. This will be the
case in most two dimensional systems, but this do not invalid our point
since robust “canard” (different from trivial “canard” corresponding to the
absence of some population) are generically present for dimension 3 and
more. An easy way to understand it is to imagine that our parameter m is
of the form :

m(t) = a+ b cos(r t)

which mimics, for instance, some seasonal dependence of the mortality rate.
This non autonomous system can be considered as a three dimensional sys-
tem and we see that the “canard” value for m is crossed periodically. We
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Figure 14: ω = 1012 109 (above left, right) ω = 108 107 (below left, right)

have done a simulation in the case :

m(t) = 0.6645− 0.047(1− cos(0.1 t))

and the results are shown on Fig 14. For ω = 1012 we observe no difference
between the deterministic model (x in blue, y in black) and the diffusion
approximation (x in red, y in black) ; for ω = 109 we observe a very slight
deviation between red and blue curves ; for ω = 108 we observe a very big
difference with now a mixed mode oscillation in the diffusion process ; for
ω = 107 the mixed mode oscillation leads to extinction.

6.4 About the inadequacy of deterministic models with con-

tinuous variables.

In population dynamics every body agrees that deterministic models are just
crude approximations of reality. Only individually based models, stochastic
by essence, can represent correctly the evolution of real ecosystems. The
example presented here is just one more argument against the danger of
using deterministic differential equations without care.

But it is by no mean an argument against the study of continuous deter-
ministic differential models of populations dynamics !

Actually there are many good reasons for continuing to explore systems
of ordinary differential equations :

• Some models are mathematically appealing. For instance the proof
of the exclusion principle for the most general model of competition
in the chemostat [12], despite its poor ecological contents, remains an
interesting mathematical challenge for mathematicians.
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• More interesting is the use of easily tractable mathematical models to
formalize some ecological issue and clarify the discussion. An inter-
esting example of this use of differential equations is given by the dis-
cussion on “ratio dependent” models initiated by the paper of Ardity
and Ginsburg [1].

• In our example, the understanding of the diffusion model, relies on
very particular and recently (see bibliographical comments) discov-
ered properties of deterministic differential systems : the “canard so-
lutions”.

By the way, far from being an article of propaganda against the use of
deterministic differential systems, our paper supports the importance of a
thorough understanding of the properties of ordinary differential systems in
population dynamics. In particular it shows that the classical deterministic
definition of persistence :

lim supx(t) = α > 0

must be enriched by some consideration about the “size” of α.

6.5 About computer simulations in dynamic population mod-

eling.

There is no doubt that our mathematical understanding of the phenomena
outlined in the present paper will considerably increase in the future. But
this will require high mathematical sophistication and time. Unfortunately,
in the mean time, biologist will use models and computer simulations which
are not completely safe. It urges to provide them with computer routines
which are safe of numerical artifacts associated to the true nature of a popu-
lation : a more or less large number of individuals. Considering our present
mathematical knowledge this certainly can be done in a comparatively short
time but it needs quite a lot of people working on the design of safe com-
puter software. This was done in the past for the needs of industry (for
instance digital wind tunnels), medicin (medical imaging) this could be the
case for microbial ecology but it depends of decisions at the level of scientific
policies.

7 Bibliographical comments.

7.1 The atto-fox problem.

The question of the inadequacy of deterministic continuous modeling is
firmly addressed by D. Mollison [10] in a paper which criticize the biological
interpretations of a previous paper by Murray et al. [11]. Let us quote from
[10]:
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As to the second wave, close inspection shows that the expla-
nation lies, not much in the determinism of the model, as in its
modeling of the population as continuous rather than discrete
and its associated inability to let the population variables reach
the value zero. Thus the density of infected at the place of ori-
gin of the epidemic never becomes zero, it only declines to a
minimum of around one atto-fox (10−18 of a fox, Hugues 1960)
per square kilometer. The model then allows this atto-fox to
start the second wave as soon as the susceptible population has
regrown sufficiently.

About ten years before Mollison, independently, within the framework of
chemical kinetics, D. Gillespie published a famous paper [6] : Exact Stochas-
tic Simulations of Coupled Differential Reactions from which our model in
the present paper is inspired.

It is a bit surprising that, at least to our knowledge, not much has been
done in this direction. The present paper is a development of a first draft [9]
with T. Sari where we noticed the importance of the presence of “canards
solutions” regarding the question of persistence in ecological models. The
paper [7] is also related to this atto-fox question in the case of the chemostat
with a slow varying flow rate. The paper [4] which is much more mathe-
matically oriented, considers the stochastic modeling of the chemostat ; it
focusses on the the approximation of jump processes by diffusion processes
and was a source of inspiration for the present paper.

7.2 Singular perturbations and “canard solutions”.

As already said, “canards” are specific solutions in singular perturbations of
differential equations. They where discovered in 1981 by a group students of
G. Reeb : E. Benoit, J-L. Callot, F. and M. Diener [2]. They studied them
within the framework of Non Standard Analysis which is most suitable for
modeling since it is a simple formal language where the use of infinitesi-
mals (in the sense where physicists use this term) is mathematically rigor-
ous. But they are now also studied by numerous mathematicians within
the framework of mached asymptotic expansion or the geometric singular
perturbation theory. The article [13] by Martin Wechselberger is a short and
nice introduction to “canards” and the paper [5] is a thorough survey about
our present understanding of “canards” with a focus on numerical questions.
The paper [8] is about Nonstandard Analysis applied to real word questions.

The question of considering the presence of noise in singularly perturbed
systems has been considered for long time. We refer to the recent paper [3]
devoted to the question of the consequence of noisy environment on “canard
solutions” and its bibliography. In particular the results contained in this
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paper allow to give asymptotic evaluations of the wide of the “safety funnel”
and many other quantity of interest but their mathematical sophistication
is out of the scope of the present paper.

8 Conclusion

Scientists are now much familiar with the phenomenon of “sensitivity to
initial conditions” which, in some deterministic dynamical systems, is the
cause of an impredictable long range behavior. The same phenomenon in
some deterministic differential equations modeling the dynamic behavior of
populations is the cause that a very small difference in an initial condition (or
along a trajectory) will make the future value of some variable very small
or not. This is the reason why, in the modeling of population dynamic,
it is a good thing to add some small noise to the deterministic process
because it does not cost too much computer time and may detect this kind
of phenomenon. But we have shown that the result may depend strongly
of the strength of the noise. By the way, when we do not have an accurate
estimation of the strength of the noise, it should be more secure to vary that
strength and make sure that the behavior is not strongly dependent on it.

9 Appendix

A Approximation by a diffusion process

Consider the process defined by (2), (3), (4). Since Z follows an exponential
law of parameter λ its expectation is 1

λ
and the number Nb of events during

the duration dt is approximately :

Nb ≈ dt/(
1

λ
) = dt λ = dt

ω

ε
(f(x) + µ(x)y)

We consider Nb as deterministic. If dt is small the variables x(t) and y(t)
are approximatively constant. Denote by Xi the random variable which is
equal to one if at the i-th event a predation occurs ; one has :















P (Xi = +1) =
µ(x(t)) y(t)

f(x(t)) + µ(x(t)) y(t)

P (Xi = 0) =
f(x(t))

f(x(t)) + µ(x(t)) y(t)

(9)

The number of predations during [t, t + dt] is, approximately,
∑Nb

1 Xi and

the number of birth is by the way Nb −
∑Nb

1 Xi and the increment of the

number of individuals is Nb − 2
∑Nb

1 Xi.

One has :
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Figure 15: Comparison between birth and death process and diffusion pro-
cess

• E[ Xi ] =
µ(x(t)) y(t)

f(x(t)) + µ(x(t)) y(t)

• E[

Nb
∑

1

Xi ] = dt
ω

ε
(f(x(t)) + µ(x(t))y(t))

µ(x(t)) y(t)

f(x(t)) + µ(x(t)) y(t)
=

dt
ω

ε
µ(x(t)) y(t)

• σ2(Xi) =
f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))2

• σ2(

Nb
∑

1

Xi ) = dt
ω

ε
(f(x(t)) + µ(x(t))y(t))

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))2

• σ2(

Nb
∑

1

Xi ) = dt
ω

ε

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))

From the central limit theorem we can approximate the sum by a Gaussian
and we write :

Nb
∑

1

Xi ≈ dt
ω

ε
µ(x(t)) y(t) +

√

dt
ω

ε

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))
Wt

where Wt is a Gaussian of 0 mean and 1 as standard deviation .

Since the variable x is the number of individuals divided by ω the incre-
ment of x is given by :

x(t+ dt)− x(t) =
1

ω
(Nb − 2

Nb
∑

1

Xi)

x(t+dt)−x(t) ≈ 1

ω

{

Nb − 2

{

dt
ω

ε
µ(x(t)) y(t) +

√

dt
ω

ε

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))
Wt

}}

and replacing by the value of Nb one get :
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x(t+dt)−x(t) ≈ dt
1

ε
[f(x(t))−µ(x(t)) y(t)]−

√

dt
4

ωε

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))
Wt

Let us compute now the increment of y. According to (4) we have :

y(t+ dt) = y(t)− dtmy(t) + ε{number of prey death during [t, t+ dt]}

which, according to the previous notations is :

y(t+ dt)− y(t) = −dtmy(t) +
ε

ω

Nb
∑

1

Xi

and introducing Wt one gets :

y(t+ dt)− y(t) ≈ dt[µ(x(t))−m]y(t) +

√

dt
ε

ω

f(x(t))µ(x(t)) y(t)

(f(x(t)) + µ(x(t)) y(t))
Wt

On Fig.15 one sees a comparison between the birth and death process (red
trajectories) and its approximation by a diffusion. From the left to the right
we have ω = 106, ω = 105, ω = 104. The representation is both in (x, y)
and (ξ, y) variables. We have 10 runs from the initial condition (0.2 , 0.6).
The two red vertical lines correspond to a population between 1 and 1000.

B Exponentially small values

Let us write explicitly system (8) as :











dx

dt
=

1

ε
[0.5x(2− x)− x

0.4 + x
y]

dy

dt
= (

x

0.4 + x
−m)y

(10)

In the variables (ξ, y) the system writes :















dξ

dt
= [0.5(2− (ξ/ε))− 1

0.4 + (ξ/ε)
y]

dy

dt
= (

ξ/ε)

0.4 + ξ/ε)
−my

which is approximated, when ξ << ε, by :











dξ

dt
= [1− 2.5y]

dy

dt
= −my

(11)
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Take as initial condition (x0, y0) = (−0.1, 0.9) (which corresponds to trajec-
tory no 1 in Fig. 7) and integrate. It comes that the minimum ξ∗ for ξ(t) is
attained for the value t∗ of t for which y(t∗) = 0.4 and this value turns out
to be approximately −1. But :

x∗ = e
ξ∗

0.02 ≈ e−40 ≈ 10−17

The minimum depends much of the value of y0 : The largest is y0 the smallest
is the minimum. This explain why in Fig.8 the minimum corresponding to
trajectory 6 is much bigger.

C Numerical simulations

We did not use any solver. A specific software was written in order to be
sure that there were not artifacts caused by erroneous uses of some sophis-
ticated numerical scheme. Trajectories of the differential equations (8) are
obtained using the Euler scheme defined by (7). We prefer this scheme to
any more sophisticated scheme used to simulate differential systems since it
is the exact recurrence scheme which approximate for E[x(t)] and E[y(t)] of
the diffusion process (6).

We fixed dt = 10−4 since we observed that for this value solutions of (7)
are indistinguishable from those with dt = 10−5.

The birth and death process defined by (2), (3), (4) takes too long time
to be simulated when λ is very large (in the case of our computer ω > 106)
and this is the reason why we used a diffusion approximation which is a
perfect approximation for large values. Since we where mainly interested
in the funnel phenomenon associated to “canard ” it was not necessary to
switch to the true birth and death process for small values of λ. But if one is
interested by figures like the mean of the extinction time it should be better
to switch to some suitable jump process.
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