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CONSTRUCTION OF A k-COMPLETE ADDITION LAW ON

ABELIAN SURFACES WITH RATIONAL THETA

CONSTANTS

CHRISTOPHE ARENE AND ROMAIN COSSET

Keywords: theta functions, Jacobian, genus 2 curve, addition law, com-
pleteness, embedding, line bundle, finite field.

Abstract. In this paper we explain how to construct Fq-complete ad-
dition laws on the Jacobian of an hyperelliptic curve of genus 2. This
is usefull for robustness and is needed for some applications (like for
instance on embedded devices).

1. Introduction

Cryptographic protocols using abelian varieties, specifically elliptic curves
and abelian surfaces, are a promising way of research. They are based on the
discrete logarithm problem for which the computation of the addition of two
points is central. In particular, one pays attention to two aspects. Obviously,
the number of operations needed to compute the equations must be as small
as possible. It appears that their domain of definition has also to be taken
into account. Indeed, with the development of embedded cryptosystems, the
theoretical resistance of the discrete logarithm problem is no longer sufficient
to ensure the protocol security, we also have to deal with physical attacks.
For instance the implementation of the usual formulæ on the Weierstraß
model of an elliptic curve is vulnerable against side-channel attacks due to
the use of different formulæ for a generic addition or a doubling (see [LM05]
for a possible alternative on genus 2 curve cryptosystems).

In this paper we only consider this second problem. Lange and Rup-
pert [LR85] first considered complete sets of addition laws, i.e. for all P ,
Q in A

(

k
)

there is an addition law defined at (P,Q) (see Definition 1.4).
An addition law is said to be k-complete if it is defined over A × A(k).
Examples of k-complete addition laws in genus 1 included the Edwards
curves [Edw07, BL07] or the twisted Hessian curves [BKL09, FJ10]. See
also [Koh11] for a large study of the structure of the space of addition laws
on elliptic curves and the completeness of addition laws acted on by a torsion
subgroup. Our aim is to find a k-complete addition law on the Jacobian of
genus 2 hyperelliptic curves.

In the first section we introduce the theta coordinates on the Jacobian
of an hyperelliptic curve and explain the link with the classical Mumford
coordinates. We then sketch the theory of addition laws. In section 2 we
explain how to construct in practice an Fq-complete addition law.

The authors acknowledge the financial support by grant ANR-09-BLAN-0020-01 from
the French ANR and the AXA Research Fund for the PhD grant of the first author.
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2 CHRISTOPHE ARENE AND ROMAIN COSSET

1.1. Theta functions of level 4, Link with genus 2 curves. In this sub-
section, we are interested in arithmetic aspects of the Jacobian of a genus 2
curve. We work over C to simplify the introduction and the use of theta
functions. But the results remain true over a non binary finite field (see Re-
mark 1.3). For the classical theory of theta functions, the reader is referred
to [Mum83, Mum84]. Let Ω be an element of the Siegel half-space:

{

Ω ∈ Mat2×2(C),
tΩ = Ω, ℑ(Ω) > 0

}

,

the classical Riemann theta function is defined by

ϑ (z,Ω) =
∑

n∈Z2

exp
(

iπ tnΩn+ 2iπ tn z
)

.

For all elements a et b of Q2, the theta function with characteristics a, b is
defined by

ϑ [ ab ] (z,Ω) = exp
(

iπ taΩa+ 2iπ ta (z + b)
)

ϑ (z +Ωa+ b,Ω)

=
∑

n∈Z2

exp
(

iπ t(n + a)Ω(n+ a) + 2iπ t(n+ a) (z + b)
)

.

The characteristics are considered modulo Z2 since for all α, β in Z2 we have

ϑ
[ a+α
b+β

]

(z,Ω) = ϑ [ ab ] (z,Ω) exp(2iπ
taβ)

We will consider theta functions of level 4 which means that the character-
istics live in 1

2Z
2/Z2.

A classical result of Lefschetz states that the theta functions of level 4 give
an embedding of C2/ΩZ2 + Z2 into P15(C). For a proof see [Mum70, p. 29].

For the sake of readability we use the following notations:

Notation 1.1 ([Gau07, Section 7.1]). We index the sixteen theta functions
of level 4 as follow:

ϑ1(z) = ϑ
[

t(0 0)
t(0 0)

]

(z,Ω) , ϑ2(z) = ϑ
[ t(0 0)

t( 1

2

1

2
)

]

(z,Ω) ,

ϑ3(z) = ϑ
[ t(0 0)

t( 1

2
0)

]

(z,Ω) , ϑ4(z) = ϑ
[ t(0 0)

t(0 1

2
)

]

(z,Ω) ,

ϑ5(z) = ϑ
[

t( 1

2
0)

t(0 0)

]

(z,Ω) , ϑ6(z) = ϑ

[

t( 1

2
0)

t(0 1

2
)

]

(z,Ω) ,

ϑ7(z) = ϑ
[

t(0 1

2
)

t(0 0)

]

(z,Ω) , ϑ8(z) = ϑ
[

t( 1

2

1

2
)

t(0 0)

]

(z,Ω) ,

ϑ9(z) = ϑ

[

t(0 1

2
)

t( 1

2
0)

]

(z,Ω) , ϑ10(z) = ϑ

[

t( 1

2

1

2
)

t( 1

2

1

2
)

]

(z,Ω) ,

ϑ11(z) = ϑ

[

t(0 1

2
)

t(0 1

2
)

]

(z,Ω) , ϑ12(z) = ϑ

[

t(0 1

2
)

t( 1

2

1

2
)

]

(z,Ω) ,

ϑ13(z) = ϑ

[

t( 1

2
0)

t( 1

2
0)

]

(z,Ω) , ϑ14(z) = ϑ

[

t( 1

2

1

2
)

t( 1

2
0)

]

(z,Ω) ,

ϑ15(z) = ϑ

[

t( 1

2
0)

t( 1

2

1

2
)

]

(z,Ω) , ϑ16(z) = ϑ

[

t( 1

2

1

2
)

t(0 1

2
)

]

(z,Ω) .

Remark that the first ten theta functions are the even ones and the last six
are the odd ones. For simplicity, we drop the Ω. The evaluation at 0 of these
functions are called theta constants. We write them ϑi instead of ϑi(0).
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Consider an hyperelliptic curve C of genus 2. Associated to this curve is
its period matrix Ω which is an element of the Siegel half-space. The Abel-
Jacobi map is an analytic isomorphism between Jac(C) and C2/ΩZ2 + Z2.

The Thomae formulæ [Tho70] (see also [Mum84, III.8]) link the 4th power
of the theta constants with the parameters of the curve. Up to isomorphisms,
we can recover the theta constants by taking well chosen roots [CR11]. As-
sume that the curve is in Rosenhain form:

C : y2 = f(x) = x(x− 1)(x− λ)(x− µ)(x− ν),

then the ordering {0, 1, λ, µ, ν} leads to the following relations:
(

ϑ5

ϑ1

)4

=
µ

λν
,

(

ϑ7

ϑ1

)4

=
µ (ν − 1) (λ− µ)µ

ν (µ− 1) (λ− ν)
,

(

ϑ3

ϑ1

)4

=
µ (ν − 1) (λ− 1)

λν (µ− 1)
,

(

ϑ4

ϑ1

)4

=
µ (λ− 1) (ν − µ)

λ (µ− 1) (ν − λ)
.

We can take a square root of the preceeding quotients in an arbitrary way.
The other squares of theta constants of level 4 are given by the formulæ:

ϑ2
6 =

1

ν

ϑ2
1ϑ

2
4

ϑ2
5

, ϑ2
8 =

1

λ

ϑ2
1ϑ

2
7

ϑ2
5

,

ϑ2
2 = (ν − 1)

ϑ2
5ϑ

2
6

ϑ2
3

, ϑ2
9 = (λ− 1)

ϑ2
5ϑ

2
8

ϑ2
3

,

ϑ2
10 =

ϑ2
1ϑ

2
2 − ϑ2

3ϑ
2
4

ϑ2
8

,

where arbitrary square roots can be taken. Note that we have to take a field
extension to take these roots.

We need to have an explicit algebraic morphism between Jac(C) and the
image in P15(C) of the embedding by the theta functions of level 4. These
formulæ can be found in [CR11] for the genus 2 case and in [Cos11] for the
general case. Let {a1, . . . , a5} be the ordered roots of f and let

η1 :=
t
[

1
2 , 0; 0, 0

]

, η2 :=
t
[

1
2 , 0;

1
2 , 0

]

, η3 :=
t
[

0, 12 ;
1
2 , 0

]

,

η4 :=
t
[

0, 12 ;
1
2 ,

1
2

]

, η5 :=
t
[

0, 0; 12 ,
1
2

]

, η∞ := t[0, 0; 0, 0] .

For a subset S in {1, . . . , 5,∞}, we set

ηS =
∑

i∈S

ηi,

and we define η′S and η′′S to be the first and second part of ηS . This notation
comes from the fact that if we denote ∞ the point at infinity of C and Ai the
point with affine coordinate equal to (ai, 0) for i = 1, . . . , 5 and A∞ = ∞,
then the divisor

∑

i∈S(Ai) − #S(∞) is mapped to Ωη′S + η′′S by the Abel-
Jacobi map.

Let ◦ denote the symmetric difference of two sets. All theta functions
of level 4 can be written as ϑ [ηU◦V ] with U := {1, 3, 5} and a subset V of
{1, . . . , 5} of odd cardinality. For each such subset, Van Wamelen [vW98]



4 CHRISTOPHE ARENE AND ROMAIN COSSET

defines the function tV (z) to be tV (z) = fV ϑ [ηUoV ] (z), where fV is a con-
stant which is fV = ϑ [0] /ϑ [ηU◦V ] for the even functions (i.e. #V = 3) and
which is, for the others,

f1 =
−1√

a2 − a1

ϑ1ϑ5ϑ6ϑ8

ϑ2ϑ3ϑ9ϑ10
, f2 =

−1√
a2 − a1

ϑ5ϑ6ϑ8

ϑ4ϑ7ϑ10
,

f3 =
−1√

a2 − a1

ϑ1ϑ6

ϑ2ϑ4
, f4 =

1√
a2 − a1

ϑ5

ϑ3
,

f5 =
−1√

a2 − a1

ϑ1ϑ8

ϑ7ϑ9
, f∅ = f{1,2,3,4,5} =

−1
√
a2 − a1

3

ϑ2
5ϑ

2
6ϑ

2
8

ϑ2ϑ3ϑ4ϑ7ϑ9ϑ10
.

The following theorem is a sum up of results from Van Wamelen.

Theorem 1.2. Let D = (P1) + (P2) − 2(∞) be a non theta divisor which
corresponds to a vector z ∈ C2/(ΩZ2 +Z2). Let (xi, yi) be the coordinates of
the point Pi, i = 1, 2. Write (u, v) for the Mumford’s polynomials of D. For
k ∈ {1, . . . , 5}, and l,m two distinct elements of {1, . . . , 5} \ {k} we have

u(ak) =
t2k(z)

t2∅(z)
, v(ak) =

Yk,m − Yk,l

al − am
,

Yl,m :=
y1(x2 − al)(x2 − am)− y2(x1 − al)(x1 − am)

x2 − x1
= c1,2

tl(z)tm(z)t{l,m}(z)

t3∅(z)
,

Y := y1y2 =
5
∏

l=1

tl(z)

t∅(z)
,

where c1,2 is just a sign ±1.

By evaluating u at the roots of f , we obtain formulæ for computing all
the ϑi(z)

2/ϑ16(z)
2 with 1 ≤ i ≤ 16. To get the theta functions of level 4, we

will use the doubling formulæ [Gau07]:

4ϑ [ ab ] (2z) ϑ [ ab ]ϑ [ 00 ]
2
=

∑

α,β∈ 1

2
Z2/Z2

exp
(

−4iπtaβ
)

ϑ
[ a+α
b+β

]

(z)2 ϑ [ αβ ] (z)
2 ,

4ϑ [ ab ] (2z)ϑ [ a0 ]ϑ
[

0
b

]

ϑ [ 00 ] =
∑

α,β∈ 1

2
Z2/Z2

exp
(

−4iπtaβ
)

ϑ
[ a+α
b+β

]

(z)ϑ
[ a+α

β

]

(z)ϑ [ α
b+β ] (z)ϑ [ αβ ] (z) .

The first formula allows to recover the even theta functions. For the odd
theta functions, we will use the second formula. The products on the right
side can be expressed in terms of the constants fV and the functions Yl,m, Y
and u(ai). Since we need to divide by some u(ai), we make the hypothesis
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that the divisor is not of 2-torsion. For instance, the second formula gives

ϑ16(2z)ϑ1ϑ4ϑ8 = ϑ1(z)ϑ4(z)ϑ8(z)ϑ16(z) − ϑ9(z)ϑ12(z)ϑ13(z)ϑ15(z)

+ ϑ5(z)ϑ6(z)ϑ7(z)ϑ11(z) − ϑ2(z)ϑ3(z)ϑ10(z)ϑ14(z),

ϑ16(2z)ϑ1ϑ4ϑ8 =
t2,4(z)t2,3(z)t3,4(z)t∅(z)

f2,4f2,3f3,4f∅
+

t1,5(z)t2(z)t4(z)t3(z)

f1,5f2f4f3

+
t3,5(z)t4,5(z)t2,5(z)t1(z)

f3,5f4,5f2,5f1
+

t1,3(z)t1,4(z)t1,2(z)t5(z)

f1,3f1,4f1,2f5
,

ϑ16(2z)ϑ1ϑ4ϑ8

t4∅(z)
=

Y2,4Y2,3Y3,4

u(a2)u(a3)u(a4)

1

f2,4f2,3f3,4f∅
+

Y1,5Y

u(a1)u(a5)

1

f1,5f2f3f4

+
Y2,5Y3,5Y4,5Y

u(a2)u(a3)u(a4)u(a5)2
1

f2,5f3,5f4,5f1

+
Y1,2Y1,3Y1,4Y

u(a1)2u(a2)u(a3)u(a4)

1

f1,2f1,3f1,4f5
.

Remark 1.3. Although we have defined our theta function over C, our
results apply to other fields (of characteristic different from 2). To prove this
over a finite field (the relevant case in cryptography), we can use Lefschetz’s
principle and reduction to prove all the results for ordinary varieties. In
general we can always use the algebraic theory of theta functions [Mum66,
Mum67a, Mum67b].

1.2. Addition laws. Now, we focus on the notion of addition law. Let k

be a field and A/k be an abelian variety of dimension g. We assume an
embedding of A in some projective space Pr is fixed and given by a very
ample line bundle L = L(D) for D an effective divisor. We denote by
ι : A →֒ Pr the corresponding morphism and also assume in the sequel that
this embedding is projectively normal. Recall that by definition this means
that for every n ≥ 1 the restriction map H0

(

Pr,OPr(n)
)

→ H0(A,Ln) is
surjective. This is the case in the classical settings where L = Ln0

0 with L0

an ample line bundle and n0 ≥ 3 [BL04, p.187].
Let I1 (resp. I2) be the homogeneous ideal in k[X0, . . . ,Xr] (resp. in

k[Y0, . . . , Yr]) defined by A. The group law

µ : A×A → A, (X,Y ) 7→ X + Y

can be locally described by bihomogenous polynomials. More precisely, an
addition law p of bidegree (m,n) on ι(A) ⊂ Pr is the data of r+1 polynomials

p0, . . . , pr ∈ k[X0, . . . ,Xr]/I1 ⊗ k[Y0, . . . , Yr]/I2,

not all zero, bihomogeneous of degree m in X0, . . . ,Xr and degree n in
Y0, . . . , Yr such that we have

ι ◦ µ (X,Y ) =
(

p0
(

ι(X), ι(Y )
)

: . . . : pr
(

ι(X), ι(Y )
)

)

for all points (X,Y ) ∈ A × A
(

k
)

where these polynomials are not all zero.
The set of points where an addition law is not defined is called its exceptional
subset. It will be convenient for our purpose in Section 2 to use the structure
of k-vector space of addition laws having fixed bidegree. In this sense we
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need to define the zero addition law (independent of the bidegree) given by
zero polynomials. It is denoted by 0 and its exceptional subset is A×A

(

k
)

.
In this paper we are interested in the construction of a single addition law

which describes the group morphism µ on A×A (k) where k is a non binary
finite field and A/k an abelian surface (i.e. the Jacobian of a genus 2 curve)
embedded in P15.

Definition 1.4. A set S of addition laws is said to be k-complete if for any
point (X,Y ) ∈ A × A (k) there is an addition law in S defined on an open
subset containing (X,Y ). The set S is said to be complete if the previous
property is true over k. If S = {p} is a singleton, we say the addition law p

is k-complete (or complete when k = k).

Given m,n ≥ 2 the following proposition interprets the addition laws of
bidegree (m,n) as global sections of a certain line bundle Mm,n. A more
explicit description of this link can be found in [AKR11, Section 2].

Proposition 1.5 ([LR85, Lemma 2.1]). Let π1, π2 : A × A → A be the
projection maps on the first and second factor. There is an addition law
(respectively a complete set of addition laws) of bidegree (m,n) on A with
respect to the embedding in Pr determined by L if and only if

H0(A×A,Mm,n) 6= 0

(respectively the linear system | Mm,n | is base point-free), where

Mm,n = µ∗L−1 ⊗ π∗
1Lm ⊗ π∗

2Ln.

The next lemma is specific to the biquadratic case (m=n=2) and gives a
nice description of the line bundle M2,2 which have no equivalent statement
for others bidegrees that we currently know.

Lemma 1.6 ([LR85, Propositions 2.2 and 2.3]). Let L be an ample line
bundle on A and δ : A×A → A be the difference map (X,Y ) 7→ X − Y .

1) if L is not symmetric then H0(A×A,M2,2) = 0.
2) if L is symmetric, then M2,2 = δ∗L. Moreover M2,2 is base point-free

and h0(A×A,M2,2) = h0(A,L).

We end this section with the statement of the existence of the addition
law we want to construct.

Proposition 1.7 ([AKR11, Statement and Proof of Theorem 4.8]). Let k =
Fq, q ≥ 7, be a finite field and C/Fq be a genus 2 curve. There exists an
Fq-complete biquadratic addition law on the embedding of Jac(C) in P15 by
4Θ. Moreover its exceptional subset is explicitely determined.
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2. Construction

2.1. A basis of biquadratic addition laws on Jac(C) →֒ P
15. Rie-

mann’s addition formulæ are widely known and common in the litterature.
We use the general formulæ given by Baily [Bai62] and apply it to obtain
the following formulæ for theta function of level 4.

Proposition 2.1 ([Bai62, Section 2.2, Formulæ (9)]). Let ak, bl ∈ 1
2Z

2/Z2,
k, l = 1, . . . , 4. Assume we have

−a1 + a2 + a3 + a4 = 2a, −b1 + b2 + b3 + b4 = 2b

with a and b in 1
2Z

2/Z2 then for all z1, z2 in C2 we have

4ϑ
[ a1
b1

]

(z1 + z2)ϑ
[ a2
b2

]

(z1 − z2)ϑ
[ a3
b3

]

(0)ϑ
[ a4
b4

]

(0) =
∑

α,β∈ 1

2
Z2/Z2

ϑ
[

a1+a+α
b1+b+β

]

(z2)ϑ
[

a2−a+α
b2−b+β

]

(z2)ϑ
[

a3−a+α
b3−b+β

]

(z1)ϑ
[

a4−a+α
b4−b+β

]

(z1).

For all a1, a2, b1, b2 in 1
2Z

2/Z2, there exists a3, a4, b3, b4 in 1
2Z

2/Z2 verifying

the condition of the proposition and such that the constant ϑ
[ a3
b3

]

ϑ
[ a4
b4

]

is
non zero. We now go back to notation 1.1.

Remark 2.2. The embedding Jac(C) →֒ P15 is given by the line bundle
L = L(4Θ). From now on we cosider the functions ϑi as global sections of
this line bundle.

Remark 2.3. The formulæ above express for i, j = 1, . . . , 16 the product
ϑi(z1 + z2)ϑj(z1 − z2) as a biquadratic bihomogeneous polynomial in the
level 4 theta functions

(

ϑ1(z1), . . . , ϑ16(z1)
)

and
(

ϑ1(z2), . . . , ϑ16(z2)
)

. Note
also that they are defined over the field of definition of the theta constants.

Next, fixing the index j, if z1, z2 are such that ϑj(z1−z2) 6= 0, there exists
biquadratic bihomogeneous polynomials pi,j such that

ϑi(z1 + z2)ϑj(z1 − z2) = pi,j
(

(ϑ1(z1), . . . , ϑ16(z1)), (ϑ1(z2), . . . , ϑ16(z2))
)

.

This allows us to construct an addition law pj = (p1,j , . . . , p16,j) defined
outside the exceptional subset δ∗(ϑj)0. Indeed, let

Xk =
(

ϑ1(zk) : · · · : ϑ16(zk)
)

∈ Jac(C), k = 1, 2,

be two points such that X1 − X2 6∈ (ϑj)0 (or satisfying ϑj(z1 − z2) 6= 0).
We have

ι ◦ µ (X1,X2) =
(

ϑ1(z1 + z2) : · · · : ϑ16(z1 + z2)
)

=
(

ϑj(z1 − z2)ϑ1(z1 + z2) : · · · : ϑj(z1 − z2)ϑ16(z1 + z2)
)

= pj(X1,X2).

Notation 2.4. For j = 1, . . . , 16, we denote pj the addition law on Jac(C)
whose exceptional subset is δ∗(ϑj)0 presented above.

Clearly the set of addition laws {p1, . . . , p16} is complete. Moreover we
have the following proposition:
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Proposition 2.5. Let C be a genus 2 curve. The set {p1, . . . , p16} is a basis
of the set of biquadratic addition laws on Jac(C) →֒ P15.

Proof. We have dimk

(

L(4Θ)
)

= 16, so by Lemma 1.6 case 2) we only need
to show that the family is free. Let assume there exists a linear relation

∑

λjpj = 0.(1)

Let denote by OJ the neutral element of Jac(C), then for all X =
(

ϑ1(z) : · · · :
ϑ16(z)

)

∈ Jac(C), the relation
∑

λjpj(X,OJ ) = 0 gives
∑

λjpi,j(X,OJ ) = 0
for all i = 1, . . . , 16. Moreover there exists a k0 such that ϑk0(z) 6= 0, so

0 =
∑

λjpk0,j(X,OJ ) =
∑

λjϑk0(z + 0)ϑj(z − 0) = ϑk0(z)
∑

λjϑj(z).

The dependance in k0 being eliminated we finally get
∑

λjϑj = 0

which is wrong because the family {ϑj, j = 1, . . . , 16} is a basis for the theta
functions of level 4. Hence the assumption of the existence of the relation (1)
is not true, and {p1, . . . , p16} is a free family. �

2.2. Idea of the construction. From now on and without mention of the
contrary we assume that k = Fq, where q is greater than 7 and is odd. In
the previous subsection we built a basis for the space of addition laws we
are interested in. We want here to construct the addition law announced
in Proposition 1.7. We denote it p. According to Lemma 1.6 case 2) its
exceptional subset is of the form δ∗D with D ∈ Div(Jac(C)) and D ∼ 4Θ.
We recall below the expression of D but suppose here we know it. Our aim
is to find a projective solution (λ1 : · · · : λ16) for the relation

p =
∑

λjpj(2)

using an interpolation method. To get this, let X ∈ D. As we want p not to
be defined on δ∗D, in particular at (X,OJ ), we search for solutions of the
linear system

0 =
∑

λjpj(X,OJ ).

Varying X ∈ D we expect to get a linear system of rank 15. Note that
the solution is projective because the exceptional subset of an addition law
defines it up to scalar multiplications.

We recall here the construction of the divisor D ∈ Divk
(

Jac(C)
)

intro-
duced above. The assumption q ≥ 7 implies the existence of a degree 4 closed
point of the form

{

P0, P
σ
0 , P0, P0

σ}
, with σ the Frobenius over Fq. Let define

α0 := (P0) + (P σ
0 ) − 2(∞) and for l = 0, 1, 2, αl+1 := ασ

l . Then the divisor
D =

∑

Θαl
has the desired properties to induce an Fq-complete biquadratic

addition law (namely it is k-rational without k-rational points and linearly
equivalent to 4Θ [AKR11]), where Θαl

, l = 0, . . . , 3, is the translation by αl

of the theta divisor Θ on Jac(C). In the sequel, D is taken of this form.
The following proposition allows to avoid the computation of the last

six coefficients (the odd ones) and then to reduce significantly the running
time. Recall that the addition laws pj have δ∗(ϑj)0 as exceptional subset
(Notation 2.4).
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Theorem 2.6. Assume k = Fq, with q ≥ 7 and (2, q) = 1. Let p be the
addition law introduced above and p =

∑

λjpj the desired linear relation.
We have λ11 = · · · = λ16 = 0.

Proof. Remark that by construction for all X ∈ D we have −X ∈ D.
We have

∀X ∈ D, p(X,OJ ) = p(OJ ,X) = 0.(3)

Using the parity of the theta functions ϑj we get that the second equality
becomes

p(OJ ,X) =
∑

λjpj(OJ ,X) =
10
∑

j=1

λjpj(X,OJ )−
16
∑

j=11

λjpj(X,OJ ).

We use it in the formulæ (3) and are led to consider the two next equations

∀X ∈ D,

10
∑

j=1

λjpj(X,OJ ) = 0, and

16
∑

j=11

λjpj(X,OJ ) = 0.(4)

Let us define the two biquadratic addition laws appearing here

p1 :=

10
∑

j=1

λjpj , p2 :=

16
∑

j=11

λjpj .

Let δ∗D1, δ
∗D2, with D1,D2 be two divisors on Jac(C), be their respective

exceptional subsets. We want to prove that p2 is zero. They verify for
k = 1, 2 either Dk ∼ 4Θ or pk = 0. The formulæ (4) imply D ≤ Dk, hence
either D = Dk

(

and then pk = λp for some λ ∈ Fq

)

or pk = 0 for k = 1, 2.
But p2(OJ , OJ ) = 0 because the theta constants involved are zero, moreover
the k-rational point (OJ , OJ) is not an element of δ∗D, hence the second
addition law p2 is zero. A fortiori λ11 = · · · = λ16 = 0 and p = p1. �

Remark 2.7. We did not get more information on the coefficients λj using
that p(−X,OJ ) = p(OJ ,−X) = 0 for X ∈ D.

2.3. Numerical results. AVIsogenies is a Magma package for working
with genus 2 curves (and more generally with abelian varieties) using theta
functions1. Using some already implemented functions, we wrote codes to
compute the coefficients λi given an hyperelliptic curves. This code is now
part of the AVIsogenies package.

Example 2.8. Consider the curve

C : y2 = f(x) = x5 + 5782x4 + 2517x3 + 2312x2 + 9402x

defined over F10007. The non-zero associated theta constants are

ϑ1 = 1, ϑ2 = 5242, ϑ3 = 7727, ϑ4 = 678,
ϑ5 = 3926, ϑ6 = 7092, ϑ7 = 5628, ϑ8 = 7556,
ϑ9 = 3666, ϑ10 = 904.

1It can be found at http://avisogenies.gforge.inria.fr/.

http://avisogenies.gforge.inria.fr/
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Let

K =F10007[X]/X2 + 1 ≃ F100072

and x0 = 8310 + 2164
√
−1. The point P0 =

(

x0,
√

f(x0)
)

is a point of

the curve C (F100074) which doesn’t belong to C (F100072). The corresponding
non-zero λi are given by

λ1 = 1, λ2 = 6924, λ3 = 1940, λ4 = 9380,
λ5 = 5155, λ6 = 1278, λ7 = 7239, λ8 = 1761,
λ9 = 6859, λ10 = 5891.

This compution took less than a minute. It is possible to check that the
addition law is F10007-complete by an exhaustive computation. Note that it
is enough to check p(D,OJ ) = D for all divisor ±D of Jac(C) (F10007). This
verification took almost a week.

Concerning the efficiency of these addition laws, it is clearly not to their
advantage when we look at p1 expressed below in Example A.1. One verifies
in this appendix that the total cost to compute the desired addition law p is

736m + 32s+ 124mϑ,

where m denotes a multiplication, s is for a squaring and mϑ represents
a multiplication by a coefficient that only depends on the theta constants,
which can be precomputed.

In comparison, the classical representation of points in Jac(C) as elements
of the divisor class group of C and the use of Mumford’s representation
and Cantor’s algorithm provides extremly cheaper costs, e.g. 47m+4s for a
general addition in even characteristic (see [Lan05]). There also exist pseudo-
addition laws on the Kummer surface of the variety that can be computed
much faster [Duq04, Gau07].

Appendix A. Operation count

We start by computing the addition laws pi, i = 1, . . . , 10 and then use
the Formula (2). We remark that there are eight bihomogeneous monomials
appearing in pi,j, i 6= j. Also, pi,j and pj,i are defined by the same monomials
up to a sign; this is the case for the pi,i, i = 1, . . . , 10, too. Now we describe
the cost of their computation. We do not take into account additions or sign
changes costs. Given two points

(

X1 : · · · : X16

)

and
(

Y1 : · · · : Y16

)

we
first compute all the products XiXj and YiYj, this costs 240m+32s and the
products XiXjYiYj in 256m. These monomials are exactly the one included
in the ten first polynomials of the addition laws pi (see Example A.1), so
the polynomials pi,i are calculated in 10mϑ and the pi,j, 1 ≤ i, j ≤ 10, in
(10
2

)

mϑ = 45mϑ. For the remaining pi,j with 11 ≤ i ≤ 16 and 1 ≤ j ≤ 10,
we point out that if a monomial Xi0Xj0Yk0Yl0 appears, so does Xk0Xl0Yi0Yj0

with the same sign. We use then the relation

Xi0Xj0Yk0Yl0 +Xk0Xl0Yi0Yj0 =
(

Xi0Xj0 +Xk0Xl0

)(

Yi0Yj0 + Yk0Yl0

)

−Xi0Xj0Yi0Yj0 −Xk0Xl0Yk0Yl0
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to calculate each pi,j with 4m+1mϑ. Hence, the ten addition laws p1, . . . , p10
can be computed in 736m + 32s + 115mϑ. Finally the computation of the
k-complete addition law p requires the 9 multiplications by the coefficients
λi which also can be precomputed, so we count them as 9mϑ.

Example A.1. As an illustrative exemple, we present the addition law p1.

p1,1 =
1

ϑ2

1

(

X
2

1Y
2

1 +X
2

2Y
2

2 +X
2

3Y
2

3 +X
2

4Y
2

4 +X
2

5Y
2

5 +X
2

6Y
2

6 +X
2

7Y
2

7 +X
2

8Y
2

8 +X
2

9Y
2

9 +

X
2

10Y
2

10 +X
2

11Y
2

11 +X
2

12Y
2

12 +X
2

13Y
2

13 +X
2

14Y
2

14 +X
2

15Y
2

15 +X
2

16Y
2

16

)

,

p2,1 =
2

ϑ1ϑ2

(

X1X2Y1Y2 + X3X4Y3Y4 + X5X15Y5Y15 + X6X13Y6Y13 + X7X12Y7Y12 +

X8X10Y8Y10 +X9X11Y9Y11 +X14X16Y14Y16

)

,

p3,1 =
2

ϑ1ϑ3

(

X1X3Y1Y3 + X2X4Y2Y4 + X5X13Y5Y13 + X6X15Y6Y15 + X7X9Y7Y9 +

X8X14Y8Y14 +X11X12Y11Y12 +X10X16Y10Y16

)

,

p4,1 =
2

ϑ1ϑ4

(

X1X4Y1Y4 + X2X3Y2Y3 + X5X6Y5Y6 + X7X11Y7Y11 + X8X16Y8Y16 +

X9X12Y9Y12 +X10X14Y10Y14 +X13X15Y13Y15

)

,

p5,1 =
2

ϑ1ϑ5

(

X1X5Y1Y5 − X2X15Y2Y15 − X3X13Y3Y13 + X4X6Y4Y6 + X7X8Y7Y8 −

X9X14Y9Y14 −X10X12Y10Y12 +X11X16Y11Y16

)

,

p6,1 =
2

ϑ1ϑ6

(

X1X6Y1Y6 − X2X13Y2Y13 − X3X15Y3Y15 + X4X5Y4Y5 + X7X16Y7Y16 +

X8X11Y8Y11 −X9X10Y9Y10 −X12X14Y12Y14

)

,

p7,1 =
2

ϑ1ϑ7

(

X1X7Y1Y7 − X2X12Y2Y12 + X3X9Y3Y9 − X4X11Y4Y11 + X5X8Y5Y8 −

X6X16Y6Y16 −X10X15Y10Y15 +X13X14Y13Y14

)

,

p8,1 =
2

ϑ1ϑ8

(

X1X8Y1Y8 + X2X10Y2Y10 − X3X14Y3Y14 − X4X16Y4Y16 + X5X7Y5Y7 −

X6X11Y6Y11 −X9X13Y9Y13 +X12X15Y12Y15

)

,

p9,1 =
2

ϑ1ϑ9

(

X1X9Y1Y9 − X2X11Y2Y11 + X3X7Y3Y7 − X4X12Y4Y12 + X5X14Y5Y14 −

X6X10Y6Y10 +X8X13Y8Y13 −X15X16Y15Y16

)

,

p10,1 =
2

ϑ1ϑ10

(

X1X10Y1Y10 + X2X8Y2Y8 −X3X16Y3Y16 −X4X14Y4Y14 +X5X12Y5Y12 −

X6X9Y6Y9 +X7X15Y7Y15 −X11X13Y11Y13

)

,

p11,1 =
2

ϑ8ϑ6

(

X1X11Y6Y8 + X2X9Y10Y13 + X3X12Y14Y15 + X4X7Y5Y16 + X5X16Y4Y7 +

X6X8Y1Y11 +X10X13Y2Y9 +X14X15Y3Y12

)

,

p12,1 =
2

ϑ7ϑ2

(

X1X12Y2Y7 + X2X7Y1Y12 + X3X11Y4Y9 + X4X9Y3Y11 + X5X10Y8Y15 +

X6X14Y13Y16 +X8X15Y5Y10 +X13X16Y6Y14

)

,

p13,1 =
2

ϑ6ϑ2

(

X1X13Y2Y6 + X2X6Y1Y13 + X3X5Y4Y15 + X4X15Y3Y5 − X7X14Y12Y16 −

X8X9Y10Y11 −X10X11Y8Y9 −X12X16Y7Y14

)

,

p14,1 =
2

ϑ5ϑ9

(

X1X14Y5Y9 − X2X16Y11Y15 + X3X8Y7Y13 − X4X10Y6Y12 + X5X9Y1Y14 −

X6X12Y4Y10 +X7X13Y8Y3 −X11X15Y2Y16

)

,

p15,1 =
2

ϑ5ϑ2

(

X1X15Y2Y5 + X2X5Y1Y15 + X3X6Y4Y13 + X4X13Y3Y6 + X7X10Y8Y12 +

X8X12Y7Y10 +X9X16Y11Y14 +X11X14Y9Y16

)

,

p16,1 =
2

ϑ3ϑ10

(

X1X16Y3Y10 −X2X14Y4Y8 +X3X10Y1Y16 −X4X8Y2Y14 −X5X11Y12Y13 +

X6X7Y9Y15 +X9X15Y6Y7 −X12X13Y5Y11

)

.
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