
HAL Id: hal-00645913
https://hal.inria.fr/hal-00645913

Submitted on 28 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VeTo: reference manual
Abdelkader Lahmadi, Olivier Festor

To cite this version:
Abdelkader Lahmadi, Olivier Festor. VeTo: reference manual. [Research Report] RT-7816, 2011,
pp.51. �hal-00645913�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49942083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00645913
https://hal.archives-ouvertes.fr

appor t
 t e ch n i qu e

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-7
81

6-
-F

R
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

VeTo: reference manual

Abdelkader Lahmadi — Olivier Festor

N° 7816

February 2011

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

VeTo: reference manual

Abdelkader Lahmadi , Olivier Festor

Thème COM — Systèmes communicants
Équipes-Projets Madynes

Rapport technique n° 7816 — February 2011 — 48 pages

Abstract: The SIP protocol is established as the defacto standard for media session signaling, in particular
for voice-over IP services. Many research works and alert bulletins have reported various vulnerabilities in
this protocol. These vulnerabilities are either inherent to the protocol specification or arise as flaws within
SIP stack implementations or erroneous configurations. To protect SIP-based networks from the exploitation
of such vulnerabilities, patches may be released for the implementation bugs, the SIP specification may be
revisited to cover the specification errors and configuration guidelines can be issued to offer good configuration
receipts to administrators. The time to patching and revisiting specification may be considerable. To
overcome this problem, a first-line of defense against SIP vulnerabilities has to be developed. In [2], we have
presented a stateful firewall architecture dedicated to SIP-based networks protection. The firewall runtime
uses a domain specific language, called VeTo. Its design, syntax and semantics are described in this work.

Key-words: VoIP, SIP, vulnerabilities, language, protection, VeTo

VeTo : manuel de référence

Résumé : Le protocole SIP est aujourd’hui le standard de fait pour la signalisation des sessions multimédia
à l’échelle de l’Internet. Plusieurs travaux ainsi que des bulletins d’alertes ont reporté l’existence des
différentes vulnérabilités au niveau de ses implantations, de ses spécifications, de ses implémentations et de
ses paramétrages. La protection du protocole SIP de l’exploitation de ces vulnérabilités nécessite l’application
des patches au niveau de ses implantations à bien que la révision des ses spécifications et la publication de
recettes de bonnes pratiques pour sa configuration. Ces actions prennent un temps considérable avant d’être
menées. Afin de résoudre ces problèmes, une premire ligne de défense nécessite d’être mise en place. Dans [2],
nous avons proposé une architecture de défense reposant sur un pare-feu dédié au protocole SIP. Ce pare-feu
s’appuie sur un langage, nommé VeTo dédié à la spécification de règles de prévention contre les vulnérabilités
présentes dans le protocole SIP. Ce rapport détaille la syntaxe, la sémantique et son infrastructure support.

Mots-clés : VoIP, SIP, vulnérabilités, language, protection, VeTo

VeTo language 3

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Overview of SIP-based services . 6
1.3 Taxonomy of SIP specific vulnerabilities . 7

1.3.1 SIP messages . 7
1.3.2 SIP routing . 8
1.3.3 SIP authentication . 8

2 VeTo Syntax and Semantics 11
2.1 The VeTo Language Syntax . 12

2.1.1 Lexical conventions . 12
2.1.2 Lexical syntax . 12

2.2 VeTo blocks and contexts . 13
2.2.1 Context block . 13
2.2.2 Definition block . 14
2.2.3 Event patterns block . 15

2.3 VeTo Variables . 16
2.3.1 Predefined variables . 16
2.3.2 Built-in functions . 16
2.3.3 Collections . 16
2.3.4 Event variables . 18
2.3.5 Event patterns . 19
2.3.6 More event patterns examples . 22
2.3.7 State variables . 22

2.4 Variables scope and extent . 23
2.5 VeTo Conditions . 24

2.5.1 Definition of conditions . 24
2.5.2 Semantics of conditions . 24
2.5.3 Examples of Conditions . 24

2.6 VeTo actions . 25
2.6.1 LET action . 25
2.6.2 STORE action . 25
2.6.3 ASSIGN action . 25
2.6.4 APPLY Action . 25
2.6.5 DROP action . 26

2.7 Implementation issues . 26

RT n° 7816

4 Lahmadi & Festor

2.7.1 Rules compilation and checking . 26
2.7.2 Events pattern matching . 28

3 VeTo Testing 31
3.1 Malformed messages vulnerabilities . 31

3.1.1 Incorrect Grammar Message . 31
3.1.2 Cross-site scripting attacks over SIP . 32

3.2 Invalid semantics . 33
3.2.1 Out of state message . 34

3.3 Flooding attacks . 34
3.4 Implementation flaws specific attacks . 34
3.5 Legitimate SIP messages based vulnerabilities . 35

3.5.1 SIP Method based attacks . 36
3.5.2 The SIP DNS flooding attack . 37
3.5.3 Ringing-based DoS attack . 38
3.5.4 The SIP Identity baiting attack . 39
3.5.5 The Misuse-ringing attack . 39
3.5.6 The re-INVITE message syndrome . 40

4 Conclusion 45

INRIA

VeTo language 5

Chapter 1

Introduction

1.1 Introduction

VoIP networks is a generic term that covers deployments ranging in complexity from hobbyists using the
internet to get free phone calls on a peer to peer basis, to full scale PSTN replacement networks [10].
However, before the achievement of a full transition from a PSTN scale solution to a full VoIP network,
many issues have to be addressed. Among them, the most important issues are:

• Signaling Protocol,

• Quality of Service,

• Reliability and Availability,

• Security.

Different Signaling Protocols have been designed for VoIP networks. They include device control protocols
such as H.248 (Megaco), MGCP, NCS, etc; Access services signaling protocols such as SIP, H.323, etc and
network service signaling protocols such as SIP, SIP-T, BICC, CMSS [13]. Over the years, the SIP protocol
[20] has established itself as the defacto standard of a network service signaling protocol for VoIP networks.

One of the key requirement of a VoIP service is its call quality. It has to be at least equivalent to the
existing PSTN. The quality is mainly related to the delay, jitter and packet loss. These performance criteria
have to be kept low to guarantee a suitable QoS. Therefore, when special processing is added to a VoIP
traffic it should have a low overhead and keep the above performance metrics stable. Therefore additional
security solutions have to solve the problems in real time [8].

Another issue when carrying VoIP service is its reliability and availability. A VoIP network should achieve
at least five nines reliability, equivalent to fewer than five minutes per year downtime.

VoIP is an added value service, therefore, it needs a strong security model to guarantee its reliability
and availability. The main challenge with VoIP security is the nature of its running environment and
technologies since it relies on open technologies like SIP using servers reachable through the Internet. Such
technologies are implemented in software and provided often over general-purpose computing hardware.
Therefore, VoIP can suffer from similar security threats as HTTP and SMTP based services. Currently,
VoIP is in a rapid evolution phase deployments by service providers, with a large number of new services.
For example, instant messaging, video conferencing and integration of VoIP with other business systems
including E-mail, Customer Relationship Management (CRM), and Web systems. We have counted 64
RFCs only related to the SIP protocol. The consequence of this complexity is that many vulnerabilities

RT n° 7816

6 Lahmadi & Festor

Figure 1.1: An example of SIP infrastructure for voice services.

are undiscovered, some within the SIP protocol specification and many within its implementations. These
vulnerabilities may be used to gain access to or disturb the delivery of SIP based services. The SIP protocol
becomes attractive to attackers due to its HTTP underpinning and the ASCII format of its packets. Since
SIP is used as a converged protocol, it inherits all the security weaknesses from other underlying protocols
like spoofing, sniffing, denial of service, spamming, vishing,... [18].

1.2 Overview of SIP-based services

SIP services like VoIP are currently dominated by the use of the SIP protocol [20] as a signaling protocol. It
is an application-layer protocol that relies on a request-response model. The main functions of SIP within a
VoIP service is the establishment, the modification and the termination of calling sessions between networked
SIP elements.

As depicted in Figure 1.1, the SIP protocol relies on the open Internet architecture to relay its messages
between its different SIP-based networked elements. A SIP network typically comprises the following entities:

• User Agent (UA) is a logical function in the SIP network that initiates or responds to SIP messages.
It may act as a UA client or a UA server. The UA client initiates requests and accepts SIP responses.
The UA server accepts requests and sends responses.

• SIP proxy is an intermediate element within a SIP network that is responsible for routing SIP messages
to UA or other proxies.

• Registrar is a server that accepts REGISTER requests and keeps the information it receives for further
callee looking-up.

The SIP protocol uses messages to establish sessions. The messages grouped together to establish a session
form a dialog. Each dialog is identified by the call identifier (Call-ID), a local tag and a remote tag fields
in a SIP message. A dialog consists of a series of transactions between the UAs. Each transaction consists
of a single request and any responses to that request. Transactions are identified within a dialog using the
branch field and are defined across dialogs using the Cseq field.

INRIA

VeTo language 7

Type of Threat Threats

Denial of Service Request flooding
Malformed requests and messages
Faked messages injection
Call Hijacking

Theft of service Unauthorized billing
Misuse of service Unwanted contact

Unwanted content (SPIT)
Billing adjustment (maximize or minimize)

Table 1.1: List of SIP specific threats.

Figure 1.2: INVITE message propagation using the forking-proxies vulnerability.

1.3 Taxonomy of SIP specific vulnerabilities

In [24], authors provide a comprehensive list of VoIP threats. Rather than repeating their results, we list
SIP-specific threats. The table 1.1 lists those threats related to a SIP based service. These threats are due
to the weakness that shows the SIP protocol on its different inherent features. We focus our analysis on the
SIP related weakness disregarding those due to underlying protocols.

1.3.1 SIP messages

SIP messages are text-based and use the UTF-8 charset. This feature leads to an easy modification of them
by man in the middle attackers. The SIP protocol uses the INVITE message to setup and modify dialogs
over their lifetime. According to RFC 3261, the message used to modify dialogs is called re-INVITE, but
it has the same method value as INVITE. This may results to a theft of service by exploiting a spoofed or
simply relaying a crafted re-INVITE message to initialize calls.

The SIP protocol provides a forking proxy feature to allow the setup of multiple dialogs from a single
request message. This leads to branch an incoming request to multiple outgoing requests, each targeted to
a different UAS. Recently, the RFC 5393 [23] proves that this feature may causes a massive flooding attack
with valid SIP requests between proxy-to-proxy messages. A version of this attack demonstrates that fewer
than ten messages can lead to potentially 271 attack messages. An instance of this attack is depicted in
figure 1.2.

RT n° 7816

8 Lahmadi & Festor

1.3.2 SIP routing

The SIP protocol needs some mechanism to determine which path a message needs to take to reach a
destination. SIP embeds packet routing information into headers. There are four types of routing headers:
record route headers, route headers, via headers, and contact headers.

Routing headers

The record-route header is added by a proxy to tell the recipient that he want to remain in the signaling
path for all future SIP requests within the dialog.

Using the record-route header, SIP elements compiles a list of the IP addresses or fully qualified domain
names between the source host and the destination host. This list essentially acts as a route that the message
must take in order to reach its destination, with each entry on the list serving as a hop along the route.
When a host receives a message, it checks to see whether or not it is the final recipient. If not, the host
removes its own IP address or fully qualified domain name from the route header and then forwards the
message to the next host on the list. The process is repeated until the packet reaches its destination.

Via headers work similarly to route headers, except that they work in the opposite way. Suppose, for
instance, that a source host and a destination host are geographically dispersed, and that SIP traffic must
flow between multiple proxies in route to the destination. In such a situation, each of the proxies that the
message passes through adds its own IP address or fully qualified domain name to the via header. The idea
is that when the message arrives at its destination, the destination host can determine exactly what path
the message took to reach its destination, and which hosts have handled the message along the way. In some
instances, this information is also used to create a return path. The contact header lets the recipient proxy
determine to which user the message should be directed.

Routing weakness

SIP routing relies on the proxy elements that take downstream routing decisions based on the routing
headers and upstream routing decision based on Vias fields. This routing mechanism leverages the following
weaknesses [22]:

• Any element can insert/delete/alter routing headers.

• Proxies route statelessly without call-route state or global route knowledge.

• There is no authoritative, trusted element for end-to-end routing policy.

• SIP privacy directives allow for stripping of route information.

These weaknesses may lead to different types of attacks. These attacks are broken down into network
topology privacy breach, toll fraud and DoS based attacks.

1.3.3 SIP authentication

As described in [20], SIP mandates the use of HTTP digest-based authentication as a security mechanism
to protect SIP messages. It provides an anti-replay protection and one-way authentication to SIP messages.
Existing SIP authentication has the following weakness [28].

• It is not an end-to-end security model. It is difficult to protect SIP messages on an end-to-end basis
since SIP servers and proxies need to examine and change certain fields.

INRIA

VeTo language 9

• It only applies to a few SIP messages (INVITE, BYE, REGISTER), and leaves other important SIP
messages (TRYING, 200 OK, ACK, BUSY) unprotected.

• It only protects a few SIP fields (Request-URI, realm), and it leaves other important fields unprotected
(e.g, From, To).

• It only applies to SIP messages from the UAC to SIP servers, and it leaves all the SIP messages from
the SIP servers to UAC unprotected.

These vulnerabilities mainly generate billing attacks as described in [28].

RT n° 7816

10 Lahmadi & Festor

INRIA

VeTo language 11

Chapter 2

VeTo Syntax and Semantics

The VeTo language relies on a mixture of rule based programming and pattern matching models. The
rule based programming style is well adopted for flexible data manipulation and for specifying IF-THEN
logic. The pattern matching model provides facilities to manipulate data, to define events and to check
SIP protocol properties involved in a vulnerability prevention. The VeTo language relies on a negative logic
which means it describes exceptions rather than the traditional allow rules in standard firewall languages.
While designing the VeTo language we have fixed the following features:

• Basic variable types for specifying particular derived variables other than SIP protocol structural data;

• Pattern operators for expressing relationship between SIP protocol data and patterns;

• Sateful variables to store their values in different types of containers;

• Regular expression patterns that allow to express patterns that match SIP protocol fields values;

• Event patterns that allow to express the set of events and sub-events involved in a SIP vulnerability;

• Condition that lets us restrict matches of events to specific pattern;

• Logical operators that allow us to specific logical relations between matched patterns.

To provide these features, the VeTo languages relies on the three types of blocks: definition, context and
prevention. They are mapped into the three properties of a vulnerability which are its input SIP protocol
data units, its running context and its logical behaviour. Therefore, a prevention against a vulnerability,
requires to capture the vulnerability logic using behavioural rules and the context of this behaviour. The
definition part manages the underlying structural input data of the SIP protocol. It provides information
from the parsed SIP messages involved in a vulnerability. The prevention part interprets the logic part of the
vulnerability and takes actions against the vulnerability exploitation. The context part provides sensitive
information about the vulnerability environment. These three concepts are alike the traditional MVC models
[19] in software engineering.

In the following sections, we describe the syntax of the VeTo language variables, patterns, operators,
condition and actions.

RT n° 7816

12 Lahmadi & Festor

2.1 The VeTo Language Syntax

The syntax of the VeTo language is described using the EBNF1 notation. In the VeTo syntax, a terminal
symbol is enclosed in single quotes. Optional items are enclosed in square brackets []. An element with a
trailing operator ”*” denotes an item that may appear zero or more times.

2.1.1 Lexical conventions

We used the following conventions to define the syntax of the VeTo language.

Value::=Number|Identifier

Number::=1*Digit

Identifier::=Letter(Letter | Digit| ’_’ | ’-’)*

Digit::=’0’ ... ’9’

Letter::=’a’ ... ’z’ | ’A’ ... ’Z’

VeTo variables names use the following conventions.

Term::=’SIP:’ Type ’.’ Field

Type::= ’request’ | ’response’ | ’message’

Field::= ’method’ | ’status-code’ | ’uri’ | ’Call-ID’

VariableName::= Identifier

EventName::=Identifier

StateName::=Identifier

CounterName::=Identifier

TimerName::=Identifier

CollectionName::=Identifier

BlockName::=Identifier

Parameters::= Value | Value ’,’ Parameters

The complete list of terminal values of the symbols Type and Field is presented in the Annex ??.

2.1.2 Lexical syntax

The VeTo language provides three types of blocks, where each block is either a definition, a context or an
events handler. The definition block only contains pattern matching rules based on regular expressions over
SIP messages fields. Each rule contains a matching pattern and an action part that generates an event when
the pattern is satisfied. The event block uses the definition blocks and contains a set of rules with event
based patterns. Each rule contains an events pattern, a set of conditions which constraint the events, and
a set of actions to be taken when the pattern is satisfied. The events referenced by these rules are those
defined in the definition block. The protection against a vulnerability exploitation is described by the events
patterns block where actions are executed to prevent the exploit of the vulnerability on a particular device.

The prevention block delimiter is the keyword ’veto’ followed by the identifier of the block, the identifier
of the context of the rules, the set of definition blocks identifiers and the keyword ’begin’. The block ends
with the keywords ’veto’ followed by ’end’. The context block rules contains mainly the devices targeted by
the vulnerability. The block of rules is only applied to these devices. The wild card character ”*” represents
all devices existing in a target SIP network.

A Veto rule may specify or not a condition. An action is executed, if the condition is satisfied. If the
condition is not specified, the action is executed once within each rules processing cycle. A Veto condition is

1EBNF: the Extended Backus-Naur form is a meta-syntax notation used to express context-free grammars.

INRIA

VeTo language 13

a composition of a set of assertions related by the operators && and ‖‖ that denote respectively conjunction
and disjunction. An assertion is composed of a Veto variable, an operator and a pattern. Several built-in
operators are provided for comparing and containing operations. The comparing operators include equality
(@eq), greater (@ge) or less (@le). The operators to be applied on collections are (@contains, @in). These
operators check if a collection contains or not a particular value.

2.2 VeTo blocks and contexts

A protection against a vulnerability exploitation is described using the three types of blocks: context,
definition and event patterns handlers. Vulnerabilities might share the context and definition block, but
each of which has its own prevention block that describes its events patterns and the action to be taken
against its exploitation.

2.2.1 Context block

A context block describes information associated to one or several protection blocks. This information is
used by the VeTo runtime to trigger the proper protection block. It is used to select the different protection
blocks which apply to the current context. Context information include the existing SIP devices, users and
their surrounding environment such as time, locality, availability state, outbound proxy, etc. The syntax of
a context block is as follows:

ContextBlockBegin::=’context’ ContextID ’begin’

ContextID::= BlockName

ContextBlockEnd::=’context’ ’end’

ContextBlock::=ContextBlockBegin ContextProperties ContextBlockEnd

ContextProperties::= ContextProperty ’;’ | ContextProperty ’;’

ContextProperties

ContextProperty::= PropertyName ’=>’ Property ’;’

PropertyName::= ’target’ | ’include’ | ’locality’

Property::=TargetProperty | IncludeProperty | LocalityProperty

TargetProperty ::= TargetURI [’,’ TimeSpec ’,’ Version]

TargetURI ::= Protocol ’:’ (IPaddr | IPrange | HostName) ’:’ Port

Protocol::= ’udp’ | ’tcp’ | ’sip’| ’*’

TimeSpec::= date-fullyear "-" date-month "-" date-mday ;

date-fullyear ::= 4DIGIT

date-month ::= 2DIGIT ; 01-12

date-mday ::= 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on month/year

Version ::= 1DIGIT | 1DIGIT ’.’ Version

IncludeProperty ::= [’{’] IncludeID [’}’]

IncludeID ::= ContextID | ContextID ’,’ IncludeID

LocalityProperty ::= ’low’ | ’high’ | ’medium’ | ’very low’ | ’very high’

Values::= Value | Values ’,’ Value

A context is specific to one or multiple vulnerability blocks. On the opposite, a vulnerability has a single
context. In VeTo, a context is defined as a set of labeled attributes with predetermined values. Instead of
a value, an attribute can have a set of values. The context attributes are mainly the URI of the targeted
SIP entity, the time of validity (duration) of the protection, when known and the firmware version where
the vulnerability is reported. The target attribute denotes a SIP element that is related to the described

RT n° 7816

14 Lahmadi & Festor

vulnerability. A target value is composed of the transport protocol underlying the SIP traffic behind the
vulnerability, an IP address, range or the hostname of the targeted SIP element, the port of that SIP traffic.
and a lifetime value which is specified as recommended in RFC 3339. The lifetime value denotes the date
when the vulnerability will be fixed or removed. When this date is unknown, this value is omitted from
the context block. The include property allows to include the contents of another context. For example,
consider a context called ”SIP PROXIES” that enumerates a list of sip proxies using the target attribute.
Then, there is a context called ”SIP SERVERS” that includes SIP PROXIES and contains a list of SIP
servers. The locality attribute expresses how often a vulnerability is likely to be exploited. It takes a value
among: very low, low, medium, high and very high. The following example illustrates the different attributes
of a VeTo context.

CONTEXT context_example BEGIN

TARGET => udp:myiphone.mydomain.com:5060, 2009-05-07 ;

TARGET => tcp:myhtcmagic.mydomain.com:* ;

TARGET => *:mylaptop.mydomain.com:*, 2009-05-10 ;

LOCALITY => high;

CONTEXT END

CONTEXT context_global BEGIN

INCLUDE => context_example;

CONTEXT context_global END

2.2.2 Definition block

The definition block carries the different variables to be used by the prevention blocks. It relies on regular
expression pattern matching rules against SIP message fields. The header of a rule is the composition of a
message term followed by the operator @match and a regular expression. The body of the rule is a set of
instructions to define variables constructors. A message term refers to an element from the parsed tree of
a SIP message. When a given message term matches the pattern, the defined variables are instantiated by
the runtime. A definition block has the following syntax:

1 DefinitionBlockBegin ::=’ definition ’ DefinitionBlockName ’begin ’

2 DefinitionBlockEnd ::=’definition ’ ’end ’

3 DefinitionBlock ::= DefinitionBlockBegin DefinitionRules DefinitionBlockEnd

4 DefinitionRules ::= DefinitionRule ’;’ | DefinitionRule ’;’ DefinitionRules

A definition rule is defined as follows:

1 DefinitionRule ::= [’when ’ Term [!] ’@match ’ Pattern ’->’] PatternActions

2 PatternActions ::= PatternAction ’;’ | PatternAction ’;’ PatternActions

3 PatternAction ::= ’Let:’ (EventConstructor|StateConstructor|

CounterConstructor|TimerConstructor|

4 CollectionrConstructor)

5 EventConstructor ::=’event ’ EventName;

6 StateConstructor ::=’state ’ StateName

7 CounterConstructor ::=’counter ’ ’(’ Parameters ’)’ CounterName

8 TimerConstructor ::=’timer ’ ’(’ Parameters ’)’ TimerName

9 CollectionConstructor ::= CollectionType ’[’Term ’]’ CollectionName

10 CollectionType ::=’set ’ | ’list ’ | ’bag ’

INRIA

VeTo language 15

The VeTo language includes several built-in variable types: event, state, counter, timer and collections. The
collections of type set, list and bag are used to store messages term values.

The Rule 1 listing depicts a definition block named contactDefs. The block contains two rules presented
in lines 2 and 3. The first rule defines a variable of type collection which stores the values of the contact
field of the current SIP message. The second rule contains a matching part against the message term
sip:request.method which references the method field of a SIP request. If the term value from the current
message matches the pattern INVITE, an event named ev Invite is created from the current dialog.

Rule 1 An example of a definition block.

1 DEFINITION contactDefs BEGIN

2 LET:Set[sip:message.contact] contacts;

3 WHEN sip:request.method @MATCH "^ INVITE$" -> LET:EEVENT ev_Invite;

4 DEFINITION END

2.2.3 Event patterns block

The event block specifies event based patterns involved in a vulnerability and their respective actions when
the patterns are satisfied. It represents the logic part of the vulnerability. The event pattern part uses the
variables defined in the definition block. The event block has a unique identifier, a context and uses a set of
definitions. The main syntax of a VeTo event block is as follows:

1 VeToBlockBegin ::= ’veto ’ BlockName ’@’{’ContextID ’}’ uses

DefinitionBlockName ’begin ’

2 VeToBlockEnd ::= ’veto ’ ’end ’

3 Definitions ::= Identifier | Identifier ’,’ Definitions

4 VeToRules ::= VeToRule ’;’ | VeToRule ’;’ VeToRules

5 VeToBlock ::= VeToBlockBegin VeToRules VeToBlockEnd

The contextID of a VeTo block denotes the identifier of a context block. This restricts the set of rules to
a particular context defined in a context block. An event based rule has the following syntax:

1 VeToRule ::= EventPattern ’=>’ Body

2 Body ::= [Conditions] ’{’ Actions ’}’ ’;’

3 Conditions ::= ’if’ ’(’ Condition ’)’

4 Actions ::= Action ’;’ | Action ’;’ Actions

5 Condition ::= Assertion * (LogicalOperator Assertion)

6 LogicalOperator ::=’||’ | ’&&’

7 Assertion ::= [’!’]Variable ’.’Operation ’(’ Value ’)’

8 Variable ::=[’&’] VariableName * (’.’ VariableName)

9 Operation ::= ’eq ’|’ge ’|’contains ’|’in’

10 Action ::= DistriputiveAction | NonDistriputiveAction

11 DistriputiveAction ::= ’drop ’

12 NonDistriputiveAction ::= StoreAction |AssignAction

13 StoreAction ::=’store ’ ’:’ CollectionName

14 AssignAction ::=’assign ’ ’:’ VariableName ’=’ Value

The body part of an event rule contains a mandatory set of actions. The rule is activated if the event pattern
is satisfied. The following example shows an event block which contains a single rule. The rule header part

RT n° 7816

16 Lahmadi & Festor

checks an event pattern based on the event ev Invite. If the event occurs, then the rule is triggered and the
action store is executed.

VETO InviteContacts@{} USES ContactDefs BEGIN

(ev_Invite) => STORE:contacts;

VETO END

2.3 VeTo Variables

The Veto language provides two classes of variables: stateful and stateless. The main difference between
them is their persistence over SIP messages. A stateless variable does not retain its value over SIP messages.
It changes its value from one message to the next. A stateful variable (or collection) has some internal
storage that allows it to hold its value over the processing of multiple SIP messages.

2.3.1 Predefined variables

In the Veto language predefined variables are provided by the implementation. They have an extent over the
current SIP message lifetime. By default the SecSip runtime provides a set of predefined variables mapped to
the parsed fields of a SIP message. These variables are identified by SIP messages field identifiers. We note
that these predefined variables are stateless. For example, the predefined variable sip:headers.to.addr takes
its value from the field To of a SIP message. The following rules use the predefined variable sip:request.method
in their respective left parts.

DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "^INVITE$" -> LET:EVENT Ev_Invite;

WHEN sip:request.method" @MATCH "^ACK$" -> LET:EVENT Ev_Ack;

DEFINITION END

2.3.2 Built-in functions

The VeTo language provides some buit-in functions to be applied to its arguments in the action part of a
triggered event rule. The main built-in function is the counter. The counter is a function with incremental and
decremental behaviors. It behaves like a gauge or a counter according to the number of provided parameters.
If no parameter is provided, the function behaves as an increasing counter and it is incremented when an
event pattern is matched. When a decreasing value and an interval are given as parameters to the counter
function, then after each time interval, it is decremented by the specific value. Rule 2 defines a variable of
type counter which is incremented every time an INVITE message is observed and it is decremented by 10
every 60000 milliseconds.

2.3.3 Collections

A collection variable stores the values of a predefined variable of the current SIP message. Its values are
collected within a container over a dialog. The syntax to store the values of a variable is as follows:

INRIA

VeTo language 17

Rule 2 An illustration example of the usage of the built-in counter function.
DEFINITION CounterDefs BEGIN

LET : COUNTER(10,60000) count;

WHEN sip:request.method @MATCH "^INVITE$" -> LET:EVENT ev_Invite;

DEFINITION END

VETO CountInvite USES CounterDefs BEGIN

(ev_Invite) -> APPLY:count;

VETO END

’let’ ’:’ ContainerType ’[’VariableName’]’ CollectionName

’store’ ’:’ CollectionName

Firstly, the action let creates an instance of the variable CollectionName of type identified by ContainerType.
It also associates the predefined variable that owns the values to the collection variable. The VariableName
denotes a statless variable which may be either a SIP message field or a user-defined variable The Con-
tainerType specifies the type of the container where the collection values are stored. The VeTo language
provides three types of containers to store collections: sets, lists and bags. A set is an unordered collection
of objects without repeated values. It may be used to keep a single value over a SIP dialog. A list is an
ordered collection of object values. A bag is a set that allows repeated values from multiple objects.

After being initialized, the store action starts recording the values of the variable VariableName into the
collection variable instance. In Rule 3, we define a collection variable named callidList that stores the value
of the call-ID field from each observed INVITE SIP message within a dialog.

Rule 3 An illustration of the usage of the collection variables.
DEFINITION CollectionDefs BEGIN

LET: SET[sip:request.callid] callidList;

WHEN sip:request.method @MATCH "^INVITE$" -> LET:EVENT ev_Invite;

DEFINITION END

VETO collection USES CollectionDefs BEGIN

(ev_Invite) -> STORE:CallidList;

VETO END

Collections keys

The different collection instances created over SIP dialogs or transactions are stored in a hash table. Where
each collection instance has a key that is either the dialog or the transaction identifier. The dialog identifier
is defined by <Call ID, To Tag, From Tag> and a transaction identifier is defined by <branch value, Cseq
method>.

The VeTo language provides a powerful feature that relies on the dot notation to define the keys of
collections. To illustrate this feature, we take the following example. Suppose that we need to record the
number of INVITE messages addressed to each different SIP device in our network. A SIP device is defined
by its IP address embedded within the Request-URI field of the INVITE message. We need a collection
variable that stores the different SIP devices addresses. We also need a variable that counts the number of

RT n° 7816

18 Lahmadi & Festor

Invite messages. The number of INVITE messages has an addressing space over the recorded URI from the
INVITE requests. Herein, we need to map the number of INVITE messages over SIP devices URIs. Thus,
we use a set as a type for the stateful container of the SIP devices addresses. The values of this set, has
to be used as a key to group the number of Invite message values associated per SIP device. This mapping
between the collection variable values and a stateless variable is done using the variable composition, which
is denoted by the infix operator ’.’. Let S a collection variable and O is a stateless one, where S is the inner
variable and O is the outer one. The VeTo expression S.O means that Key(O)=Value(S), and Key(S)=
DialogID. Where DialogID is the dialog identifier of the observed SIP messages. The following listing shows
a set of VeTo rules to describe the number of INVITE messages collected using the observed SIP URIs.

DEFINTION CounterDefs BEGIN

LET: SET[sip:request.uri.addr] uris;

LET: COUNTER(10,60000) uris.rate;

WHEN sip:request.method "^INVITE" -> LET:EVENT ev_Invite;

DEFINITION END

VETO CounterExample USES counterDefs BEGIN

(ev_Invite){

STORE:uris;

APPLY:uris.rate;

}

VETO END

The type COUNTER is a built-in function provided by the VeTo language. The two optional arguments
10 and 60 mean that the counter has to be decreased by 10 each 60 000 milli-seconds. The action APPLY
applies the counter function to arguments.

2.3.4 Event variables

The event type defines variables that represent the occurrence of something interesting under circumstances.
For example, a regular expression pattern is matched over a SIP message field within a specific dialog. An
event variable is defined using the LET action followed by the built-in EVENT type and its identifier. The
instance of the event variable is created within a dialog. In the following example, we define different event
variables using the matching operator against different fields of observed SIP messages. The event variables
are defined and created within a definition block. The named event variables like ev ack and ev Invite are
used by Veto event blocks to compose event patterns and take actions.

DEFINITION SIPMessages BEGIN

WHEN SIP:request.method @MATCH "^ACK$" -> LET:EVENT ev_ack;

WHEN SIP:request.method @match "^INVITE" -> LET:EVENT ev_invite;

DEFINITION END

INRIA

VeTo language 19

2.3.5 Event patterns

An event pattern is a template that matches a list of variables of type event. It recognize defined events
causalities, dependencies and timing. We note that each event variable within a pattern should be created
using the action let before being referenced by an event pattern. The syntax of an event pattern is as follows:

EventPattern ::= ’(’ Sequence ’)’

Sequence ::= Event | Event ’,’ Sequence

Event ::= InstantEvent | RepeatedEvent | TemporalEvent

InstantEvent ::= SingleEvent | SingleEvent ’(’ EmbeddedEvents ’)’ | AnyEvent

EmbeddedEvents ::= SingleEvent | SingleEvent ’,’ EmbeddedEvents

SingleEvent ::= [’~’] Label

AnyEvent ::= ’*’

TemporalEvent ::= [’~’] ’[’ RepeatedEvent ’,’ Integer ’]’

RepeatedEvent ::= InstantEvent (’{’ Integer ’,’ Integer ’}’ | ’*’)

We formally define an event variable as ei(t) where at an instant t the event occurs.

Event Sequence

The event sequence takes as input a list of n event labels. It specifies a particular order in which the events
should occur. Formally, a sequence of events is defined as follows:

(e1, e2, ..., en) ≡ ∃t1 < t2 < ... < tn, e1(t1) ∧ e2(t2) ∧ ∧ en(tn) (2.1)

where ei is an event label and ti is arrival times of SIP messages.

The following example represents a simple pattern of two events labels ev ack and ev invite. The rule
checks if the events ev ack precedes the event ev invite. If the pattern is matched, then the latest SIP
message is dropped.

(ev_ack,ev_invite) -> DROP;

Note that we can use the short cut-notation to describe event sequence. We can use integers or the ”*”
to denote a repetition of an event as shown in the following example. In the first rule event ev invite has to
be repeated 0 or more times. In the second rule, the event has to be repeated exactly 2 times. In the third
rule, the event has to be repeated 2 to 3 times. In the fourth rule,the event has to be repeated at least 3
times. In the last tuple, the event has to be repeated up to 3 times.

1 (ev_invite {*},ev_200_OK ,ev_ack)

2 (ev_invite {2},ev_200_OK ,ev_ack)

3 (ev_invite {2,3},ev_200_OK ,ev_ack)

4 (ev_invite {3,},ev_200_OK ,ev_ack)

5 (ev_invite {,3},ev_200_OK ,ev_ack)

RT n° 7816

20 Lahmadi & Festor

Embedded events

An embedded event is an event that occurs at the same time as another event. It allows an arbitrary number
of events to appear at the arrival of a SIP message. Formally, this pattern is defined as follows:

(e1(e2, e3, ..., en)) ≡ ∃ti, e1(ti) ∧ e2(ti) ∧ ... ∧ en(ti) (2.2)

For example a malformed INVITE message is defined using two embedded events. The first event is the
arrival of an INVITE message and the second is generated by a malformed field within the message. Rule
2.3.5 depicts the usage of such patterns to prevent a malformed INVITE message to be passed to the target.
In this example the events ev Invite and malformed happen at the same time.

Rule 4 An illustration example of the usage of the embedded event pattern.

1 DEFINITION EmbeddedPatternDefs BEGIN

2 WHEN sip:request.method @MATCH "^ INVITE$" -> LET:EVENT ev_Invite;

3 WHEN SIP:body.connection !@MATCH

4 "^IN(\s+)IP4(\s+)(\d+)\.(\d+)\.(\d+)\.(\d+)" -> {

5 LET:EVENT malformed;

6 }

7 DEFINITION END

8

9 VETO EmbeddedPattern USES EmbeddedPatternDefs BEGIN

10 (ev_Invite(malformed)) -> DROP;

11 VETO END

Negation patterns

A negation pattern specifies an event that does not appear within a sequence of events. Formally, a negation
pattern is defined as follows:

(e1, .., ej−1, ej , ej+1, ..., en) ≡
∃t1 < .. < tj−1 < tj+1 < ... < tn, e1(t1) ∧ ... ∧ (en(tn))
∧(∀t1 <= ti <= tn,¬ej(ti))

(2.3)

When the sequence is empty, the negation pattern specifies any event different from the specified event. Rule
5 depicts the usage of a negation pattern. The definition block creates the variable contacts of a set type
as depicted in line 2. It also creates en event named Ev BYE as depicted in line 3. The rule in the Veto
block checks the non occurrence of the event Ev BYE to feed up the contacts list with the values of the field
contact of a SIP message.

Temporal patterns

VeTo provides the timewindow operator to express a temporal relation between events within a sequence. The
operator is used to check events over a time window. Its aim is to represent the fact that some statements are
only true over a given period of time. The Digit operand is the time window value over which the pattern
has to be matched. After this time window the pattern is invalid. For example, Rule 6 the VeTo block
prevents from a flooding attack where 1000 INVITE messages arrive within less than one second. We use
temporal event patterns to describe a broken handshaking vulnerability as defined in [16]. In this attack a

INRIA

VeTo language 21

Rule 5 An illustration example of the usage of a negation event pattern.

1 DEFINITION NegationPatternDefs BEGIN

2 LET: SET[sip:headers.contact] contacts;

3 WHEN sip:request.method @MATCH "^BYE$" -> LET:EVENT Ev_BYE;

4 DEFINITION END

5

6 VETO NegationPattern USES NegationPatternDefs BEGIN

7 (~ Ev_BYE) -> STORE:contacts;

8 VETO END

Rule 6 The VeTo protection block against a flooding attack using temporal event patterns.

1 DEFINITION SIPMessages BEGIN

2 WHEN sip:request.method @MATCH "^ INVITE" -> LET:EVENT ev_invite;

3 DEFINITION END

4

5 VETO Flooding_Event_Pattern USES SIPMessages BEGIN

6 ([ev_invite [*1000] ,1]) -> DROP;

7 VETO END

caller sends an INVITE and when receiving the 200 OK, it doesn’t acknowledge it with an ACK. The rules
depicted in Rule 7 describe the prevention against this vulnerability exploitation.

Rule 7 The VeTo protection block against the handshake attack.

1 DEFINITION HandShackingDefs BEGIN

2 LET: SET[sip:headers.from] black_list;

3 WHEN SIP:response.code @MATCH "^200\s+OK" -> LET:EVENT ev_200_OK;

4 WHEN SIP:response.method @MATCH "^ INVITE$" -> LET:EVENT ev_InviteMethod;

5 WHEN SIP:request.method @MATCH "^ACK$" -> LET:EVENT ev_ack;

6 DEFINITION END

7

8 VETO HAND_SHACKING_Vulnerability uses HandShackingDefs BEGIN

9 (ev_200_OK(ev_InviteMethod) ,~[ev_ack ,1]) -> {

10 STORE:black_list;

11 DROP;

12 }

13 (*) -> IF (black_list @CONTAINS "sip:headers.from") {

14 DROP;

15 }

16 VETO END

The first event rule in the veto block HAND SHAKING Vulnerability feeds the collection variable black list
with the URI of the sources of the uncompleted handshake messages. This list is used by the second rule
shown in line 12 from the same VeTo block to disallow the attacker from sending more broken handshakes.

RT n° 7816

22 Lahmadi & Festor

2.3.6 More event patterns examples

In the following table, we summarize the use of event patterns.

Event pattern Meaning

(e1) e1 happens
(e1, e2) e2 happens immediately after e1
∼ e1 any event but e1 happens
e1(e2) e2 and e2 happen at the same time
∼ e1(e2) or e2(∼ e1) e2 happens while e1 does not
e1∗, e1{0, } e1 is repeated 0 or more times
(e1, [e2, 2]) e2 should happen within 2 seconds after e1
([e1{2}, 1]) e1 should happen twice within one second
(e1,∼ [e2, 2]) e2 should not happen within 2 seconds after e1

2.3.7 State variables

A state variable is used to keep a value over many cycle executions of VeTo rules within a dialog. It either
takes user-defined values to express a property of the behavior of the SIP protocol or it takes its values from
the runtime to express a SIP entity state. A state type may be generic or specific to a SIP entity. A specific
state type is related to a SIP element name. The SIP element is either the type of the user agent (uac or
uas) or a resource name defined in the context block referenced by a protection block. In this case, the state
variable tracks the state of the SIP element according to the standard SIP state machines as presented in
[20]. A state variable is defined using the following syntax:

’let’ ’:’ [UA ’.’] ’state’ StateVariable

UA::= ’uas’ | ’uac’ | ResourceName

A state variable has INIT as an initial value after it has been created. During cycle execution of VeTo
rules, a generic state variable values are altered using the assign action on the right part of an event rule. We
note, that between different cycles execution, the state variable keeps its previous value until its is altered
by an assign action of an executed rule. For example, Rule 8 describes an improper message INVITE in a
UAS confirmed state [20].

Rule 8 A VeTo protection block against an out of state INVITE message.
DEFINITION OutStateDefs BEGIN

LET: uas.state UAS_State;

WHEN sip:request.method @MATCH "^INVITE$ -> LET: EVENT ev_Invite;

DEFINITION END

VETO Out_Of_State@{*} USES outStateDefs BEGIN

(ev_Invite) -> IF (UAS_State @EQ "Confirmed") {

DROP;

}

VETO END

We firstly define a variable named UAS State of type uas.state which tracks the states of UAS entity
involved in a SIP dialog. The instance of the variable UAS State is created an initialized with the INIT

INRIA

VeTo language 23

value When a dialog is observed the runtime starts to assign the SIP protocol states of the UAS into the
state variable UAS State.

A state variable may also be generic where it is managed by the user. Therefore, it takes user defined
values. In its definition syntax we omitted the UA part.

2.4 Variables scope and extent

Each VeTo variable has a scope and an extent. The scope determines where the variable and its value are
associated. The extent determines when the value is associated to the variable at runtime. The scope of a
VeTo variable is related to its definition block. A VeTo variable is visible over any event block that references
its definition block.

The extent of a VeTo variable is either message or dialog. Typically, the predefined variables named
as SIP:request.*, SIP:response.* and SIP:headers.* have an extent over a message. They take a new value
every time when a new SIP message is observed. The variables of type event have also a message extent.
The variables declared within a VeTo block have a extent over a dialog. Their values are associated within
each existing dialog. A variable that takes its values over many dialogs is declared using the keyword global
followed by its type and name. Rule 9 depicts an example of using a global variable named BlockList. The
BlockList variable is defined using the keyword global. It means that only one instance of the variable is
created over existing dialogs. However, the variable PeersList has as many instances as existing dialogs. The
event pattern ev Malicious drops every SIP message with a contact field value that belongs to the global set
BlockList.

Rule 9 Prevention from a SIP BYE attack and its subsequent messages.
DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "BYE" -> LET: EVENT Ev_BYE;

DEFINITION END

DEFINITION BYEAttackDefs BEGIN

LET: GLOBAL SET[sip:message.contact] BlockList;

LET: SET[sip:message.contact] PeersList;

DEFINITION END

VETO BYE_Attack USES BYEAttackDefs, SIPMessages BEGIN

(~Ev_BYE) -> STORE:PeersList;

(Ev_BYE) ->

IF (PeersList !@CONTAINS sip:message.contact){

STORE:BlockList;

DROP;

}

(*) -> IF (BlockList @CONTAINS sip:message.contact) {

DROP;

}

VETO END

RT n° 7816

24 Lahmadi & Festor

2.5 VeTo Conditions

The left part of veto rules relies on conditions to match patterns or apply logical and mathematical operators.
The satisfaction of a condition implies the execution of one or many actions described in the right side of
a rule. The purposes of a condition are to detect a pattern within a field value of the current screened SIP
message, to check the presence or the absence of a pattern or to check relationship between variables.

2.5.1 Definition of conditions

A condition is defined using the following syntax:

Condition::= Assertion * (LogicalOperator Assertion)

LogicalOperator::=’||’ | ’&&’

SubCondition::= Variable Operator Pattern

A condition may contain a single or a set of assertions related using conjunction denoted by the symbol
&& and disjunction denoted by the symbol ‖‖. It consists of a conditional relation between an variable, an
operator and a pattern. The object represents the input of the condition on which we apply an operator.
The operator takes as an argument a pattern. We can use any defined stateless or stateful object but with
respect to the semantics of the used operator. The output of a condition is a boolean value (True, False).

2.5.2 Semantics of conditions

A Condition relies on different types of operators between a variable and a pattern:

• The matching operator denoted by the symbol ”@MATCH ” is used to match a SIP message field value
against a regular expression based pattern.

• The collection operators are used against collections to verify the presence or the absence of an element.
The ”@CONTAINS” operator verifies if a collection variable contains a specific value. The ”@IN”
operator verifies if a specific value is present in a particular collection. The two operators are equivalent.

• The comparison and equality operators are used to compare an object against a value. These operators
are : @EQ to denote equality and @GE to denote greater or equal than. We note that we can use the
negation symbol ”!” to obtain other relations between variables and values.

2.5.3 Examples of Conditions

Below examples to illustrate the use of conditions within VeTo rules are given.

Simple rule conditions The first rule ensure that when we have observed an INVITE message, an
ev Invite event has been created. The second rule checks the value of the protocol version field of the
message body. If the value of this field is empty, an event named ev Malformed is created.

1 DEFINITION TwinkleDefintion BEGIN

2 WHEN sip:request.method @MATCH "^ INVITE" -> LET:EVENT ev_Invite;

3 WHEN sip:body.protocol_version @MATCH "^$" -> LET:EVENT ev_Malformed;

4 DEFINITION END

INRIA

VeTo language 25

Event patterns conditions The prevention event pattern using the definition described above is depicted
in Rule 10. The pattern specifies that we observed an Ev Invite event that embeds an Ev Malformed event
and they are followed by any event. The INVITE message and all its subsequent messages within the dialog
are dropped.

Rule 10 A prevention block from a malformed INVITE message exploitation.

1 VETO Twinkle_No_Argument_SDP USES TwinkleDefintion BEGIN

2 (Ev_Invite(Ev_Malformed) ,*) -> DROP;

3 VETO END

2.6 VeTo actions

The Veto language provides two types of actions: disruptive and non disruptive actions. The disruptive
action acts on the SIP message by dropping it. The non disruptive action mainly creates new variables or
changes the value of a variable. An action drops a SIP message by using the drop statement. An action
creates new variables by using the statement Let. A VeTo rule may contain many actions. They are grouped
between brackets.

2.6.1 LET action

This action defines variables that are created by action parts of a rule. At the compilation stage, this
statement creates and initializes the variable. At runtime, when its reference rule is fired, this statement
updates the variable with new values according to its type. For example, the LET action may create an
instance of a variable of type event. After it has been created, the variable is consumed by the event patterns
where it is referenced.

2.6.2 STORE action

The STORE action has the role to provide persistence to the values of a predefined VeTo variable in a
collection. It firstly creates the collection variable that stores the values, and then updates it with the
current value of the predefined variable. At runtime, the variable instance is created and the values are
updated from the current SIP message of the current SIP dialog.

2.6.3 ASSIGN action

To alter the value of a defined variable, the VeTo language provides the Assign action. The action takes as
arguments the name of the object followed by the assignment operator ”=” and the new value. The variable
keeps its values over the current SIP dialog messages or over multiple dialogs.

2.6.4 APPLY Action

The APPLY action executes a built-in VeTo function to its arguments. It updates and returns the value of
the result variable assigned to a VeTo function (counter).

RT n° 7816

26 Lahmadi & Festor

2.6.5 DROP action

When a vulnerability is detected, the drop action allows us to drop the current SIP message matching the
last pre-condition of the running rule.

2.7 Implementation issues

In this section, we present the implementation algorithms developed to support the VeTo runtime.

2.7.1 Rules compilation and checking

A naive approach to rule compilation and implementation compiles rules as linked lists and checks each rule
while looping. This approach performs slowly with an important number of rules to check. Therefore, we
propose the use of the Rete algorithm [11] for VeTo rules evaluation.

The Rete algorithm uses a data flow network to represent the conditions of rules. The dataflow network
is structured in a acyclic graph linking variable names, patterns, relations and rules. Each VeTo rule is a
composition of conditions and actions. VeTo conditions are conjunction of predefined variables, a matching
opertaor and regular expressions. Relations show possible evaluation of variables. The nodes representing
variables are called alpha-nodes and nodes representing matching relations are called beta-nodes. The Rete
algorithm uses a working memory to insert and retract variables. In our work, we consider that the algorithm
has many working memories where each of them represents an active SIP dialog. When a dialog is active, its
working memory is activated. A working memory contains instances of variables defined by the set of rules
to be evaluated. Each variable instance enters the Rete network at a single node and is then propagated
through the network until it arrives at a terminal node. The alpha part of the network performs simple
conditional tests on a working memory elements to be inserted. Within the alpha part, each branch of
alpha nodes terminates at a memory, called an alpha memory. These memories store variables instances
that match each condition in each node in a given node branch. Each beta node has a left and right input.
It sends its output to a beta memory. During one cycle identified by a SIP dialog identifier, the engine will
find all possible matching rules for the current message. The set of rules is activated on an agenda. The
engine determines an order in which rules are fired. Currently, the order may be based on rules order as
written by the rules author. Other criteria may be defined to resolve the conflict between rules. The engine
now fires the rules and executes actions associated with rules.

Let us now consider the handling of VeTo rules in a Rete graph. When a SIP message is observed by the
runtime, the working memory of the current dialog of the message is activated. The working memory contains
instances of variables from the current set of rules. Then, for each existing variable instance, we search an
applicable rule. When a rule is found, it is activated to be fired. The alpha network part starts handling the
matching of predefined variables instances against regular expressions. If it successfully matches, its value is
stored in an alpha memory. To illustrate the usage of the Rete algorithm in VeTo, lets consider the blocks
depicted in Rule 11.

The two blocks of event rules prevents a SIP phone from the exploit of two vulnerabilities. The first
SJPhone Message Chopped block prevents from a vulnerability where the content length value of the body
of an INVITE message is different from its real content length as observed in the message. The second
block SJPhone Invalid IP checks the conformance of the connection parameter of an INVITE message to
its specification. We observe that the two blocks require an INVITE message as a first condition. The two
blocks use the block SJPhoneData that contains the definition of events involved in the two vulnerabilities.

The set of rules from the definition block is compiled into a discrimination network as depicted in Figure
2.1. At runtime, when a SIP message arrives, the predefined variables from the left side of rules are added
to the working memory with their respective values. In the above example, the working memory contains

INRIA

VeTo language 27

Rule 11 Prevention from two SIP vulnerabilities targeting the SJphone SIP software.
CONTEXT SJPhone BEGIN

TARGET => udp:192.168.1.25:*;

CONTEXT END

DEFINITION SJPhoneData BEGIN

WHEN sip:request.method @MATCH "^INVITE" -> LET:EVENT ev_Invite;

WHEN sip:body.connection !@MATCH "^IN(\s+)IP4(\s+)(\d+)\.(\d+)\.(\d+)\.(\d+)" ->

LET:EVENT malformed;

DEFINITION END

VETO SJPhone_Message_Chopped@SJPhone USES SJPhoneData BEGIN

(ev_Invite) -> IF (SIP:headers.Content_Length !@EQ "SIP:body.length")

DROP;

VETO END

VETO SJPhone_Invalid_IP@SJPhone USES SJPhoneData BEGIN

(ev_Invite(Malformed)) -> DROP;

VETO END

the method field, the content length and the connection parameter. If the predefined variables match their
respective patterns and satisfy a rule, new variables are added to the working memory. For example, if the
method field matches the INVITE pattern, the first network branch is fired and an instance of the event
ev INVITE is added to the working memory.

Figure 2.1: The Rete network for the prevention rules targeting the SJphone SIP stack

We observe that the two first rules are merged within a single branch in the Rete network.

RT n° 7816

28 Lahmadi & Festor

2.7.2 Events pattern matching

The event patterns in VeTo provide logical and temporal correlations between events to prevent the exploit
of a vulnerability. When an event pattern is detected, the action part of the rule is executed. The event
pattern may be detected from one or many SIP messages within a SIP dialog. However, the rules with a
simple matching left side using predefined variables are checked from a single SIP message. Therefore, we
have to integrate both the matching of event patterns and simple patterns in a single network. The events
in VeTo are created using the action let. Then, they are consumed to be matched against a pattern defined
in the left side of a rule. A naive approach might be to test events against the matched patterns at each
execution cycle. This approach is inefficient when dealing with a large number of event patterns. A more
interesting approach relies on graphs to event patterns matching. Lets consider, the following example to
illustrate our approach for event patterns matching.

1 DEFINITION SIPMessages BEGIN

2 when sip:request.method @MATCH "INVITE" -> LET: EVENT ev1;

3 WHEN sip:response.method @MATCH "200" -> LET: EVENT ev2;

4 WHEN sip:request.method @MATCH "ACK" -> let:event ev3;

5 WHEN sip:content_length @EQ "0" -> LET: EVENT ev4;

6 DEFINITION END

7

8 VETO EventsExample@ {*} USES SIPMessages BEGIN

9 (ev1 ,ev2) -> DROP;

10 (ev1(ev4)) -> DROP;

11 (ev2 ,[ev3 ,1]) -> DROP;

12 VETO END

The above example uses three event patterns defined by three rules of the events block EventsExample.
The event patterns rely on four events ev1, ev2, ev3 and ev4. These events are defined by rules 1, 2, 3 and
4 of the definition block SIPMessages. These rules use the matching operator over a SIP message fields and
different regular expressions. We observe that each event pattern is embedded within and Event-Condition-
Action rule. The ECA rules were well used for expressing rules in active database management systems.
Many approaches [14] exist in the context of active DBMS to filter events within an ECA rule. We distinguish
automata, Perti nets and graphs.

In [1] authors use event graph to detect event composition. According to them, their approach is more
efficient than other approaches like Petri Nets or extended automata. We use a similar approach based on
graphs to detect event patterns expressed by VeTo rules. Therefore, we use an event tree to detect each
pattern and an event detection graph to merge and detect the overall patterns. Each leaf node in an event
tree is a simple event like ev1 and internal nodes represent event patterns. The simple events coming from
the Rete Network are fed into the graph at the bottom. According to the connected nodes, the events are
either discarded or propagated. By using event graphs, the event patterns referenced by VeTo rules are
optimized since event nodes are shared by many patterns.

Figure 2.2 represents the event patterns used by the rules of the above example. The bottom of the graph
contains the set of events. The middle nodes and the top nodes of the graph contains the event operators
such as sequence, embedded and time window to be applied on the triggered events. The event patterns
are detected according to this graph. when an event occurs, which means that a let action is activated on
the event name, and it’s current dialog instance propagated through the graph. The paired events in each

INRIA

VeTo language 29

Figure 2.2: The detection graph of event patterns shown in the above illustration example.

operator node are propagated over the graph until a pattern is satisfied. When the pattern is satisfied, the
respective rule is fired and the set of actions is executed.

RT n° 7816

30 Lahmadi & Festor

INRIA

VeTo language 31

Chapter 3

VeTo Testing

In this part, we present a more detailed complete examples of the Veto language to express severeal preven-
tions from known vulnerabilities of the SIP protocol. The examples are drawn from discovered vulnerabilities
by a fuzzing process [4] and others were published in bulletin alerts [25].

3.1 Malformed messages vulnerabilities

SIP malformed messages vulnerabilities are of type stateless and did not involve multiple SIP messages over
a dialog. This type of vulnerabilities is quite easy to write in the VeTo language. An incorrect grammar SIP
message, oversized field value, an invalid message or field name are expressed by regular expressions and the
matching operator. Following, we describe some examples of malformed SIP packets as described in [5]

3.1.1 Incorrect Grammar Message

The RFC 3261 [20] defines the grammatical structure of a SIP message. The detection of incorrect syntax
of fields may be derived directly from the SIP ABNF. For example the Call ID field is defined as :

Call-ID=("Call-ID"/"i") HCOLON callid

callid = word ["@" word]

This may be easily translated into a simple regular expression in the Veto rule condition part with the
matching operator ”@match”. Therefore each time the event is satisfied, the SIP message is dropped.

DEFINITION MalformedDefs BEGIN

WHEN sip:headers.call-ID !@MATCH "^\s*(Call-ID|i)\s*:\s*w+[@w+]$" -> LET: EVENT malformedCallID;

DEFINITION END

VETO VulnerbaleCallID USES MalformedDefs BEGIN

(malformedCallID) -> DROP;

VETO END

RT n° 7816

32 Lahmadi & Festor

Here, we only need to write rules for the correct grammar of SIP messages and any message does not
comply with this grammar is dropped. Other rules to detect oversized field values or a missing mandatory
field could be easily written using veto rules and regular expressions.

For example, it was reported by a fuzzing testing that an empty method field of a SIP request may takes
down a SIP stack implementation [4]. This type of vulnerability is mainly due to an implementation flaw
where the software has not been implemented robustly. The rule below detects an empty method field and
drops the SIP message that triggers the event.

DEFINITION MalformedDefs BEGIN

WHEN sip:request.method" @MATCH "^$" -> LET: EVENT malformedMethod;

DEFINITION END

VETO VulnerbaleMethod USES MalformedDefs BEGIN

(malformedMethod) -> DROP;

VETO END

3.1.2 Cross-site scripting attacks over SIP

Cross-site scripting (XSS) is a type of vulnerability, usually found in web applications which allow code
injection by malicious web users into the web pages viewed by other users. Recently, it has been proved that
an attacker may uses the SIP to start an XSS attack and owns an internal network access. A quick answer
could be: use a buffer overflows and do it. While buffer overflows in SIP stacks do exists, most of them
are difficult to exploit because they are affecting embedded devices with custom architectures and operating
systems. However, most VoIP devices have embedded web servers that are typically used to configure them,
or to allow the user to see the missed calls, and all the call log history. The important issue is that, the user will
check the missed calls and other device related information from her machine, which is usually on the internal
network. In this post, I will describe how XSS injection can be done with SIP and a vulnerable integrated web
server. The Linksys SPA-941 (Version 5.1.8) phone has an integrated web server that allows for configuration
and call history checking. An XSS vulnerability allows a malicious entity to perform XSS injection because
the ”FROM” field coming from the SIP message is not properly filtered. By sending a crafted SIP packet
with the FROM field set to : ”¡script x=’” ¡sip:’src=’http://baloo/beef/y.js’¿192.168.1.9:5060¿;tag=1”,

the beef attack tool can be launched against the internal machine of the user. Obviously any other XSS
related attack (XSS proxy, Beef, Attack API, Jikto) can be similarly performed.

Rule 12 Prevention from a SQL injection code within a from field of a SIP message.
DEFINITION MalformedDefs BEGIN

WHEN sip:headers.from @MATCH "script" -> LET: EVENT malformedFrom;

DEFINITION END

VETO SQL_Injection UESES MalformedDefs BEGIN

(malformedFrom) -> DROP;

VETO END

The bloc of protection depicted in 12 provides a rule which verifies the presence of the keyword script
within a from field of a SIP message.

INRIA

VeTo language 33

The different veto blocks described above to prevent from the exploit of a malformed SIP message may be
combined in a single block. Rule in 13 depicts the definition block and the event block of such vulnerability.
We observe that in the definition block, the event MalformedMsg is created from different matching rules.
It is equivalent to a disjunction operator between these rules. However, the event block MalformedMessage
contains a single rule.

Rule 13 Prevention from a malformed SIP message.
DEFINITION MalformedDefs BEGIN

WHEN sip:headers.from @MATCH "script" -> LET: EVENT MalformedMsg;

WHEN sip:request.method" @MATCH "^$" -> LET: EVENT MalformedMsg;

WHEN sip:headers.callid !@MATCH

"^\s*(Call-ID|i)\s*:\s*w+[@w+]$" ->

LET: EVENT MalformedMsg;

DEFINITION END

VETO MalformedMessage USES MalformedDefs BEGIN

(MalformedMsg) -> DROP;

VETO END

3.2 Invalid semantics

In this category of vulnerabilities, the SIP message is well formed, but it reveals to an abnormal semantic.
For example, the use of the loopback address (127.0.0.1) in a sip message, or an out of state received SIP
message [6]. Rule 14 prevents from an improper INVITE message received by a callee in the confirmed state
of the SIP server state machine.

Rule 14 Prevention from an improper INVITE message in a UAS confirmed state.
DEFINITION SIPMessages BEGIN

LET:uas.state Callee_State;

WHEN sip:request.method @MATCH "^INVITE" -> LET: EVENT ev_Invite;

DEFINITION END

VETO Improper_INVITE USES SIPMessages BEGIN

(ev_Invite) -> IF (Callee_State @EQ "confirmed") {

DROP;

}

VETO END

The definition block creates a state variable named Calle State which tracks the state value of an UAS
entity within a dialog. The second rule from the same block, creates and event ev Invite when an INVITE
SIP message is observed. The veto block Imporper INVITE drop the SIP message, if the ev Invite event
occurs and the callee state is equal to confirmed.

RT n° 7816

34 Lahmadi & Festor

3.2.1 Out of state message

An out of state message is an unexpected message in the SIP protocol state machines. For example, we may
observe a 200 OK response message without an associated request. The vulnerability is described in Rule
15. The rules in the definition block SIPMessages creates an event named ev Request when an INVITE, a
BYE or a Register messages are observed. The event rule within the Out of State block checks the arrival
of the ev 200 without any ev request event. In such case, the SIP message is dropped.

Rule 15 Prevention from a 200 OK out of state response message.
DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "INVITE" -> LET: EVENT ev_Request;

WHEN sip:request.method @MATCH "BYE" -> LET: EVENT ev_Request;

WHEN sip:request.method @MATCH "REGISTER" -> LET: EVENT ev_Request;

WHEN sip:response.code @MATCH -> "^200" -> LET: EVENT ev_200;

DEFINITION END

VETO Out_of_State UESES SIPMessages BEGIN

(~ev_request,*,ev_200)" -> DROP;

VETO END

3.3 Flooding attacks

In [6], the author was interested to SIP-specific DoS attacks that involve flooding SIP entities with illegitimate
SIP messages. He proposes a detection method that relies on thresholds. The author specifies four threshold
parameters to detect flooding attacks. The most trivial one is a threshold on the number of INVITE message
allowed per dialog to a particular URI. Rule 16 describes such vulnerability. Firstly, we track the target
URI of each INVITE message within the collection targets. We count the number of INVITE message to
each target from the collection using the function count. Finally, we check the number of observed INVITE
against an allowed threshold. If the threshold value is crossed, we drop all subsequent INVITE messages.

The most interesting is the upper bound of the number of allowed transactions per node. Firstly, We
need to define a collection that tracks transactions per node. We also need a counter to track their number.
Rule 17 describes such vulnerability.

Another threshold type, described by the author, is the upper bound on the number of allowed messages
per transaction. In this case we use a collection variable to record transactions. We associate to each
transaction a counter to count the number of request and response messages. When this number exceeds
a particular threshold, the subsequence messages are dropped. Rule 18 depicts the prevention from such
attack. The event pattern shown in line 10 describes the occurrence of an event Request followed by zero or
many ev Response responses using the kleen closure [*].

3.4 Implementation flaws specific attacks

Attack may occurs on a specific implementation on a particular SIP devices to cause unexpected behavior,
usually the device takes down. In [4], authors have identified many of these flaws on a wide range of
available open source and commercial SIP implementations. Some SIP phones implementation are sensitive
to a particular sequence of SIP messages. Such sequence may takes down the SIP phone implementation.
Rule 19 prevents a particular SIP phone, from executing a such vulnerable sequence of SIP messages.

INRIA

VeTo language 35

Rule 16 Prevention from an INVITE flooding attack against a particular target URI.
DEFINITION FloodingDefs BEGIN

LET: SET[sip:headers.uri.addr] targets;

LET: COUNTER(10,60000) targets.count;

DEFINITION END

VETO Flooding_By_Target USES SIPMessages, FloodingDefs BEGIN

(ev_Invite) -> {

STORE:targets;

APPLY:targets.count;

IF (targets.count @GE 100) {

DROP;

}

}

VETO END

Rule 17 Prevention from a transaction based flooding attack.
DEFINITION SIPMessages BEGIN

WHEN sip:request.method !@MATCH "^$" -> LET: EVENT ev_Request;

DEFINITION END

DEFINITION FloodingDefs BEGIN

LET: SET[sip:headers.branch] transactions;

LET: COUNTER(1,60000) transactions.count;

DEFINITION END

VETO Flooding_By_Transaction UESES FloodingDefs, SIPMessages BEGIN

(ev_Request) -> {

STORE:transactions;

APPLY:transactions.count;

IF (transaction.count @GE "10") {

DROP;

}

}

VETO END

3.5 Legitimate SIP messages based vulnerabilities

Legitimate SIP vulnerabilities are a particular type of vulnerabilities that rely on legitimate SIP messages
and semantics. However, the vulnerability occurs when a combination of SIP messages is exchanged between
SIP entities. In such case a SIP feature is tricked to arise an abnormal or unexpected behavior on a targeted
SIP device.

RT n° 7816

36 Lahmadi & Festor

Rule 18 Prevention from a per message transaction based flooding attack.

1 DEFINITION SIPMessages BEGIN

2 WHEN sip:request.method !@MATCH "^$" -> LET:EVENT ev_Request;

3 WHEN sip:response.code !@MATCH "^$" -> LET: EVENT ev_Response;

4 DEFINITION END

5

6 DEFINITION FloodingDefs BEGIN

7 LET: SET[sip:headers.branch] transactions;

8 LET: COUNTER (1 ,60000) transactionsMsg.count;

9 DEFINITION END

10

11

12 VETO Flooding_Transactions_Messages USES SIPMessages , FloodingDefs BEGIN

13 (ev_Request ,ev_Response [*]) -> {

14 TORE:transactions;

15 APPLY:transactionsMsg.count;

16 IF (transactionsMsg.count @GE "10") {

17 DROP;

18 }

19

20 }

Rule 19 Prevention from a vulnerable sequence of events targeting a Cisco SIP phone.
CONTEXT CISCO_7940 BEGIN

TARGET => udp:192.168.1:*;

CONTEXT END

DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "^INVITE$" -> LET:EVENT ev_Invite;

WHEN sip:request.method @MATCH "^OPTIONS" -> LET: EVENT ev_Options;

WHEN sip:response.code @MATCH "^200" -> LET: EVENT ev_200;

WHEN sip:response.code @MATCH ""^481" -> LET:EVENT ev_481;

DEFINITION END

VETO Cisco_flaw@{CISCO_7940} USES SIPMessages BEGIN

(ev_Invite,ev_481,ev_Options,ev_200,ev_481,ev_Options) -> DROP;

VETO END

3.5.1 SIP Method based attacks

This kind of attack uses a legitimate SIP request to terminate or modify an existing dialog. In the CANCEL
attack, a crafted CANCEL request is sent before the final response of a dialog/transaction, thereby termi-
nating the dialog prematurely, causing a DoS. The Cancel attack involves the generation of a legitimate
CANCEL request to terminate an on-going dialog between two SIP peers. Rule 20 presents the set of rules
to prevent from such attack.

INRIA

VeTo language 37

Rule 20 Prevention from a vulnerable CANCEL message.
DEFINITION SIPMessages BEGIN

WHEN SIP:request.method @MATCH "^CANCEL" -> LET:EVENT ev_CANCEL;

DEFINITION END

DEFINITION VulnerableCancelDefs BEGIN

LET: SET[sip:headers.contact] Contact_List;

DEFINITION END

VETO VulnerbaleCANCEL USES SIPMessages, VulnerableCancelDefs BEGIN

(~ev_CANCEL) -> STORE:contact_list;

(ev_CANCEL) -> IF (sip:headers.contact !@in contacts_List) {

DROP;

}

VETO END

3.5.2 The SIP DNS flooding attack

In [27], authors describe a SIP attack where a server is flooded with requests addressed at irresolvable domain
names. The attack targets SIP proxies where header field used for routing contains an irresolvable URI. The
attacker uses a URI, of which it is sure that its mapping will not be in the cache of a name server. Rule 21
depicts the set of rules that prevents from such attack. Firstly, we define a collection called domains to store
the requested domains from a register SIP messages. We associate a counter to count the number of register
messages to a particular domain. When the domain is resolved we assign the value 0 to its associated counter.
If the number of attempts to resolve a particular domains exceeds the value 2 we drop all subsequent SIP
messages targeting such SIP domain.

Rule 21 Prevention from a SIP DNS flooding attack.
DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "^REGISTER" -> LET: EVENT ev_Register;

WHEN sip:response.code @MATCH "^200" -> LET: EVENT ev_Response;

DEFINITION END

DEFINITION DNSFloodingDefs BEGIN

LET: SET[sip:headers.uri.domain] domains;

LET: COUNTER() domains.score;

DEFINITION END

VETO SIP_Proxy_DNS_Flooding USES SIPMessages, DNSFloodingDefs BEGIN

(ev_Register) -> {

STORE:domains;

APPLY:domains.score;

IF (domains.score @GE "2") -> DROP;

}

(Ev_Register,Ev_Response) -> ASSIGN:domains.score=0;

VETO END

RT n° 7816

38 Lahmadi & Festor

3.5.3 Ringing-based DoS attack

In [7], the authors describe the ringing attack where an attacker exploit the semantics of the SIP protocol
by intentionally increasing the amount of transaction state that must be maintained by a stateful proxy. A
stateful proxy with limited resources can only maintain a finite amount of transaction state before service
disruption start to occur. If one or more UACs repeatedly send INVITE requests to one or more excessively
ringing UASs, then the stateful proxy can potentially become the target of what we call Ringing-based DoS
attack. The authors present a solution based on an algorithm to be added to a SIP proxy implementation.
As explained above, patching is an efficient way to stop such flaw, but it is known that people have been
reluctant to patch their systems immediately, because patches are perceived to be unreliable and disruptive
to apply [26]. Therefore, using the Veto language and SecSip is useful to address this attack before patches
are applied. The following rules written in the Veto language expresses the solution proposed by the authors
in [7]. The idea is to drop transactions suspected of involving excessively ringing UASs when the proxy is
under heavy load. If the number of concurrent transaction is greater than T2, then all transaction between
T2 up to the oldest transaction which are older than MRTT, will be canceled. The set of rules that prevents
from such attack is depicted in Rule 22.

Rule 22 Prevention from ringing-based DoS attack.
DEFINITION SIPMessages BEGIN

WHEN sip:request.method @MATCH "^INVITE" -> LET: EVENT ev_Invite;

WHEN sip:response.code @MATCH "^200$" -> LET: EVENT ev_200;

DEFINITION END

DEFNITION RingingDefs BEGIN

LET: SET[sip:request.branch] Transactions;

LET: TIMER() Transactions.timestamp;

LET: COUNTER() Transactions.count;

LET: STATE Transactions.state;

DEFINITION END

VETO Ringing_Attack BEGIN

(ev_Invite) -> {

STORE:Transactions;

APPLY:Transactions.timestamp;

APPLY:Transactions.count;

IF (transactions.count @GE "T2" &&

transactions.timestamp @GE "MRTT" &&

transactions.state !@EQ "Terminated")

DROP;

}

(ev_200) -> {

ASSIGN:transactions.state=Terminated;

}

VETO END

INRIA

VeTo language 39

3.5.4 The SIP Identity baiting attack

This attack [15] relies on a weakness of the SIP identity mechanism described in RFC 4474 [17]. The general
form of the attack yields to re-use a harvested signed request from a legitimate party to call a victim.
The victim domain receives the request, and verifies the identity signature. The attacker has not changed
anything which was signed, so the validation succeeds. The To URI contains the address of the attacker, but
the victim domain does not verify that the To domain is valid, nor could it because the request may have
simply been forwarded through re-targeting, which is legitimate.

What makes the attack successful is that requests in SIP are routed based on the Request-URI and/or
route headers, not the To-URI. One possible solution is to verify that the URI value of the To field matches
a trusted list of address of record. Therefore, the set of rules depicted in Rule 23 prevents from such attack.
The rule drops all INVITE messages where the To field value does not belongs to the trusted list AoR. The
AoR list is defined in the context block SIP PHONES.

Rule 23 Prevention from a baiting attack.
CONTEXT SIP_PHONES BEGIN

TARGET=> *:192.169.1.*:*;

RESOURCE => AoR={sip:bob@example.com,alice@example.com,...};

CONTEXT END

DEFINITION BaitingDefs BEGIN

WHEN sip:request.uri !@MATCH sip:request.to.uri -> LET: EVENT ev_suspicious;

DEFINITION END

VETO Baiting_Attack@{SIP_PHONES} USES SIPMessages, BaitingDefs BEGIN

(ev_Invite(ev_Suspicious)) -> IF (Aor !@contains SIP:request.to.uri) {

DROP;

}

VETO END

3.5.5 The Misuse-ringing attack

In [9], it was reported a VoIP attack against German home users of the Heise VoIP provider. The users
reported that their VoIP phones started ringing in the middle of the night. By examining the resulted SIP
Invite message of this attack, it seems to used a branch parameter value that not contains the magic cookie
z9hG4bK. In addition, the Request URI, To and From domains part contains an invalid IP address 1.2.3.4 and
the Call-ID contains spaces. It is easy to mitigate such attack by writing rules that detects such malformed
fields and consequently drop respective messages. This solution is inefficient since the vulnerability exploited
by the attacker still exists and it is easy for an attack to evade from the malformed fields detection rules.
The attack may has different targets either SIP phones or SIP servers. Therefore, we need to contextualize
the protection rules according to the target device.

SIP Phones: To receive incoming calls a SIP phones needs to register its address-of-record to a specific
contact address to its SIP proxies that serve its domain. Therefore, each incoming call where the request
URI does not match the Contact-URI in the register request has to be dropped. The following rules record
the Contact-URI within the REGISTER requests. If an invite request contains a request URI that does

RT n° 7816

40 Lahmadi & Festor

not match a registered contact-URI. Thus, the request should be dropped. The veto block Misuse Attack

Rule 24 Prevention from the misuse ringing attack targeting one or many SIP phones.
CONTEXT SIP_PHONES BEGIN

TARGET => *:192.169.1.*:*;

RESOURCE => My_SIP_Proxy_Addr=192.168.2.25;

CONTEXT END

DEFINITION MisuseDefs BEGIN

LET: SET[sip:request.contact] contacts;

WHEN sip:message.via.addr !@MATCH My_SIP_Proxy_Addr -> LET: EVENT ev_Unknown;

DEFINITION END

VETO Misuse_Attack@{SIP_PHONES} USES SIPMessages, MisuseDefs BEGIN

(ev_Unknown) -> DROP;

(ev_register) -> STORE:contacts;

(ev_Invite) -> IF (contacts !@contains sip:request.uri) {

DROP;

}

VETO END

has a context identified by the name SIP HONES. This context has a target a list of addresses of available
SIP phones in the SIP network. Firstly, we define a collection to store the set of registered contacts. The
first event rule in line 10 allows a SIP phone to only accept incoming calls from a predefined SIP proxy
My SIP Proxy Addr. The My SIP Proxy Addr is defined in the context block. The last event rule in line
12 drops all INVITE messages to a SIP phone with a request uri that does not belong to the stored list of
contact uris.

3.5.6 The re-INVITE message syndrome

The SIP protocol establishes a dialog between two user agents using the offer-answer model. It also provides
means to modify a session parameters such as addresses or ports, adding a media stream, and so on. This is
accomplished by sending a new INVITE request within the same dialog. This type of INVITE is known as
a re-INVITE. The Table 3.1 depicts the major different parameters between an INVITE and a re-INVITE
messages. The To, From, Call-ID, Cseq, and Request-URI of a re-INVITE are set as same as a regular
request. In a re-INVITE message the Cseq value is incremented but it keeps the method name as INVITE.
It is considered like after INVITE subsequent requests that contain a Cseq value which is incremented by
one of the Cseq of the original request. The request-URI of the re-INVITE message should be equal to the
To URI field since it is a mid-dialog request. However, the initial INVITE request request-URI may contains
a pre-existing route that the denotes the URI of an outbound proxy for example. The VeTo block in 25
detects a SIP message of type re-INVITE within an existing dialog. A re-INVITE message is basically a new
INVITE with a non empty To tag within a dialog.

Authentication abusing attack

In [3], the authors claim that a re-invite message may be used to bypass the authentication mechanisms
used in SIP networks. Their described attack relies on the use a triggered re-INVITE message with an
authentication that is based on authentication in HTTP [12]. The HTTP authentication abusing attack

INRIA

VeTo language 41

Parameters INVITE re-INVITE

Dialog scope new dialog existing dialog
Initiator Caller caller or Callee
To tag empty existing To tag

Cseq value Initial value incremented
Forking Yes Never

UAC state INIT Terminated
UAS state INIT Terminated

Session description Initiate modify
To URI/Request URI Equal or Different Equal

Table 3.1: The main different parameters between a regular INVITE and a Re-INVITE messages.

Rule 25 The VeTo block that defines events of INVITE and Re-INVITE messages within an existing dialog.
DEFINITION ReInviteDefs BEGIN

WHEN sip:request.method @MATCH "^INVITE$" -> LET: EVENT ev_Invite;

WHEN sip:request.to.tag @MATCH "^$" -> LET: EVENT ev_EmptyTag;

DEFINITION END

relies on two weakness. The first is related to the re-INVITE message that might be used as an INVITE
request to call a user on another domain. The second weakness is related to the HTTP authentication which
do not apply the integrity checking on some sensitive SIP header fields.

The synopsis is as follow: an attacker will issue a call directly to the victim, the victim answers and later
on, puts the attacker on hold (transfers him to any other place or uses any other method which requires
a re-INVITE). Once the attacker receives the re-INVITE specifying the ”On hold”, he will immediately
request the victim to authenticate. This last authentication may be used by the attacker to impersonate the
victim at its own proxy.

The vulnerable event within this attack is to relay an authenticated re-INVITE and use it as an INVITE
to initialize a call to a victim.

Herein, we distinguish two cases: in the first case the attacker may replays the SIP re-INVITE message
on the same proxy of the victim to initialize a call to another user. This scenario is depicted in Figure 3.1.

In this case, we obtain a replay attack scenario. To address this vulnerability, we provide the set of
rules depicted in Rule 26. We need to check each nonce value from the authentication response within the
INVITE message against a list of used nonce values.

In the second case, the victim and the UA who issues the harvested re-INVITE are not on the same
domain. This scenario is depicted in Figure 3.2.

The major vulnerability remains on the routing mechanism of SIP [21]. Either proxy or a UA have no
way to validate routing headers that might be inserted by attackers. There is also no framework to associate
a call with global route information. As described in the RFC 2617, when the integrity feature is used by
the client to be authenticated by the proxy, the authentication digest contains a hash of the entity-body of
the re-INVITE message. Therefore, the attacker has to keep the values of the SIP message body unmodified.
To place a SIP user ”on Hold”, the UA issues a re-INVITE message with a new SDP offer that include the
attribute sendonly on the direction parameter. Thus the used re-INVITE by the attacker to initialize a call
to a victim will contain on its SDP offer the attribute sendonly.

RT n° 7816

42 Lahmadi & Festor

Figure 3.1: The replay attack SIP messages flow.

Rule 26 A prevention from an INVITE replay attack with an older nonce value vulnerability.
DEFINITION ReplayDefs BEGIN

LET: GLOBAL SET[sip:headers.proxy-authorization.nonce] Nonce_List;

WHEN sip:response.code @MATCH "^407$" -> LET: EVENT Auth_Required;

DEFINITION END

VETO Replay_Attack@{SIP_PROXY} USES ReInviteDefs,ReInviteDefs BEGIN

(ev_Invite(ev_EmptyTag),Auth_Required) -> STORE:Nonce_List;

(ev_Invite(ev_EmptyTag)) -> IF (nonce_list @contains SIP:Proxy-Authorization.nonce) {

DROP;

}

VETO END

The rules to prevent from such vulnerability exploitation due to the re-INVITE syndrome with an HTTP
authentication feature are depicted in Rule 27. The protection rules detect an authenticated INVITE message
with a sendonly value set on the sip.body.a parameter of the SDP offer.

INRIA

VeTo language 43

Bob
Attacker: X@X.netINVITE sip:bob@example.org

record-route: X@X.net
contact: sip:alex@example.net..

..
Accomplice

INVITE sip:bob@example.org

INVITE sip:Alex@example.net

route: X@X.net
...
a=sendonly

INVITE sip:Alex@example.net

record-route: X@X.net
contact: sip:bob@example.org
..
a=sendonly

Alex

Proxy: example.net

407 Proxy Authentication required

route:X@X.net
realm="example.org"
qop="auth- in t "
nonce="f84f1..."

407 Proxy Authentication required

record-route:X@X.net
realm="example.org"
qop="auth- in t "
nonce="f84f1..."

INVITE sip:Alex@example.net

route: X@X.net
nonce=" f841"
response="42ce3.."
...
a=sendonly

INVITE sip:Alex@example.net

record-route: X@X.net
nonce=" f841"
response="42ce3.."
...
a=sendonly

INVITE sip:Alex@example.net

Figure 3.2: The SIP messages flow of the replay attack.

Rule 27 Prevention from a re-INVITE based relay attack.
DEFINITION ReplayDefs BEGIN

WHEN sip:body.a @MATCH "^sendonly$" -> LET: EVENT Send_Only;

DEFINITION END

VETO Replay_Attack_Two_Domains USES ReplayDefs,ReInviteDefs BEGIN

(Auth_Required,ev_Invite(ev_EmptyTag,Send_Only)) -> DROP;

VETO END

RT n° 7816

44 Lahmadi & Festor

INRIA

VeTo language 45

Chapter 4

Conclusion

We have designed a domain specific language, called VeTo to specify protections against the exploitation of
existing vulnerabilities in the SIP protocol and/or its implementation. In VeTo a vulnerability preventions
is expressed as a set of assertions around the vulnerable point. The vulnerable point is the point where the
target system goes wrong. The assertions are the conditions necessary to go wrong. The main question
when expressing a vulnerability is what are the conditions to go towards a vulnerable point ?. This means
describing what relationships hold between various properties to go wrong and violate the intended semantics
of the SIP protocol. The specification of these conditional relationships relies on a rule based proactive event
based approach.

The resulting language builds on three features which are the definition, the context and the events blocks.
These blocks specify respectively the input data of the vulnerability, its surrounding environment and its
behavior. Each block is based on declarative rules. The definition block contains pattern matching rules over
the current SIP message of the current dialog. The context block defines mainly the target SIP device of the
vulnerability. The event block is specific to a particular vulnerability. Its uses rules composed of the tuple
events pattern, condition and actions. Each events pattern links different SIP protocol behaviors involved in
a specific vulnerability. Our language also provides instructions to record and manipulate protocol histories
over messages and dialogs. It also includes temporal support to express temporal properties and relationships
among different events involved in a vulnerability specification. We have illustrated the language over several
known vulnerabilities published in research works or in alert bulletins. The semantics of the language has
been implemented on the SecSIP [2] engine which acts as a proactive point of defense of a SIP infrastructure.

At present VeTo specifications only address known vulnerabilities. Unknown vulnerabilities are not
supported by our language since our aim was to protect a SIP network from discovered and unpatched
vulnerabilities. Other technique and software testing and binary analysis have to be used in conjunction to
prevent from unknown and zero-day vulnerabilities exploitation.

In future work, we hop to demonstrate formal modeling techniques in order to verify conflicts between
VeTo rules an check their consistency, completeness and compactness.

RT n° 7816

46 Lahmadi & Festor

INRIA

VeTo language 47

Bibliography

[1] Snoopib: Interval-based event specification and detection for active databases. Data and Knowledge
Engineering, 59(1):139 – 165, 2006.

[2] Olivier Festor Abdelkader Lahmadi. Secsip: A stateful firewall for sip-based networks. In 11th
IFIP/IEEE International Symposium on Integrated Network Management, IM 2009, Long Island, New
York, USA, 2009.

[3] Humberto Abdelnur, Tigran Avanesov, Michaël Rusinowitch, and Radu State. Abusing SIP Authen-
tication. In Information Assurance and Security (ISIAS) Information Assurance and Security, 2008.
ISIAS ’08., pages 237–242, Naples Italie, 2008. IEEE.

[4] Humberto Abdelnur, Olivier Festor, and Radu State. Kif: A stateful sip fuzzer. In ACM, editor, 1st In-
ternational Conference on Principles, Systems and Applications of IP Telecommunications (IPTComm),
July 2007.

[5] Eric Y. Chen and Mitsutaka Itoh. Scalable detection of sip fuzzing attacks. In SECURWARE ’08:
Proceedings of the 2008 Second International Conference on Emerging Security Information, Systems
and Technologies, pages 114–119, Washington, DC, USA, 2008. IEEE Computer Society.

[6] E.Y. Chen. Detecting dos attacks on sip systems. VoIP Management and Security, 2006. 1st IEEE
Workshop on, pages 53–58, April 2006.

[7] William Conner and Klara Nahrstedt. Protecting sip proxy servers from ringing-based denial-of-service
attacks. Multimedia, International Symposium on, 0:340–347, 2008.

[8] Ram Dantu and Prakash Kolan. Detecting spam in voip networks. In SRUTI’05: Proceedings of the
Steps to Reducing Unwanted Traffic on the Internet on Steps to Reducing Unwanted Traffic on the
Internet Workshop, pages 5–5, Berkeley, CA, USA, 2005. USENIX Association.

[9] Klaus Darilion. Analysis of a voip attack. http://www.ipcom.at/fileadmin/public/2008-10-
22 Analysis of a VoIP Attack.pdf, october 2008.

[10] Jonathan Davidson, James Peters, Manoj Bhatia, Satish Kalidindi, and Sudipto Mukherjee. Voice over
IP Fundamentals (2nd Edition) (Fundamentals). Cisco Press, 2 edition, August 2006.

[11] Charles L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern match problem.
In Expert systems: a software methodology for modern applications, pages 324–341, Los Alamitos, CA,
USA, 1990. IEEE Computer Society Press.

[12] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart. HTTP
Authentication: Basic and Digest Access Authentication. RFC 2617 (Draft Standard), June 1999.

RT n° 7816

48 Lahmadi & Festor

[13] Olivier Hersent. IP Telephony: Deploying VoIP Protocols and IMS Infrastructure, 2nd Edition. Wiley,
October 2010.

[14] Annika Hinze. Efficient filtering of composite events. In In Proc. of the British National Database
Conference, pages 207–225, 2003.

[15] H. Kaplan and D. Wing. The SIP Identity Baiting Attack. IETF draft, February 2008.

[16] Mohamed Nassar, Saverio Niccolini, Radu State, and Thilo Ewald. Holistic voip intrusion detection and
prevention system. In IPTComm ’07: Proceedings of the 1st international conference on Principles,
systems and applications of IP telecommunications, pages 1–9, New York, NY, USA, 2007. ACM.

[17] J. Peterson and C. Jennings. Enhancements for Authenticated Identity Management in the Session
Initiation Protocol (SIP). RFC 4474 (Proposed Standard), August 2006.

[18] Thomas Porter and Jr. Jan Kanclirz. Practical VoIP Security. Syngress Publishing, 2006.

[19] Trygve Reenskaug. Models - views - controllers. Technical report, Xerox PARC, December 1979. A
scanned version on http://heim.ifi.uio.no/ trygver/mvc/index.html.

[20] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard), June 2002. Updated by
RFCs 3265, 3853, 4320, 4916.

[21] D. Schwartz and J. Barkan. End-to-End Route Management in the Session Initiation Protocol. IETF
draft, February 2006.

[22] D. Schwartz and J. Barkan. End-to-end route management in the session initiation protocol.
http://tools.ietf.org/html/draft-schwartz-sip-routing-managment-00, February 2006.

[23] R. Sparks, S. Lawrence, A. Hawrylyshen, and B. Campen. Addressing an Amplification Vulnerability
in Session Initiation Protocol (SIP) Forking Proxies. RFC 5393 (Proposed Standard), December 2008.

[24] VOIPSA. Voip security and privacy threat taxonomy. http://voipsa.org/Activities/taxonomy.php,
October 2005, last checked on november 2011.

[25] VoIPSA.org. VOIPSEC mailing list on VoIP security issues.
http://voipsa.org/mailman/listinfo/voipsec voipsa.org, January 2009, last checked on november
2011.

[26] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. Shield: vulnerability-driven
network filters for preventing known vulnerability exploits. SIGCOMM Comput. Commun. Rev.,
34(4):193–204, 2004.

[27] Ge Zhang, Sven Ehlert, Thomas Magedanz, and Dorgham Sisalem. Denial of service attack and preven-
tion on sip voip infrastructures using dns flooding. In IPTComm ’07: Proceedings of the 1st international
conference on Principles, systems and applications of IP telecommunications, pages 57–66, New York,
NY, USA, 2007. ACM.

[28] Ruishan Zhang, Xinyuan Wang, Xiaohui Yang, and Xuxian Jiang. Billing attacks on sip-based voip
systems. In WOOT ’07: Proceedings of the first USENIX workshop on Offensive Technologies, pages
1–8, Berkeley, CA, USA, 2007. USENIX Association.

INRIA

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Futurs : Parc Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex

Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-0803

	Introduction
	Introduction
	Overview of SIP-based services
	Taxonomy of SIP specific vulnerabilities
	SIP messages
	SIP routing
	SIP authentication

	VeTo Syntax and Semantics
	The VeTo Language Syntax
	Lexical conventions
	Lexical syntax

	VeTo blocks and contexts
	Context block
	Definition block
	Event patterns block

	VeTo Variables
	Predefined variables
	Built-in functions
	Collections
	Event variables
	Event patterns
	More event patterns examples
	State variables

	Variables scope and extent
	VeTo Conditions
	Definition of conditions
	Semantics of conditions
	Examples of Conditions

	VeTo actions
	LET action
	STORE action
	ASSIGN action
	APPLY Action
	DROP action

	Implementation issues
	Rules compilation and checking
	Events pattern matching

	VeTo Testing
	Malformed messages vulnerabilities
	Incorrect Grammar Message
	Cross-site scripting attacks over SIP

	Invalid semantics
	Out of state message

	Flooding attacks
	Implementation flaws specific attacks
	Legitimate SIP messages based vulnerabilities
	SIP Method based attacks
	The SIP DNS flooding attack
	Ringing-based DoS attack
	The SIP Identity baiting attack
	The Misuse-ringing attack
	The re-INVITE message syndrome

	Conclusion

