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Bootstrapping Intrinsically Motivated Learning

with Human Demonstration

Sao Mai Nguyen, Adrien Baranes and Pierre-Yves Oudeyer

Flowers Team, INRIA Bordeaux - Sud-Ouest, France

Abstract—This paper studies the coupling of internally guided
learning and social interaction, and more specifically the im-
provement owing to demonstrations of the learning by intrinsic
motivation. We present Socially Guided Intrinsic Motivation by
Demonstration (SGIM-D), an algorithm for learning in continu-
ous, unbounded and non-preset environments. After introducing
social learning and intrinsic motivation, we describe the design of
our algorithm, before showing through a fishing experiment that
SGIM-D efficiently combines the advantages of social learning
and intrinsic motivation to gain a wide repertoire while being
specialised in specific subspaces.

I. APPROACHES FOR ADAPTIVE PERSONAL ROBOTS

The promise of personal robots operating in human environ-

ments to interact with people on a daily basis points out the

importance of adaptivity of the machine to its environment and

users. The robot can no longer simply be all-programmed in

advance by engineers, and reproduce only actions predesigned

in factories. It needs to match its behaviour and learn new

skills as the environment and users’ needs change.

In order to learn an open-ended repertoire of skills, devel-

opmental robots, like animal or human infants, need to be

endowed with task-independent mechanisms which push them

to explore new activities and new situations [1], [2]. The set

of skills that could be learnt is actually infinite, and can not

be completely learnt within a life-time. Thus, deciding how

to explore and what to learn becomes crucial. Exploration

strategies, mechanisms and constraints in recent years can

be classified into two broad interacting families: 1) socially

guided exploration; 2) internally guided exploration and in

particular intrinsically motivated exploration.

A. Socially Guided Exploration

In order to build a robot that can learn and adapt to human

environment, the most straightforward way is probably to

transfer knowledge about tasks or skills from a human into a

machine. That is why several works incorporate human input

to a machine learning process. Many prior systems are strongly

dependent on human guidance, unable to learn in the absence

of human interaction, such as in some examples of learning

by demonstration [3]–[6] or learning by physical guidance [7].

In such systems, the learner scarcely explores on his own to

learn tasks or skills beyond what it has observed with a human.

Many prior works have given a human trainer control of the

reinforcement learning reward [8], [9], provide advice [10], or

tele-operate the agent during training [11]. However, the more

dependent on the human the system, the more challenging

learning from interactions with a human is, due to limitations

like human patience, ambiguous human input, correspondence

problems [12] etc. Increasing the learners autonomy from

human guidance could address these limitations. This is the

case of internally guided exploration methods.

B. Intrinsically Motivated Exploration

Intrinsic motivation, a particular example of internal mech-

anism for guiding exploration, has drawn a lot of attention

recently, especially for open-ended cumulative learning of

skills [1], [13]. The word intrinsic motivation was first used in

psychology to describe the capability of humans to be attracted

toward different activities for the pleasure that they experience

intrinsically. These mechanisms have been shown crucial for

humans to autonomously learn and discover new capabilities

[14]–[16]. This inspired the creation of fully autonomous

robots [17]–[22] with meta-exploration mechanisms monitor-

ing the evolution of learning performances of the robot, in

order to maximise informational gain, and with heuristics

defining the notion of interest [23]–[25].

While driving an efficient progressive learning in numerous

cases, most intrinsic motivation approaches address only par-

tially the challenge of unlearnability and unboundedness [26].

Despite efforts in the case of continuous sensorimotor spaces,

computing meaningful measures of interest still requires a

sampling density which decreases the efficiency of those

approaches as dimensionality grows. Even in bounded spaces,

the measures of interest can be cast into a form of a non-

stationary regression problem, which might face the curse-

of-dimensionality [27]. Thus, without additional mechanisms,

the identification of learnable zones with knowledge or com-

petence progress becomes inefficient in high-dimensions. The

second limitation relates to unboundedness. Actually, whatever

the measure of interest used, if it is only based on the

evaluation of performances of predictive models or of skills,

it is impossible to explore/sample inside all localities in a life

time. Therefore, complementary developmental mechanisms

need to constrain the growth of the size and complexity of

practically explorable spaces, by introducing self-limits in the

unbounded world and/or drive them rapidly toward learnable

subspaces, such as motor synergies, morphological computa-

tion, maturational constraints as well as social guidance.

C. Combining Internally Guided Exploration and Socially

Guided Exploration

Intrinsic motivation and socially guided learning are often

studied separately in developmental robotics, and even in
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opposition to one another in psychology and educational

theory. Indeed, many forms of socially guided learning can be

seen as extrinsically driven learning. Yet, in the daily life of

humans, the two strongly interact, and their combination could

on the contrary push off the limitations we stated above.

Social guidance can drive a learner into new intrinsically

motivating spaces or activities which it may continue to

explore alone and for their own sake, but might have dis-

covered only due to social guidance. Robots may acquire

new strategies for achieving those intrinsically motivated ac-

tivities by observing others or by listening to their advice.

Studies in robot learning by imitation and demonstration have

already developed statistical inference mechanisms allowing

the inference of new task constraints [4], [5], [7]. These

techniques could be reused by intrinsically motivated learning

architectures to efficiently expand the explored spaces.

Inversely, as learning that depends highly on the teacher

quickly shows limitations and would discourage the user from

teaching to the robot, a need for autonomous exploration is

needed. Integrating self-exploration to social learning methods

could relieve the user from overly time-consuming teaching.

For example, while self-exploration tends to result in a broader

task repertoire of skills, guided-exploration with a human

teacher tends to be more specialised, resulting in fewer tasks

that are learnt faster. Combining both can thus bring out a

system that acquires a wide range of knowledge which is

necessary to scaffold future learning with a human teacher

on specifically needed tasks.

Initial work in this direction [28] and [29] proposes a

symbolic representation of actions and environment for ac-

tive learning, and stresses the importance of social dialogue

through both the study of the human behaviour and trans-

parency of the robot. The Socially Guided Exploration’s

motivational drives, and social scaffolding from a human

partner, bias behaviour to create learning opportunities for a

hierarchical Reinforcement Learning mechanism. However, in

this work, the representation of the continuous environment

by the robot is discrete and the set up is a limited and preset

world, with few primitive actions possible.

We would like to address the learning in the case of an

unbounded, non-preset and continuous environment.

This paper introduces an algorithm to deal with such spaces,

by merging socially guided exploration and intrinsic motiva-

tion, called Socially Guided Intrinsic Motivation (SGIM).The

next section describes SGIM’s intrinsic motivation part before

its social interaction part. Then, we present the fishing exper-

iment and its results.

II. INTRINSIC MOTIVATIONS :

THE SAGG-RIAC ALGORITHM

In this section we introduce Self-Adaptive Goal Generation-

Robust Intelligent Adaptive Curiosity, an implementation of

competence-based intrinsic motivations [30]. We chose this

algorithm as the intrinsic motivation part of SGIM for its effi-

ciency in learning a wide range of skills in high-dimensional

space including both easy and unlearnable subparts. Moreover,

its goal directedness allows bidirectional merging with socially

guided methods based on feedback on either goal and/or

means. Its ability to detect unreachable spaces also makes it

suitable for unbounded spaces.

A. Formalisation of the Problem

Let us consider a robotic system whose configurations/states

are described in both a state space X , and an operational/task

space Y . For given configurations (x1, y1) ∈ X×Y , an action

a ∈ A allows a transition towards the new states (x2, y2) ∈
X × Y . We define the action a as a parameterised dynamic

motor primitive. While in classical reinforcement learning

problems, a is usually defined as a sequence of micro-actions

a = {a1, a2, ..., an}, parameterised motor primitives consist

of complex closed-loop dynamical policies which are actually

temporally extended macro-actions, that include at the low-

level long sequences of micro-actions, but have the advantage

of being controlled at the high-level only through the setting of

a few parameters. The association M : (x1, y1, a) 7→ (x2, y2)
corresponds to a learning exemplar that will be memorised,

and the goal of our system is to learn both the forward and

inverse models of the mapping M . We can also describe

the learning in terms of tasks, and consider y2 as a goal

which the system reaches through the means a in a given

context (x1, y1). In the following, both descriptions will be

used interchangeably.

B. Global Architecture of SAGG-RIAC

The SAGG-RIAC architecture is separated in two levels:

• A higher level of active learning which decides what to

learn, sets a goal yg depending on the level of achieve-

ment of previous goals, and learns at a longer time scale.

• A lower level of active learning that attempts to reach the

goals set by the higher level and learns at a shorter time

scale.

C. Lower Time Scale:

Active Goal Directed Exploration and Learning

The Active Goal Directed Exploration and Learning mech-

anism guides the system toward the goal, while:

• A model (inverse and/or forward) is computed during

exploration and is available for later goals.

• The selection of new actions depends on local measures

of the quality of the learnt model.

D. Higher Time Scale:

Goal Self-Generation and Self-Selection

The Goal Self-Generation and Self-Selection process relies

on feedback defined by the competence, and more precisely

on the competence improvement in given subspaces of Y .

1) Competence for a Reaching Attempt: Let Sim represent

the similarity between the final state y2 of the reaching

attempt, and the actual goal yg; let us note ρ the other con-

straints. Its exact definition depends on the specific problem,

but Sim is to be defined in [−∞; 0], such that the higher

Sim(yg, yf , ρ), the more efficient the reaching attempt is.
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We define the measure of competence γyg
with respect to

Sim(yg, yf , ρ):

γyg
=

{

Sim(yg, yf , ρ) if Sim(yg, yf , ρ) ≤ εsim < 0
0 otherwise

(1)

where εsim is a tolerance factor so that we consider that the

goal is reached when Sim(yg, yf , ρ) > εsim. A high value of

γyg
(i.e. close to 0) represents a system that is competent to

reach the goal yg while respecting constraints ρ.

2) Definition of Interest: Let us consider a parti-

tion
⊎

i Ri = Y . Each Ri contains attempted goals

{yt1 , yt2 , ..., ytk}Ri
of competences {γyt1

, γyt2
, ..., γytk

}Ri
,

indexed by their relative time order of experimentation t1 <

t2 < ... < tk inside subspace Ri.

An estimation of interest is computed for each region Ri as

the local competence progress, over a sliding time window of

the ζ more recent goals attempted inside Ri:
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3) Goal Self-Generation Using the Measure of Interest:

The goal self-generation and self-selection mechanism carries

out two different processes:

1) Splitting Y into subspaces, so as to maximally discrim-

inate areas according to their levels of interest.

2) Selecting the region where future goals will be chosen.

We use a recursive split of the space, each split occurring once

a maximal number of goals have been attempted inside. Each

split maximizes the difference of the interest measure in the

two resulting subspaces, and easily separates areas of different

interest, and thus, of different reaching difficulty.

Finally, goals are chosen according to a mix of :

Mode(1): A chosen random goal inside a region which is

selected with a probability proportional to its interest value:

Pn =
interestn − min(interesti)

∑|Rn|
i=1 interesti − min(interesti)

(3)

Where Pn is the selection probability of the region Rn.

Mode(2): A selected random goal inside the whole space Y .

Mode(3): A first selected region according to the interest

value (like in mode(1)) and then a generated new goal close

to the already experimented one which received the lowest

competence estimation.

The goal self-generation mechanism begins by exploring

randomly the task space in order to affect different values

of interest to different subparts. This is why the discovery

of small reachable subparts can require the fixation of an

extremely important number of goals, because of the need

for discrimination of these subparts among unreachable ones.

In order to resolve this kind of problem, we propose to

merge intrinsic motivations with the developmental paradigms

of social guidance. In the following sections, we review

different kinds of social interaction modes then describe our

algorithm SGIM-D (Socially Guided Intrinsic Motivation by

Demonstration).

III. ANALYSIS OF SOCIAL INTERACTION MODES

Within the scope of learning the forward and the inverse

models of the mapping M : (x1, y1, a) 7→ (x2, y2), we would

like to introduce the role of a human teacher to boost the

learning of the means a and goals y2 in the contexts (x1, y1).
Given the model estimated by the robot MR, and by the human

teacher MH , we can consider social interaction as a transfor-

mation SocInter : (MR,MH) 7→ (M2R,M2H). The goal of

the learning is that the robot acquires a perfect model of the

world, i.e. that SocInter(MR,MH) = (Mperfect,Mperfect).
The social interaction is a combination of these behaviours:

• the human teacher’s behaviour SocInterH in response to

the visible state of the robot and the environment.

• the machine learner’s behaviour SocInterR in response

to the guidance of the human teacher.

We presume a transparent communication between the teacher

and the learner, ie, the teacher can access the real visible

state of the robot as a noiseless function of its internal state

visibleR(MR). Let us note ṽisibleR the ”perfect visible state”

of the robot, defined as the value of the visible states of the

robot when its estimation of the model is perfect : MR =
Mperfect. Moreover, we simplify the general problem first by

postulating that the teacher is omniscient and that his estima-

tion of the model is the perfect model Mperfect. Therefore, our

social interaction is a transformation SocInter : MR 7→ M .

In order to define the social interaction that we wish to

consider, we need to examine the different possibilities.

A. Role of the Teacher

First of all, let us define which type of interaction takes

place, and what role we give to the teacher:

1) The teacher provides high-level evaluation, feedback,

or labels to a machine learner: : the teacher would guide the

robot through an estimation of distance between the robot’s

visible state and its ”perfect visible state” : SocInterH ∼

dist(visibleR, ṽisibleR). [28] used such feedback to boost

reinforcement learning. Child development psychology would

illustrate the importance of such feedback from teachers to

infants for instance by the means of motherese [31]. Never-

theless, as in parent-child interaction cheering is completed by

games where the parents show and instruct children interesting

cases, and help children reach their goal, a more informational

interaction would better help the learner than mere cheering.

2) The teacher shows how to reach the goal that the

robot aims at: the teacher here would show to the robot

a means to reach the goal that the robot had set by itself:

SocInterH(x1, y1, y2) ∈ {a|∃x2 : l(x1, y1, a) = (x2, y2)}.

An applicable case is the example of active learning where the

robot asks for demonstrations [3] when it makes no progress

and does not reach the goal it has set by itself. The robot learns

new ways to reach that goal and can replicate the action. This

is an imitation behaviour in a restricted definition of the term,

where the observer copies the specific motor patterns.
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3) The teacher shows a context (new initial conditions):

SocInterH = (x1, y1) ∈ X × Y . The teacher here could

set up new situations and contexts, and let the robot learn

autonomously in the demonstrated context. This setting would

be interesting for a mobile robot that changes location such

as exploration, rescue or space robots.

4) The teacher demonstrates goals: such as in [5], i.e.

SocInterH = y2 ∈ Y . This would typically help a robot

that has been trying to solve tasks of low interest values

(the measure of the level of interest depends on the specific

experiment). It learns about results and changes that can be

accomplished in the environment and attempts to replicate

such states and changes. This is the definition of an emulation

behaviour, one of the two broad categories of social learning

along with imitation [32]. Nevertheless, emulation alone can

not satisfyingly represent social learning, as young children

are prone to imitate the action sequences, even parts that are

not obviously necessary to achieve the goal: a phenomenon

known as over-imitation [33].

5) The teacher shows both a means and a goal:

SocInterH ∈ A× Y . This is a typical imitation behaviour in

the broad sense, where the observer copies both the specific

motor patterns and consequent results that are jointly inferred

to have been part of the behaviour intention. The new sample

highlights a subspace which the robot can explore. This seems

to be the most complete approach as it enables both imitation

and emulation, as it influences the learner both from the action

point of view and the goal point of view.

To sum up, the teacher who shows both a means and a

goal seems to offer the best opportunity for the learner to

progress, for he provides the learner with both example goals

and example means, so that the learner can use both the means

and/or the goal-driven approach.

B. Timing of the Social Interaction

After these considerations about the nature human teacher’s

behaviour and guidance SocInterH , our next question is:

when should the interaction take place?

1) In the very beginning: before any personal experience

of the robot itself. This would speed up the learning from the

beginning, but has no merit as it would not account for the

adaptability and flexibility to the changing environment and

demand from the user.

2) At a regular pace: (every N experiments). This would

represent the regular and continuous social interactions the

system has with its teacher, and is best to assess quantitatively

the improvement of its learning.

3) When the robot stops making progress: the measure of

progress being specific to the learning problem. Either it asks

for help by himself (sends a non null SocInterR ), or the

benevolent teacher steps in. This seems the best solution to

maximise the utility of the teacher, but brings questions such

as how to evaluate that the robot is stuck, and at which level

of difficulty the teacher should step in. It would also assume

that the teacher is attentive to the state of the robot.

Although the 3rd case seems interesting theoretically, as

the purpose of this work is to compare the performance of

different algorithms, we opted for an idealised teacher, who

would have continuous interaction with the robot throughout

the learning duration. And to make the teaching neutral and not

biased to fit our algorithm specifically, we choose non optimal

teaching parameters. The teacher gives a demonstration at

constant frequency, and randomly selects it from a set of

demonstrations.

C. Which Demonstrations to Choose?

This brings us to the more specific question of which

demonstrations among all the possible demonstrations, the

teacher should give to the learner:

1) One sample among a set of completely random exam-

ples: this seems the easiest solution but the teaching would

not differ from random exploration.

2) One random among the unreached goals: this solution

makes the robot explore new goals and unexplored subspaces.

3) The farthest among the unreached goals : it would

make sure the new goal provided is not already accessible to

the robot, but still, it would prove to be too difficult a goal to

help the robot progress.

4) The nearest among the unreached goals: it respects the

progressive development idea, but demonstrations would fail

to introduce the learner to new unexplored subspaces.

To bootstrap a system endowed with intrinsic motivation,

we choose to use a learning by demonstration of means and

goals, where the teacher introduces at regular pace a random

demonstration among the unreached goals.

IV. SGIM ALGORITHM

This section details SGIM as an algorithm for the learning

of an inverse model in a continuous, unbounded and non-preset

framework, combining both intrinsic motivation and social in-

teraction. Our Socially Guided Intrinsic Motivation Algorithm

merges the SAGG-RIAC algorithm of intrinsic motivation with

a learning by demonstration as social interaction. The system

includes two different levels of learning (fig. 1).

A. Higher level of Learning

The higher level of active learning decides which goal

(x2, y2) is interesting to explore. It contains 3 modules. The

Goal Self-Generation module and the Goal Interest Compu-

tation module are as in SAGG-RIAC. The Social Interaction

module manages the interaction with the human teacher. It

interfaces between the social guidance of the human teacher

SocInterH and the goal interest computation module of

intrinsic motivation to decide which lower level behaviour

should be triggered. With the choices of social interaction

mode we choose, it interrupts the intrinsic motivation at every

demonstration by the teacher. It first triggers an emulation

effect, as it registers the demonstration (ademo, ydemo) in the

memory of the system and gives it as input to the goal interest

computation module. It also triggers the imitation behaviour

and sends the demonstrated action ademo to the imitation

module.
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Goal
Interest 

Computation

Goal
Self-Generation

Lower Level of Active Learning

Higher Level of Active Learning

Demonstrations

Imitation

Goal-Directed Low-
Level Actions Interest 

Computation

Goal Directed 
Exploration and 

Learning

Teacher
Social 

Interaction

Fig. 1. Structure of SGIM-D (Socially Guided Intrinsic Motivation by
Demonstration). SGIM-D is organised into 2 levels.

B. Lower Level of Learning

The lower level of active learning also contains 3 modules.

The Goal Directed Exploration and Learning module and the

Goal Directed Low Level Actions Interest Computation module

are as in SAGG-RIAC. The Imitation module interfaces with

the high-level social interaction module. It takes as input an

action ademo, and tries to repeat it a fixed number of times,

with variations in order to explore the locality of ademo.

The above description is detailed for our choice of SGIM

by Demonstration. Such a structure would remain suitable for

other choices of social interaction modes, and we only have

to change the content of the Social Interaction module, and

change the Imitation module to the chosen behaviour. Our

structure, notably, can deal with cases where the intrinsically

motivated part gives a feedback to the teacher, as the Goal

Interest Computation module and the Social Interaction mod-

ule communicate bilaterally. For instance, the case of active

learning we mentioned in the analysis of social interaction

modes, where the learner asks the teacher for demonstrations,

can still use the structure presented.

We have until now, discussed intrinsic motivation and more

specifically the SAGG-RIAC algorithm, and we have analysed

social learning and its different modes to design Socially

Guided Intrinsic Motivation by Demonstration (SGIM-D) that

merges both paradigms, and to learn a model in a continuous,

unbounded and non-preset framework. In the following section

we use SGIM-D to learn a fishing skill.

V. FISHING EXPERIMENT

This fishing experiment focuses on the learning of inverse

models in a continuous space, and deals with a very high-

dimensional and redundant model. The model of a fishing rod

in a simulator might possibly be mathematically computed,

but a real-world fishing rod’s dynamics would be impossible to

model. A learning system of such case is therefore interesting.

A. Experimental Setup

Our continuous environment is a 6 degrees-of-freedom robot

arm that learns to use a fishing rod (fig. 2) to know, for a

given goal position yg , where the hook should reach when

falling into the water and which action a to perform. This is

an inverse model in a continuous and unbounded environment

of complex system that can hardly be described by physical

equations.

Fig. 2. Fishing experimental setup.

In our experiment, X describes the actuator/joint positions

and the state of the fishing rod. Y is a 2-D space that describes

the position of the hook when it reaches the water. The robot

always starts with the same initial position, x1 and y1 always

take the same values xorg and yorg . Variable a describes the

parameters of the commands for the joints. In our setup, we

choose to control each joint with a Bezier curve defined by 4

scalars (initial, middle and final joint position and a duration).

Therefore an action is represented by a 6×4 = 24 parameters:

a = (a1, a2, ...a24). Because our experiment uses for each

trial the same context (xorg, yorg), our system memorises after

executing every action a, simply the context-free association

a 7→ y2 using a combination of social learning and intrinsic

motivation.

The experimental scenario sets the robot to explore the

task space through intrinsic motivation when it is not in-

terrupted by the teacher. After P movements, the teacher

interrupts whatever the robot is doing, and gives him an

example (ademo, ydemo). The robot first registers that example

in its memory as if it were its own. Then, the Imitation

module tries to imitate the teacher with movement parameters

aimitate = ademo + arand with arand a random movement

parameter variation, so that |arand| < ǫ. At the end of

the imitation phase, SGIM-D shifts back to the autonomous

exploration mode which is based on a measure of competence,

specific to the problem and that we define hereafter.

B. Measure of Competence

Let us first consider that the robot learns to reach a fixed

goal position yg = (y1g , y
2
g). We define the similarity function

Sim and thus the competence as linked with the euclidian

distance between the final state and the goal in the task

space after a reaching attempt D(yg, y2), and normalised

by the distance between the origin position yorg and the

goal: D(yorg, yg). This allows, for instance, to give the same

competence level when considering a goal at 1km from the

origin position that the robot approaches at 0.1km, and a goal

at 100m that the robot approaches at 10m.

D(y1, y2) is the euclidian distance rescaled to [0;1]. Each

dimension thus has the same weight in the estimation of

competence. The similarity measure is defined as:

Sim(yg, y2, yorg) =

{

−1 if
D(yg,y2)

D(yg,yorg)
> 1

−
D(yg,y2)

D(yg,yorg)
otherwise

(4)
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Reaching a goal yg requires movement parameters a leading

to this chosen state yg . Here, our direct model M : a 7→ y

only considers the 24 parameters a = (a1, a2, ...a24) as inputs

of the system, and a position in (y1, y2) as output. In this

experiment, we wish to estimate the inverse model InvM :
y 7→ a and use the following optimisation mechanism which

can be divided into two different regimes:

1) Exploitation Regime: The exploitation regime uses the

memory data to interpolate an inverse model InvM :
(y1, y2) → (a1, a2, ...a24). Given the high redundancy of

the problem, we choose a local approach and extract the

potentially more reliable data using the following method.

First, we compute the set L of the lmax nearest neighbours

of yg and their corresponding movement parameters using an

ANN method [34], which is based on a tree split using the

k-means process:
L = {(y, a)1, (y, a)2, ..., (y, a)lmax

} ⊂ (Y ×A)lmax (5)

Then, for each element (y, a)l ∈ L, we compute its reliability.

Let us consider the set Kl which contains the kmax nearest

neighbours of xl :
Kl = {(y, a)1, (y, a)2, ..., (y, a)kmax

} (6)

As the reliability of a movement depends both on the local

knowledge of the locality and the reproductivity of it, we de-

fine it as the variance varl of the set Kl. We compute for each

element (y, a)l ∈ L, its reliability as dist(yl, yg) + α× varl,

where α is a constant set to 0.5 in our experiment. We choose

the smallest value, as the most reliable set (y, a)best.
In the locality of the set (y, a)best, we interpolate using

the kmax elements of Kbest to compute the action corre-

sponding to yg : ag =
∑kmax

k=1 coefkak where coefk ∼
Gaussian(dist(yk, yg)) is a normalized gaussian of the eu-

clidian distance between yk and the goal yg .

We execute action ag and continue with the Nelder-Mead

simplex algorithm [35], to minimise the distance of the final

state y2 to the goal yg . This algorithm uses a simplex of n +

1 points for n-dimensional vectors x. It first makes a simplex

around the initial guess ag with the ak, k = 1, ...kmax. It then

updates the simplex with points around the locality until the

distance to minimise is below a threshold.

2) Exploration Regime: In this regime the system just uses

a random movement parameter to explore the space.

The system continuously estimates the distance between

the goal yg and the closest already reached position yc:

dist(yc, yg). The system has a probability proportional to

dist(yc, yg) of being in the exploration regime, and the com-

plementary probability of being in the exploitation regime.

C. Simulations

All the experimental setup has been designed for a human

teacher. Nevertheless, to test our algorithm, to control better

the demonstrations of the teacher and to be able to collect

statistics, we start by experimenting on V-REP physical sim-

ulator, which uses a ODE physics engine that updates every

50 ms. The noise of the control system of the 3D robot is

estimated to 0.073 for measures of 10 attempts of each of the
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Fig. 3. Maps of the benchmark points used to assess the performance of the
robot, and the teaching set, used in SGIM.

20 random movement parameters, while the reachable area

spans between -1 and 1 for each dimension.

After several runs of random explorations and SAGG-RIAC,

we determined the apparent reachable space as the set of all the

reached points in the goal/task space, which makes up some 70

000 points. We then divided the space into small squares, and

generated a point randomly in each square. Using a 26 × 16
grid, we obtained a set of 129 goal points in the task space,

representative of the reachable space, and independent of the

experiment data used (fig. 3) .

Likewise, we prepared a teaching set. With the perspective

that the demonstrations should be recorded on the robot

via kinesthetic teaching, the robot has access to the action

parameters, without having to compute the inverse kinematics.

In our simulation, we provided the robot with demonstrations

that are both action parameters a and goal y, using the data

of several runs of random explorations and SAGG-RIAC.

To define the 27 demonstration points (fig. 3), we divided

the reachable space into small squares subY . In each subY ,

we choose a demonstration (a, y), y ∈ subY . So that the

teacher gives the best replicable demonstration, we compute

M−1
H (subY ) = {a|MH : a 7→ y ∈ subY }. We tested all the

movement parameters a ∈ M−1
H (subY ) to choose the most

reliable one, ie, that resulted in the smallest variance in the

goal space ademo = min{var(MH(a)))}a∈M
−1

H
(subY ).

D. Experimental results

We run several times the algorithms :

• SGIM-D : one demonstration every 150 movements

• SAGG-RIAC

• learning by demonstrations only: the robot always makes

small variations of the most recent demonstration.

• random exploration: random movement parameters a.

For every simulation, 5000 movements are performed. The

performance was assessed on the same benchmark set every

250 movements. We plot the histogram of the positions of

the hook in the task space when it reaches the water (fig. 4).

Each column represents a different timeframe, and each line

represents a different learning algorithm. Fig. 5 plots the mean

error of the robot when it tries to reach a goal point defined

by the benchmark. The values are averaged on all points in

the benchmark, but also on different runs of the experiment.
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Fig. 4. Histograms of the positions explored by the fishing rod inside the
2D goal space (y1, y2). Each row shows the timeline of the cumulated set of
points throughout 5000 random movements. Each row represents a different
learning algorithm : random input parameters, SAGG RIAC and SGIM-D.

Fig. 5. Evaluation of the performance of the robot under the learning algo-
rithms: demonstrations only, random exploration, SAGG-RIAC and SGIM-D.
We plotted the mean distance to the benchmark points over several runs of
the experiment.

1) SAGG-RIAC compared to random exploration: The 1st

row of fig. 4 shows that a natural position lies around

(0.5, 0) in the case of an exploration with random movement

parameters. Most movements parameters map to a position of

the hook around that central position. We can note that the

distribution of the hook positions does not change through the

different timeframes, as we expect. The second row shows

the histogram in the task space of the explored points under

SAGG-RIAC algorithm. Compared to a random parameters

exploration, SAGG-RIAC has increased the explored space,

and most of all, covers more uniformly the explorable space.

Besides, the exploration changes through time as the system

finds new interesting subspaces to focus on and explore. Intrin-

sic motivation exploration has resulted in a wider repertoire for

the robot. Furthermore, fig. 5 shows that the robot performs

significantly better with SAGG-RIAC, and can reach closer

the points of the evaluation benchmark. Intrinsic motivation

exploration increases precision over random exploration.

2) Performance of SGIM: Fig. 5 shows that the perfor-

mance of the SAGG-RIAC increases in the case of SGIM-

D, but also that SGIM-D performs better than learning by

demonstrations alone. Demonstrations given by the teacher im-

prove the precision of the inverse model InvM over the plain

autonomous exploration or learning by demonstration only.

However, the difference does not lie so much in the perfor-

mance and precision of the robot, but mostly in the subspaces

explored. Fig. 4 highlights a region around (−0.5,−0.25)
that was completely ignored by both the random exploration

and SAGG-RIAC, but was well explored by SGIM-D. This

isolated subspace corresponds to a very small subspace in the

parameters space, seldom explored by the random exploration

or SAGG-RIAC. On the contrary, SGIM-D will highlight

these subspaces thanks to the demonstrations. The teacher

gives a demonstration that triggers the robot’s interest and he

will focus his attention on that area as long as exploration

improves his competence in this subspace. We also note that

the demonstrations occurred only once every 150 movements.

Even a scant presence of the teacher can significantly improve

the performance of the autonomous exploration.

In conclusion, SGIM-D improves the precision of the sys-

tem even with little intervention from the teacher, and helps

point out key subregions to be explored. The teacher success-

fully transfers his knowledge to the learner and bootstraps

autonomous exploration.

VI. CONCLUSION AND DISCUSSION

This paper introduces Socially Guided Intrinsic Motivation

by Demonstration, SGIM-D, a learning algorithm for models

in a continuous, unbounded and non-preset framework, which

efficiently combines social learning and intrinsic motivation.

It takes advantage of the demonstrations of the teacher to

explore unknown subspaces, and to discriminate interesting

subspaces from uninteresting ones. It also takes advantage

of the autonomous exploration of SAGG-RIAC to improve

its performance and gain precision in the absence of the

teacher in a wide range of tasks. It proposes a hierarchical

learning with a higher level that determines which goals are

interesting either through intrinsic motivation or social inter-

action, and a lower-level learning that endeavours to reach it.

Our simulation indicates that SGIM-D successfully combines

learning by demonstration and autonomous exploration even

in an experimental setup as complex as having a continuous

24-dimension action space.

Nevertheless, in this initial validation study in simulation,

we make strong suppositions about the teacher. He has the

same motion generation rules as the robot, so that a move-

ment demonstrated by the teacher can theoretically be exactly

represented and reproduced by the robot. While the experiment

has been designed for social interaction, only simulations

have been conducted until now. Experiments with human

demonstrations need to be realised and to address the problems

of correspondence and of a biased teacher.

For future work, we would first like to realise the experiment

in a real world environment with a human teacher. We will

then study further the effects of different parameters of social

interaction on the performance of the robot, for instance

the effects of the frequency of the demonstrations given by
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the teacher. The parameters of the teaching, such as the

rationales for selecting timing of the social interaction and

demonstrations have not been chosen in this paper to optimise

SGIM-D. A more precise study of these parameters could

even show better performance of SGIM-D. More generally,

exploring and evaluating systematically the other scenarios

in which a human teacher can be involved, as mentioned in

section III, should be instructive. An interesting angle to study

would also be the study of the switching between imitation and

emulation. In our experiment, the robot imitates the teacher

for a fixed amount of time, and afterwards, SGIM-D takes into

account these new data only from the goal point of view, as in

emulation. However a more natural and autonomous algorithm

for switching between or combining these two modes could

improve the efficiency of the system.
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