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Abstract: Template-based analysis techniques are good candidates to robustly detect transient
temporal graphic elements (e.g. event-related potential, k-complex, sleep spindles, vertex waves,
spikes) in noisy and multi-sources electro-encephalographic signals. More speci�cally, we present
the signi�cant impact on a large dataset of wavelet denoisings to detect evoked potentials in a
single-trial P300 speller. We apply the classical thresholds selection rules algorithms and compare
them with the hysteresis algorithm presented in [1] which combine the classical thresholds to detect
blocks of signi�cant wavelets coe�cients based on the graph structure of the wavelet decomposition.
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Seuils hystérésis pour le débruitage par

ondelettes : application à la détection de

potentiels évoqués sans moyennage

Résumé : Nous présentons dans cet article l'impact signi�catif sur une large
base de données d'un débruitage par ondelettes a�n de détecter des potentiels
évoqués sans moyennage. Parmi les diverses méthodes évaluées, nous présentons
plus particuièrement un algorithme hystérésis qui combine les seuils minimax
et universel. L'algorithme hystérésis présenté dans [1] qui combinent les seuils
classique pour détecter les blocs d'ondelettes signi�catifs coe�cients basés sur
la structure graphique de la décomposition en ondelettes.

Mots-clés : Analyse de Données Temporelles, Apprentissage Supervisé, In-
terfaces Utilisateur et Systèmes Interactifs
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1 Introduction

The observation of brain activity and its analysis with appropriate data analysis
techniques allow to extract properties of underlying neural activity and to better
understand high level functions. Several recording techniques exist providing
di�erent kinds of information at various scales. Some of them provide very
local information such as multiunit activities (MUA) and local �eld potential
(LFP) in one or several well-chosen cortical areas. Other ones provide global
information about close regions such electrocorticography (ECoG) or the whole
scalp such as electroencephalography (EEG).

In cognitive experiments using EEG, typically the experimental task (one trial)
is repeated many times and the resulting brain activity is averaged over trials.
The main reason for this averaging is the low signal-to-noise ratio (SNR) in the
single-trials and average increases the SNR dramatically. The average activity
allows to extract easily event-related components, which are strongly related to
cognitive processes in the brain.

One major problem with transient events is how to be able to deal with the
variability between trials. Thus, it is necessary to develop robust techniques
based on stable features. Speci�c modeling techniques should be able to extract
features investigating the time domain and the frequency domain. ERPs are
short-time events with characteristic peaks at speci�c times. Nevertheless, it
is useful to apply a denoising stage before the classi�cation stage to detect the
graphic-element.

2 P300 Speller: Single-trial detection

Brain-computer interface (BCI) system is a potentially powerful new commu-
nication and control option for those with severe motor disabilities [2]. A BCI
system translates brain activity into commands for a computer or other de-
vices (e.g. wheelchair, robotic arm). In other words, a BCI allows users to
act on their real or virtual environment by using only brain activity. One of
the well-known and powerful BCI system is the P300 speller [3] based on the
non-invasive Electroencephalography (EEG) measuring from the subject's scalp
[4]. This application has potentially a strong impact for patients with motor
disabilities given its high rate of accuracy, reasonable speed and the fact that
a long human training is not needed. Many improvements over the pioneering
systems have been done and some comparisons exist [5]. This BCI system uses
an oddball paradigm in which low-probability target items are inter-mixed with
high-probability non-target items. The application highlights in a random order
columns and rows (Fig. 1(a)). To spell one character it is necessary to �ash
6 columns and 6 rows, the user pays attestation to the desired letter, when
the letter is highlighted, a P300 is generated. Detecting this speci�c transient
event, it is possible to know which letter is requested. The P300 component
is a positive de�ection waveform observed around 300ms after the onset of the
stimulus. Almost everybody reacts on them including patients.

The task of the P300 speller system is to recognize the ERP components from
the noisy EEG background signal. It is found di�cult to accomplish this target
on the base of a single-trial because the magnitude of the EEG background
activities is usually one-order larger than the one of the ERP components, that
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(a) (b)

Figure 1: (a) A 6x6 P300 speller; (b) The 10 recorded EEG channels

means the ERP components in single-trial recordings are almost covered by the
background neural activities. Moreover, non-invasive electrodes produce a noisy
signal because the skull dampens signals. Thus, ERP detection usually needs to
average responses of repeated stimulations. Due to the averaging operation, the
background EEG activities are reduced and the ERP components are enhanced
and evident. From a practical point of view, an important issue is to reduce
the number of repetitions, in order to obtain high communication bit-rates.
The methodology has been improved but a gap still exists to enable single-trial
recognition. To validate our study, we used a database obtained from �rst-time
users of the P300 speller application implemented within the BCI2000 platform
[4].

3 Database

10 healthy subjects with similar characteristics (sleep duration, drugs, age, etc.)
recorded by the Neuroimaging Laboratory of Universidad Autónoma Metropoli-
tana (Mexico) were used. 10 channels (Fz, C3, Cz, C4, P3, Pz, P4, PO7, PO8,
Oz) have been recorded at 256 sps using the g.tec gUSBamp EEG ampli�er,
a right ear reference and a right mastoid ground (Fig. 1(b)). An 8th order
bandpass �lter, 0.1-60 Hz and a 60 Hz Notch have been used. The stimulus is
highlighted for 62.5 ms with an inter-stimuli interval of 125 ms.

A complete description of the parameters used for the speller and the data
are available in BCI2000 and Matlab formats on the database website: http:

//akimpech.izt.uam.mx/p300db.

To spell one character it is necessary to �ash 6 columns and 6 rows. To write
properly a character it is necessary to detect the only column/row over 6 that
contains a P300. Thus we can see the task as a 6 classes problem rather than a 2
classes problem. The main reason is that if we want to detect if there is a P300
response or not, we have to do it for each column/row. It is possible that the
classi�er wrongly detect as a P300 more than one response. At the opposite, it is
also possible that the classi�er wrongly detect none P300. Even using additional
information such as the higher posterior probability or the higher distance from
the border to select the only P300 over the 6 responses, the classi�er has more
di�culty. So we use a multiclassi�er (see section 5). Doing it, it is necessary
to check if all classes are balanced for training, so the numbers of samples per
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Hysteresis thresholding for Wavelet denoising applied to P300 single-trial detection5

class are computed. Because classes are unbalanced, it is necessary to create
new data for the classes with less samples. To do this, we permute the P300
wave in the row/column. After this process a matrix is of size 1080 × 15360 is
obtained to train the classi�er.

4 Methods

Recent literature presents solutions for denoising ERP using speci�c wavelets
[6],[7], [8]. We focused our attention on order 3 coi�ets [9]. We want to test
it on our data set and compare its performance with support vector machines,
without denoising. We are especially interested by the single-trial detection
which is the worst case because the response is very noisy if no averaging is
performed.

4.1 Denoising by wavelet decomposition

The Wavelets Transform (WT) was developed as an alternative to the Short
Fourier Transform to overcome the resolution problem [10]. WT is a windowing
technique with variable regions size. The main idea is to represent a signal x(t)
in terms of displaced and shifted version of a mother wavelet Ψ(t).

Ψa,b(t) = |a|− 1
2 Ψ

(
t− b
a

)
(1)

where a and b are the scale and translation parameters respectively.

The signal coe�cients are obtained by the convolution of the original signal
and the di�erent version of the mother wavelet.

WΨX(a, b) = 〈x(t)|Ψa,b(t)〉 (2)

The coe�cients refer to the similarity between the signal and the wavelet at
the current scale and time position.

4.2 Discrete Wavelet Decomposition

In wavelet analysis, we often use the discrete form of equations (1) and (2).
More precisely, the discrete orthogonal wavelet decomposition is obtained using
a discretized scale aj = 2j (dyadic step), while the time shift b = pj is obtained
such as, on a given scale j + 1, there are twice less coe�cients than on the
previous scale j. The wavelet coe�cients, obtained by convolution, as in (2),
will be noted as wj,pj .

When using a �nite depth decomposition, the dilatations (thus the scales)
are limited, i.e., j = 1 . . .M . In this case, wavelets are not su�cient to represent
an arbitrary signal containing low frequencies. Therefore, father wavelets (also
known as scaling functions) are introduced in the decomposition: as the mother
wavelets, they have unit norm, but they do not have zero mean. For a given
family of scaled and translated mother wavelets, we have a family of (translated)
scaling functions φM,p and the corresponding coe�cients wM,pM (see [11] for full
details and fast algorithm implementation).
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6 Saavedra & Bougrain & Ranta

Using this notations, a noisy discretized signal z = x + n, where z is the
given discrete�time recorded signal, x is the noise�free unknown version of z
and n the noise. The orthogonal wavelet decomposition of z can be written as:

z =
∑
pj ,j

wj,pj
z ψj,pj +

M∑
p

wM,pM
z φM,pM , (3)

where j is the scale, p the position, ψ the wavelet, φ the scaling function and
M the analysis depth [11].

In wavelet analysis, we often talk about approximations and detail coef-
�cients. The approximations coe�cients correspond to the high-scale, low-
frequency components of the signal. These coe�cients contain the most im-
portant part of the signal, the part with the �essence� of the signal. The detail
coe�cients are the low-scale, high-frequency components, i.e. all the small fea-
tures who made the signal �unique�.

4.3 Wavelet denoising

The fundamental hypothesis of wavelet denoising is that wavelets are correlated
with the informative signal and not correlated with the noise, which globally
means that large coe�cients correspond to signal and small coe�cients corre-
spond to noise.

Therefore, noise cancelling can be performed by thresholding: only large co-
e�cients will then be used to reconstruct the informative signal (see Antoniadis
et al. [12, 13] for a review of denoising methods).

4.3.1 Classical thresholds

With the notation from (3), an estimate of the denoised signal x̂ can be ob-
tained by inverse wavelet transform of the coe�cients vector ŵx. These coe�-
cients are obtained by modifying wz = [wM,p

z wj,p
z ] (generally, the approximation

coe�cients wM,p
z remain unchanged):

ŵx = g(wz)wz,

with g(wz) a shrinkage function applied on the measured signal coe�cients. As
the noise-free coe�cient vector is presumably sparse, the simplest solution is
provided by the well-known hard shrinkage (thresholding):

g(wz) = max (0, sign(|wz| − T )) , (4)

where T is a threshold value. The most widely used is the universal threshold
TU proposed by Donoho and Johnstone in their algorithm V isuShrink (des-
ignated V isu in the sequel) [14]. V isu is used to achieve complete asymptotic

elimination of the normal Gaussian noise and it can be shown (using extreme
values statistics) that this is achieved by setting TU =

√
2 logN . This method is

very appealing because of its simplicity and its visually attractive results, how-
ever, its focus on eliminating all noise often leads to less precise reconstruction
of the signal of interest and that represents a major drawback.

A di�erent approach is proposed by the Sure algorithm [15], that aims to
estimate as precisely as possible the �clean� signal by minimizing an estimate

Inria



Hysteresis thresholding for Wavelet denoising applied to P300 single-trial detection7

of the mean squared error (MSE) between the denoised signal and the origi-
nal one, known as the Stein Unbiased Risk Estimator. This risk is minimized
by exhaustively searching the optimal threshold TS among the coe�cients wz.
The algorithm was developed under speci�c conditions on the function g (weak
di�erentiability). In particular, the most widely used is the soft thresholding
function:

g(wz) = max

(
0,
|wz| − T
|wz|

)
(5)

The obtained threshold TS (or thresholds, as the method is usually implemented
by scale) are lower than the TU and the obtained signal has a noisier appearance.

Another classical threshold TM is the minimax one which is used as a �xed
threshold chosen to yield minimax performance for mean square error against
an ideal procedure. The minimax principle is used in statistics in order to design
estimators. Since the de-noised signal can be assimilated to the estimator of the
unknown regression function, the minimax estimator is the one that realizes the
minimum of the maximum mean square error obtained for the worst function
in a given set. As for the TS the obtained value will be lower than the universal
threshold. Consequently, we preserve more information but the denoised signal
has a noisier appearance.

4.3.2 Hysteresis threshold

We have proposed in [1] the following heuristic combination: use a V isu com-
puted high threshold Th = TU to detect blocks of signi�cant wavelet coe�-
cients, and a Sure or Minimax low threshold Tl = TS(TM ) to �x the lim-
its of the selected blocks. The method, based on the graph structure of the
wavelet decomposition, is detailed in [1]. The main idea is the following: using
in the graph structure, the selected neighborhood of a �very large� coe�cient
|wz| > TU will be formed by the connected �large enough� coe�cients selected
by Sure (|wz| > TS). The obtained two thresholds algorithm was called hys-
teresis denoising. The resulting blocks, without a priori prede�ned shapes,
will naturally integrate two important properties of real signals, as de�ned by
[16]: persistence and clustering. Persistence implies that �large/small values
of wavelet coe�cients tend to propagate across scales�, which means that the
binary trees of wavelet coe�cients (Fig. 2(a)) tend to contain similar ampli-
tude coe�cients. Clustering, de�ned as the fact that �if a particular wavelet
coe�cients is large/small, then adjacent coe�cients are very likely to also be
large/small�, considers that connected neighboring coe�cients belonging to the
same scale should be selected together if one of them is superior to the threshold
(Fig. 2(b)). If both persistence and clustering are considered, all the coe�cients
are linked together in a complete graph (Fig. 2(c)).

d1

d2

d3

a3

(a)

d1

d2

d3

a3

(b)

d1

d2

d3

a3

(c)

Figure 2: Graph types: (a) tree; (b) scale; (c) complete.
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8 Saavedra & Bougrain & Ranta

As in real applications the noise is neither white nor scaled to unitary vari-
ance, the thresholding must be adapted by multiplication by the noise standard
deviation, estimated separately for each level of the wavelet decomposition.
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Figure 3: (a) P300 response on CZ ; (b) Denoised signal using order 3 coi�ets
at level 4 with the complete hysteresis thresholding.

4.4 Classi�er

A copy-spelling run with 16 letters and 15 repetitions were used to train a multi-
class support vector machine (SVM) per trial and repetition, to recognize rows
and columns containig P300 events. A linear kernel function is used becuase it
is more robust than polynomial one for very noisy data with high variability.
The penalty parameter C that controls the trade o� between errors on training
data and margin maximization is equal to 1.

Multi-class SVM is based on several binary classi�ers, the method �1-against-
1� was used to solve the multi-class SVM problem. We used libsvm, a library
for Support Vector Machines by Chih-Chung Chang and Chih-Jen Lin and its
simple interface for matlab [17]. We test the SVM model with a free-spelling run
(user-selected words) of 3 words that correspond approximately to 15 characters
per subject.

5 Results

In this section, we compare the letter accuracy on the P300-speller using SVMs
as classi�ers with : i) no denoising ii) classical thresholds and iii) the hysteresis
approaches developed in [1].

We remain here that order 3 coi�ets were chosen due to their good perfor-
mances compare to B-Splines on this application [18]. We present in details
the results we obtained for a fourth-level decomposition (corresponding to the
fourth-level approximation and the �rst four levels of detail). The results for the
other levels of decomposition have been computed but the ranking of the com-
pared methods is the same for all levels and the best performances are obtained
for the fourth level of decomposition.

Fig. 4 shows that all wavelet denoisings improve signi�cantly the letter
accuracy according to a con�dence interval of 95% (the probability to �nd by
chance the correct letter is 1 over 36). The choice of the hysteresis option seems
to not have a strong impact on the results.

Table 1 shows the average letter accuracy for all subjects using classical
(Tu, Ts, Tm) and hysteresis (Tht, Ths, Thc) thresholdings. We can see that the

Inria



Hysteresis thresholding for Wavelet denoising applied to P300 single-trial detection9

minimax threshold Tm has a better performance compare to the other classical
thresholds. The hysteresis thresholds improve the classical ones. More speci�-
cally, the complete Thc approach has the best performance. If we compare the
best performances of hysteresis and classical families, we can see that it is pos-
sible to improve the relative performance of the 1.49% that represents 43 letters
more.

(a)

(b)

Figure 4: Letter accuracy Box-plots using a) classical thresholds b) hysteresis
minimax thresholds for Wavelet denoising for P300 single-trial detection. On
each box, the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.

6 conclusion

We show the improvement of a wavelet denoising on P300 single trial detection.
More speci�cally, we present the improvement of the hysteresis thresholdings
compare to classical ones.

In this paper, we present the impact to apply wavelet denoising as a pre-
processing stage to recognize evoked potential, from an EEG background, in a
single-trial P300 speller. We compare the classical algorithms to detect thresh-
olds based on noise estimation from a signal and the hysteresis aproach presented

RR n° 7723



10 Saavedra & Bougrain & Ranta

Subj NO TS TU TM Ths Tht Thc 10Hz
APM 62.35 59.61 64.31 65.88 61.57 62.75 61.57 65.88

ASG 52.50 57.92 62.50 61.67 63.33 64.58 64.58 63.75
DCM 57.22 63.61 70.83 67.78 69.17 69.17 68.06 70.00
ELC 56.30 62.96 71.85 67.78 70.74 70.74 71.85 72.22

LAC 75.24 80.95 82.38 80.00 82.38 80.48 80.48 81.90
LAG 48.41 50.43 55.94 55.36 55.36 53.62 53.04 55.65
GCE 33.81 38.10 37.62 38.57 39.52 37.62 36.67 37.62
WFG 43.89 44.44 44.44 43.61 43.89 44.17 44.17 45.56

LGP 61.33 63.33 63.67 63.67 63.67 62.67 63.00 62.67
ACS 40.00 39.52 46.19 45.71 45.24 44.29 44.76 45.24
DMA 30.00 36.11 35.56 36.67 35.56 37.78 36.37 35.56
JLP 33.70 34.44 40.37 34.81 39.26 35.19 34.81 36.67
JSC 25.24 34.76 40.95 38.57 41.43 40.48 40.48 41.90

PGA 25.61 31.23 37.54 37.19 37.89 37.19 37.54 38.25

JST 71.79 71.79 72.82 72.82 73.33 72.82 72.82 71.79
ASR 6.03 22.84 35.87 29.84 33.65 33.97 33.97 34.92
mean 45.21 49.50 53.93 52.50 52.52 52.97 51.78 53.72

Table 1: Accuracy of all subjects using classical and hysteresis thresholdings.

in section 4.3, wich combines classical thresholds to get better results. The order
3 Coi�ets wavelets was used in the experiments according to there performance
for ERP denoising in literature.

The improvement of wavelet denoising is visible in terms of letter accuracy.
Algorithms based on hysteresis improves performance of classical algorithms
due to combination of them. The best result was obtain by hysteresis complete,
who found 10 letters more than the second best one.

As a future work we want to investigate, di�erents thresholds selection rules
to improve the hysteresis results and how to estimate noise without relying on
a the assumption of noise is white N(0, 1).
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