
HAL Id: hal-00646878
https://hal.inria.fr/hal-00646878

Submitted on 1 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Metrics for Package Remodularisation
Stéphane Ducasse, Nicolas Anquetil, Muhammad Usman Bhatti, Andre

Cavalcante-Hora

To cite this version:
Stéphane Ducasse, Nicolas Anquetil, Muhammad Usman Bhatti, Andre Cavalcante-Hora. Software
Metrics for Package Remodularisation. [Research Report] 2011. �hal-00646878�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49941225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00646878
https://hal.archives-ouvertes.fr

Software Metrics for Package Remodularisation

(Des métriques logicielles pour la remodularisation de packages)

Deliverable: 1.1 - Cutter ANR 2010 BLAN 0219 02

Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Cavalcante Hora

30 November 2011

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

This deliverable is available as a free download.

Copyright c© 2011 by S. Ducasse, N. Anquetil, A. Hora, U. Bhatti.

The contents of this deliverable are protected under Creative Commons Attribution-Noncommercial-ShareAlike

3.0 Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any

way that suggests that they endorse you or your use of the work).

Noncommercial. You may not use this work for commercial purposes.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best

way to do this is with a link to this web page: creativecommons.org/licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of

the Legal Code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

First Edition, January, 2009. Final Edition, March, 2010.

2

creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Deliverable: 1.1

Title: Software Metrics for Package Remodularisation

Titre: Des métriques logicielles pour la remodularisation de packages

Version: 1.0

Authors: S. Ducasse, N. Anquetil, Usman Bhatti, A. Hora

Document identification

• First Public Version: 30 November 2011

3

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Contents

1 State of the Art on Software Metrics 2

1.1 Primitive Metrics . 2

1.2 Design Metrics: Class Coupling . 13

1.3 Design Metrics: Class Cohesion . 16

1.4 Design Metrics: Package Architecture 22

2 New package metrics to support application remodularisation 26

2.1 Modularity Principles . 27

2.2 Terminology and Notation . 29

2.3 Coupling Metrics:

Metrics related to Information-Hiding and Changeability Principles 31

2.4 Cohesion Metrics:

Metrics related to Commonality-of-Goal Principle 35

2.5 Validation . 39

2.6 Discussion . 41

2.7 Relevant Related Works vs. Our Metrics 42

3 Conclusion 45

4

Abstract

There is a plethora of software metrics [LK94, FP96, HS96a, HK00, LM06] and a large

amount of research articles. Still there is a lack for a serious and practically-oriented

evaluation of metrics. Often metrics lack the property that the software reengineer

or quality expert can easily understand the situation summarized by the metrics. In

particular, since the exact notion of coupling and cohesion is complex, a particular

focus on such point is important. In the first chapter of the present document, we

present a list of software metrics, that are commonly used to measure object-oriented

programs. In the second chapter we present our proposition for package metrics that

capture package aspects such as information hiding and change impact limits.

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Chapter1. State of the Art on Software Metrics

In this chapter we present some of the software metrics that are the foundation of most

software quality models. We sort them in the following groups: Primitive metrics and

Design metrics. Design metrics deal with design principles. They quantify over source

code entities to assess whether a source code entity is following a design principle. In

particular, such metrics can be used to track down bad design, and correcting these

could lead to an overall improvement.

• Primitive metrics: simple metrics capturing some structural aspects.

• Design Metrics: Class cohesion metrics are in particular relevant for remodular-

isation.

• Design Metrics: Class coupling metrics are in particular relevant for remodular-

isation.

• Design Metrics: Package architecture. They are the first metrics taking into

account the fact that a package is not just a class at another level of granularity.

1.1 Primitive Metrics

Primitive metrics target some basic aspects of source code entities (DIT, NOM), or

a simple combination of other primitives (WMC, SIX) to give an abstract, comparable

view of such entities. While simple to understand, their interpretation depends highly

on the context, including the program, its history, the programming language used, or

the development process followed by the team.

The following metrics are known as the CK metrics because Chidamber and Ke-

merer grouped them to define a commonly used metric suite [CK94b]:

• WMC

• DIT

• NOC

• RFC

Some other primitive metrics have been defined by Lorenz and Kidd [LK94] :

• NOM

• NIM

• NRM

• SIX

Note that we do not list LCOM here since it was heavily criticized and revised. We

discuss it in the cohesion part below. In addition it should be noted that many metrics

and thresholds as defined by Lorentz are unclear or do not make real sense.

2

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Names Depth of Inheritance Tree, Hierarchy Nesting Level

Acronyms DIT, HNL

References [LK94, CK94b, BMB96, GFS05, LH93a, HM95, TNM08]

Definition The depth of a class within the inheritance hierarchy is the maximum length

from the class node to the root of the tree, measured by the number of ancestor

classes. The deeper a class within the hierarchy, the greater the number of meth-

ods it is likely to inherit, making it more complex to predict its behavior. Deeper

trees constitute greater design complexity, since more methods and classes are

involved, but enhance the potential reuse of inherited methods.

Scope Class

Analysis There is a clear lack of context definition. DIT does not take into account the

fact that the class can be a subclass in a framework, hence has a large DIT but

in the context of the application a small DIT value. Therefore its interpretation

may be misleading.

Since the main problem with DIT is that there is no distinction between the dif-

ferent kinds of inheritance, Tempero et al. [TNM08] have proposed an alternative

for Java. They distinguish two kinds of inheritance in Java: extend and imple-

ment. They distinguish three domains: user-defined classes, standard library and

third-party. They have introduced new metrics to provide on how much inher-

itance occurs in an application. Unfortunately, they do not propose metrics for

indicator of "good-design" or fault predictor.

DIT measures the number of ancestor classes that affect the measured class. In

case of multiple inheritance the definition of this metric is given as the longest

path from class to the root class, this does not indicate the number of classes

involved. Since excessive use of multiple inheritance is generally discouraged,

the DIT does not measure this.

Briand et al. [BMB96] have made an empirical validation of DIT, concluding

that the larger the DIT value, the greater the probability of fault detection.

Gyimothy et al. [GFS05] conclude that DIT is not as good predictor of fault than

the other set of CKmetrics and they say that this metric needs more investigation

to confirm their hypothesis : "A class located lower in a class inheritance lattice

than its peers is more fault-prone than they are".

Moreover, DIT was really often studied but in most cases this was made with

programs with few inheritance, and therefore this metric needs more empirical

validation for programs with more inheritance. Li and Henry [LH93a] used the

DIT metric as a measure of complexity, where the deeper the inheritance, the

more complex the system is supposed to be. But as Hitz and Montazeri [HM95]

notice, this means that inheritance increases the complexity of a system while it

is considered a major advantage of the object-oriented paradigm.

3

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

This metric as well as other CKmetrics should be put in perspective: one measure

is not really significant but the change of values between two measures should

bring more information. Also, this metric should be applied at different scope

because of its different interpretation depending on the context: counting only

the user-defined classes or the standard library too.

Names Number of Children

Acronyms NOC

References [CK94b, GFS05]

Definition Number of children counts the immediate subclasses subordinated to a class in

the class hierarchy

Scope Class

Analysis This metric shows the impact and code reuse in terms of subclasses. Because of

change may impact all children, the more children have a class, the more changes

require testing. Therefore NOC is a good indicator to evaluate testability but also

impact of a class in its hierarchy. Because of counting only immediate subclass,

this metric is not sufficient to assess the quality of a hierarchy.

Gyimothy et al. studied this metric and didn’t state that it is a good fault detection

predictor. Briand et al. [BMB96] found NOC to be significant and they observed

that the larger the NOC, the lower the probability of fault detection, which seems

at first contradictory.

Marinescu and Ratiu [MR04] characterize the inheritance with this 2 metrics :

the Average Number of Derived Classes - the average of direct subclasses for all

the classes defined in the measured system (NOC) - and the Average Hierarchy

Height - the average of the Height of Inheritance tree (DIT). These 2 metrics

indicate not only if the inheritance is used by the system but also if there are

classes which use inheritance.

Names Number of Methods

Acronyms NOM

References [LK94]

Definition NOM represents the number of methods defined locally in a class, counting pub-

lic as well as private methods. Overridden methods are taken account too.

Scope Class

4

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Analysis NOM is a simple metric showing the complexity of a class in terms of responsi-

bilities. However, it does not make the difference between simple and complex

methods. WMC is better suited for that. NOM can be used to build ratio based

on methods.

Names Weighted Methods Per Class

Acronyms WMC

References [CK94b]

Definition WMC is the sum of complexity of the methods which are defined in the class.

The complexity was originally the cyclomatic complexity.

Scope Class

Analysis This metric is often limited when people uses as weighted function the function

fct = 1. In such a case it corresponds to NOM. This metric is interesting

because it gives an overall point of view of the class complexity.

Names Cyclomatic Complexity Metric

Acronyms V(G)

References [McC76]

Definition Cyclomatic complexity is the maximum number of linearly independent paths

in a method. A path is linear if there is no branch in the execution flow of the

corresponding code. This metric could be also called "Conditional Complexity",

as it is easier to count conditions to calculate V(G) - which most tools actually

do.

V (G) = e− n+ p

where n is number of vertices, e the number of edges and p the number of con-

nected components.

Scope Method, Class

Analysis This metric is an indicator of the psychological complexity of the code: the

higher the V(G), the more difficult for a developer to understand the different

pathways and the result of these pathways - which can lead to higher risk of

introducing bugs. Therefore, one should pay attention to high V(G) methods.

Cyclomatic complexity is also directly linked to testing efforts: as V(G) in-

creases, more tests need to be done to increase test coverage and then lower

regression risks. Actually, V(G) can be linked to test coverage metrics:

5

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

– V(G) is the maximum amount of test cases needed to achieve a complete

branch coverage

– V(G) is the minimum amount of test cases needed to achieve a complete

path coverage

At class level, cyclomatic complexity is the sum of the cyclomatic complexity of

every method defined in the class.

Names Essential Cyclomatic Complexity Metric

Acronyms eV(G)

References [McC76]

Definition Essential cyclomatic complexity is the cyclomatic complexity of the simplified

graph - i.e. the graph where every well structured control structure has been re-

placed by a single statement. For instance, a simple "if-then-else" is well struc-

tured because it has the same entry and the same exit: it can be simplified into

one statement. On the other hand, a "break" clause in a loop creates a new exit

in the execution flow: the graph can not be simplified into a single statement in

that case.

ev(G) = v(G)−m

where m is the number of subgraphs with a unique entry and a unique exit.

Scope Method, Class

Analysis This metric is an indicator of the degree of structuration of the code, which has

effects on maintenance and modularization efforts. Code with lots of "break",

"continue", "goto" or "return" clauses is more complex to understand and more

difficult to simplify and divide into simpler routines.

As for V(G), one should pay attention to methods with high essential cyclomatic

complexity.

Names Number of Inherited Methods

Acronyms NIM

References [LK94, BDPW98]

Definition NIM is a simple measure showing the amount of behavior that a given class can

reuse. It counts the number of methods which a class can access in its super-

classes.

Scope Class

6

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Analysis The larger the number of inherited methods is, the larger class reuse happens

through subclassing. It can be interesting to put this metric in perspective with

the number of super sends and self send to methods not defined in the class,

since it shows how much internal reuse happens between a class and its super-

classes based on invocation (the same can be done for incoming calls to meth-

ods inherited, although this is harder to assess statically). Also, inheriting from

large superclasses can be a problem since maybe only a part of the behavior is

used/needed in the subclass. This is a limit of single inheritance based object-

oriented programming languages.

Names Number of overRiden Methods

Acronyms NRM

References [LK94]

Definition NRM represents the number of methods that have been overridden i.e., defined

in the superclass and redefined in the class. This metric includes methods doing

super invocation to their parent method.

Scope Class

Analysis This metrics shows the customization made in a subclass over the behavior in-

herited. When the overridden methods are invoked by inherited methods, they

represent often important hook methods. A large number of overridden methods

indicates that the subclass really specializes its superclass behavior. However,

classes with a lot of super invocation are quite rare (For the namespace Visu-

alWorks.Core there are 1937 overridden methods for 229 classes: an average

equals to 8.4 overridden methods per class) When compared with the number

of added methods, this comparison offers a way to qualify the inheritance rela-

tionship: it can either be an inheritance relationship which mainly customizes

its parent behavior or it adds behavior to its parent one. However, Briand et

al. [BDPW98] conclude that the more overriding methods used, the more fault-

prone software system becomes.

Names Specialization IndeX

Acronyms SIX

References [LK94, May99]

Definition

SIX =
NRM ×DIT

NOM +NIM

7

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

The Specialization Index metric measures the extent to which subclasses override

their ancestors classes. This index is the ratio between the number of overrid-

den methods and total number of methods in a Class, weighted by the depth of

inheritance for this class. Lorenz and Kidd precise : "Methods that invoke the

superclass’ method or override template are not included".

Scope Class

Analysis This metric was developed specifically to capture the point that classes are struc-

tured in hierarchy which reuse code and specialize code of their superclasses.

It is well-defined, not ambiguous and easy to calculate. However, it is missing

theoretical and empirical validation. It is commonly accepted that the more the

Specialization Index is elevated, the more difficult is the class to maintain, but

there is no validation to prove it.

Moreover, this index does not care about the scope of the class. And, because

the SIX metric is based on the DIT metric, it has the same limits.

Rather than reading this index as a quality index, it should be read as an indicator

requiring classes to be analyzed with more attention.

Lorenz and Kidd state that the anomaly threshold is at 15%. With NRM = 3,

DIT = 2, NOM = 20, NIM = 20:

SIX =
3× 2

20 + 20
= 15%

According to Mayer [May99], this measure seems reasonable and logical but in

practice it is so coarsely grained and inconsistent that it is useless. He shows

with two theoretical examples that this metric does not reflect the spontaneous

understanding and says that it would be enough to simply multiply the number

of overridden methods (NRM) by the DIT value : "dividing by the number of

methods adds nothing to this measure; in fact, it greatly reduces its accuracy".

Therefore we suggest not to use it.

Names Response For a Class

Acronyms RFC

References [CK94b]

Definition RFC is the size of the response set of a class. The response set of a class includes

“all methods that can be invoked in response to a message to an object of the

class”. It includes local methods as well as methods in other classes.

Scope Class

8

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Analysis This metric reflects the class complexity and the amount of communication with

other classes. The larger the number of methods that may be invoked from a

class through messages, the greater the complexity of the class is.

Three points in the definition are imprecise and need further explanations:

– Although it is not explicit in the definition, the set of called methods should

include polymorphically invoked methods. Thus the response set does not

simply include signatures of methods.

– Inherited methods, as well as methods called through them, should be in-

clude in the set, as they may be called on any object of the class.

– It is not clear whether methods indirectly called through local methods

should be counted. If this is the case, the metric becomes computation-

ally expensive. In practice, the authors limit their definition to the first

level of nested calls, i.e., only methods directly called by local methods are

included in the set.

So many different implementations and interpretations make RFC unreliable for

comparison, unless a more precise definition is agreed upon.

Names Source Lines Of Code

Acronyms SLOC, LOC

References [Kan02]

Definition SLOC is the number of effective source lines of code

Scope Method, Class, Package, Project

Analysis Comments and blank lines are often ignored. This metric provides a raw approx-

imate of the complexity or amount of work. LOC does not convey the complex-

ity due to the flow of an execution. Correlating it with McCabe complexity is

important since we can get long a simple methods as well as complex ones.

For further information on the content of code, many tools calculate also the

Number of Commented Lines (CLOC) - lines containing comments, including

mixed lines where both comments and code are written - and also Percentage of

Comments witch is used as an indicator of readability of code.

Names Code Coverage

Acronyms

References

9

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

False

True

True

False

False

True

True

True

False

False

False

Figure 1.1: Paths considered by Statement Coverage at 100%.

Definition This suite of metrics assesses how testing covers different parts of the source

code, which gives a measure of quality through confidence in code. Unit tests

are performed to check code against computable specifications and to determine

the reliability of the system. Different metrics evaluate different manners of

covering the code.

Scope Project, Method

Analysis There are three principal kinds of coverage:

– Statement Coverage: This metric computes the number of lines of code

covered by tests. But there is no guarantee of quality even if the cover-

age is 100 %. Covering all lines of code is useful to research broken code

or useless code but it does not determine if the returns of the methods are

complying with the expectations in all cases. This metric is easy to com-

pute but does not take into account execution paths determined by control

10

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

False

True

True

False

False

True

True

True

False

False

False

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

True

True

False

False

False

Test 1 Test 2

Figure 1.2: Paths considered by Branch Coverage at 100%.

structures. In Figure 1.1, Statement Coverage is 100 % because all state-

ments are covered but there are still three paths which are not covered: the

three False paths.

– Branch Coverage or Decision Coverage: This metric determines if tests

cover the different branches introduced by the control structures in a sys-

tem. For example, an ’if’ introduces two branches and unit tests must in-

clude the two cases: True and False. In Figure 1.2, the three control struc-

tures introduce six branches and tests must include six cases: True and

False for each control structure. So if tests cover the three True branches

and then the three False branches, Branch Coverage is 100 % but does not

take care of all possible paths in the system: what about the case True, True

and False or False, True and True for example?

– Path Coverage: This metric determines if the tests cover all the possible

paths in a system. Because of the number of possible paths in a system

could be really high (for N conditions there is 2N possible paths) or un-

bounded (if there is an infinite loop), this metric is coupled with the cy-

clomatic complexity. The number of paths to cover increases linearly with

cyclomatic complexity, not exponentially. Generally, the cyclomatic com-

plexity form’s is v(G) = d + 1 where d is the number of binary decision

node in G (G could be a method for example). In Figure 1.3 there are three

conditions so there are 23 = 8 possible paths, but only four paths to cover

11

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

False

True

True

False

False

True

True

True

False

False

False

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

True

True

False

False

False

Test 1 Test 2

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

True

True

False

False

False

Test 3

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement :

decision

Statement

Statement

True

True

True

False

False

False

Test 4

Figure 1.3: Paths considered by Path Coverage at 100%.

with cyclomatic complexity: 3 + 1. A set of paths could be: True-True-

True, False-True-True, True-False-True, True-True-False. The other paths

are not independent paths so they are ignored.

These metrics indicate the level of tests but not the quality of them. They do not

determine if the unit tests are well defined and a number value near 100% does

not indicate that there are no more bugs in the source code.

12

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

1.2 Design Metrics: Class Coupling

High quality software design, among many other principles, should obey the prin-

ciple of low coupling. Stevens et al. [SMC74], who first introduced coupling in the

context of structured development techniques, define coupling as “the measure of the

strength of association established by a connection from one module to another”. There-

fore, the stronger the coupling between modules, i.e., the more interrelated they are, the

more difficult these modules are to understand, change, and correct and thus the more

complex the resulting software system.

Excessive coupling indicates the weakness of class encapsulation and may inhibit

reuse. High coupling also indicates that more faults may be introduced due to inter-

class activities. A classic example is the coupling between object classes (CBO), which

considers the number of other classes “used” by this class. High CBO measure for a

class means that it is highly coupled with other classes.

Names Coupling Between Object classes

Acronyms CBO

References [CK94b, FP96, Mar05a]

Definition Two classes are coupled together if one of them uses the other, i.e., one class

calls a method or accesses an attribute of the other class. Coupling involving

inheritance and methods polymorphically called are taken into account. CBO

for a class is the number of classes to which it is coupled.

Scope Class

Analysis Excessive coupling is detrimental to modular design and prevents reuse. The

more independent a class, the easier it is to reuse it in another application. Strong

coupling complicates a system, since a module is harder to understand, change,

and correct by itself if it is interrelated with other modules. CBO evaluates effi-

ciency and reusability.

In a previous definition of CBO, coupling related to inheritance was explicitly

excluded from the formula.

CBO only measures direct coupling. Let us consider three classes, A, B and C,

with A coupled to B and B coupled to C. Depending on the case, it can hap-

pen that A depends on C through B. Yet, CBO does not account for the higher

coupling of A in this case.

CBO is different from Efferent Coupling (which only counts outgoing dependen-

cies) as well as Afferent Coupling (which only counts incoming dependencies).

Names Coupling Factor

13

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Acronyms COF

References [BGE95],[BDW99a]

Definition Coupling Factor is a metric defined at program scope and not at class scope.

Coupling Factor is a normalized ratio between the number of client relationships

and the total number of possible client relationships. A client relationship exists

whenever a class references a method or attribute of another class, except if the

client class is a descendant of the target class. Thus, inheritance coupling is

excluded but polymorphically invoked methods are still accounted for.

The formal definition of COF given by Briand et al. [BDW99a], for a program

composed of a set TC of classes, is:

COF (TC) =

∑

c∈TC | {d | d ∈ (TC − {c} ∪Ancestors(c)) ∧ uses(c, d)} |

| TC |2 − | TC | −2
∑

c∈TC | Descendants(c) |

uses(c,d) is a predicate which is true whenever class c references a method or

attribute of class d, including polymorphically invoked methods.

Scope Program

Analysis Coupling Factor is a metric which is only defined at program scope and not at

class scope. It makes it difficult to compare with metrics defined at class scope,

which can only be summarized at program level.

The original metric was unclear whether polymorphic methods should be ac-

counted for [BGE95].

Names Message Passing Coupling

Acronyms MPC

References [LH93a]

Definition MPC is defined as the “number of send statements defined in a class”. The au-

thors further refine the definition by indicating that calls to class own methods are

excluded from the count, and that only calls from local methods are considered,

excluding calls in inherited methods.

The formal definition of MPC is:

MPC(c) =
∑

m∈MI(c)

∑

m′∈SIM(m)−MI(c)

NSI(m,m′)

where m belongs to the set of local methods MI and m′ belongs to the set of

methods statically invoked by m (i.e., without taking polymorphism into ac-

count), and excluding local methods (SIM(m) − MI). NSI(m,m′) is the

number of static invocations from m to m′.

14

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Scope Class

Analysis The authors give the following interpretation: “The number of send statements

sent out from a class may indicate how dependent the implementation of the

local methods is on the methods in other classes.”

MPC does not consider polymorphism as only send statements are accounted

for, not method definitions which could be polymorphically invoked.

15

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

1.3 Design Metrics: Class Cohesion

Cohesiveness of methods within a class is desirable since it promotes encapsulation

and lack of cohesion implies that classes should probably be split into two or more sub-

classes. For example, although we can have more definitions for the lack of cohesion

metric, they all show the cohesiveness of the class considering different relationships

between the methods of the class. We distinguish class cohesion from package cohe-

sion, since late-binding in object-oriented context may lead to good packages that have

a low-cohesion as for example in the case of framework extensions.

The Lack of Cohesion in Methods (LCOM) metric was one of the first metric to

evaluate cohesion in object-oriented code, based on a similar metric for procedural

cohesion. Different versions of LCOM have been released across the years: some have

been intended to correct and replace previous faulty versions, while others have taken

a different approach to measure cohesion. As a consequence, numbering schemas for

LCOM have diverged across references. Typically, LCOM1 was first called LCOM

before being replaced by another LCOM, which was later renamed as LCOM2.

Most of the LCOM metrics are somehow naive in the intention that they want

to capture: a cohesive class is not a class whose all methods access all the instance

variables even indirectly. Most of the time, a class can have state that is central to the

the domain it represents, then it may have peripheral state that may be used to share

data between computation performed by the methods. This does not mean that the

class should be split. Splitting a class is only possible when two groups of attributes

and methods are not accessed simultaneously.

All LCOM metrics (LCOM1 to LCOM5) give inverse cohesion measures: a high

cohesion is indicated by a low value, and a low cohesion is indicated by a high value.

We followed the numbering of LCOM metrics given by [BDW98b], which seems the

most widely accepted.

Original LCOM definitions only consider methods and attributes defined in the

class. Thus inherited methods and attributes are excluded.

a1 a2 a3

m1 m2 m3 m4

m5

Figure 1.4: Sample graph for LCOM metrics with methods mi accessing attributes aj
or calling other methods.

16

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Names Lack of Cohesion in Methods

Acronyms LCOM1

References [CK94b][BDW98b]

Definition LCOM1 is the number of pairs of methods in a class which do not reference a

common attribute.

Scope Class

Analysis In Figure 1.4, LCOM1 = 7. The pairs without a common attribute are (m1,

m3), (m1, m4), (m2, m4), (m5, m1), (m5, m2), (m5, m3), (m5, m4).

The definition of this metric is naive and led to a lot of debate against it. In

general it should be avoided as much as possible. In particular, it does not make

sense that all methods of a class directly access all attributes of the class. It can

give the same measure for classes with very different designs. This metric gives

incorrect results when there are accessor methods.

This metric only considers methods implemented in the class and only refer-

ences to attributes implemented in the class. Inherited methods and attributes are

excluded.

Names Lack of Cohesion in Methods

Acronyms LCOM2

References [BDW98b]

Definition For each pair of methods in the class, if they access disjoint sets of instance

variables, then P is increased by one, else Q is increased by one.

– LCOM2 = P −Q , if P > Q,

– LCOM2 = 0 otherwise,

LCOM2 = 0 indicates a cohesive class. LCOM2 > 0 indicates that the class

can be split into two or more classes, since its instance variables belong to dis-

joint sets.

Scope Class

Analysis In the Figure 1.4, LCOM2 = 4. P is the sum of all pairs of methods which

reference no common attribute thus P = 7 (pairs (m1, m3), (m1, m4), (m2, m4),

(m5, m1), (m5, m2), (m5, m3), (m5, m4)). Q is calculated with other pairs ((m1,

m2), (m2, m3), (m3, m4)), thus Q = 3. The result is P −Q = 4.

17

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

The definition of LCOM2 only considers methods implemented in the class and

references to attributes implemented in the class. Inherited methods and at-

tributes are excluded.

It can give the same measure for classes with very different design. LCOM2

may be equals to 0 for many different classes. This metric gives incorrect results

when there are accessors methods. Moreover, LCOM2 is not monotonic because

of "if Q > P , then LCOM2 = 0".

Names Lack of Cohesion in Methods

Acronyms LCOM3

References [BDW98b]

Definition LCOM3 is the number of connected components in a graph of methods. Methods

are connected in the graph with methods accessing the same attribute.

Scope Class

Analysis In Figure 1.4, LCOM3 = 2. The first component is (m1, m2, m3, m4) be-

cause these methods are directly or indirectly connected together through some

attributes. The second component is (m5) because the method does not access

any attribute and thus is not connected.

This metric only considers methods implemented in the class and only refer-

ences to attributes implemented in the class. Inherited methods and attributes are

excluded.

This metric gives incorrect results when there are accessor methods because only

methods directly connected with attributes are considered.

Constructors are a problem, because of indirect connections with attributes. They

create indirect connections between methods which use different attributes, and

increase cohesion, which is not real.

Names Lack of Cohesion in Methods

Acronyms LCOM4

References [BDW98b]

Definition LCOM4 is the number of connected components in a graph of methods. Methods

are connected in the graph with methods accessing the same attribute or calling

them. LCOM4 improves upon LCOM3 by taking into account the transitive call

graph.

18

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

– LCOM4 = 1 indicates a cohesive class.

– LCOM4 ≥ 2 indicates a problem. The class should be split into smaller

classes.

– LCOM4 = 0 happens when there are no methods in a class.

Scope Class

Analysis In the Figure 1.4, LCOM4 = 1. The only component is (m1, m2, m3, m4, m5)

because these methods are directly or indirectly connected to the same collection

of attributes.

If there are 2 or more components, the class could be split into smaller classes,

each one encapsulating a connected component.

Names Lack of Cohesion in Methods

Acronyms LCOM5, LCOM*

References [BDW98b]

Definition

LCOM5 =
NOM −

∑
m∈M

NOAcc(m)

NOA

NOM − 1

where M is the set of methods of the class, NOM the number of methods, NOA

the number of attributes, and NOAcc(m) is the number of attributes of the class

accessed by method m.

Scope Class

Analysis In Figure 1.4, LCOM5 = 3
4 , because NOM = 5, NOA = 3,

∑

NOAcc = 6.

A common acronym for LCOM5 is LCOM*.

LCOM5 varies in the range [0,1]. It is normalized compared to others LCOM or

TCC and LCC which have no upper limit of the values measured. But LCOM5

can return a measure up to two when there is for example only two methods and

no attribute accesses.

This metric considers that each method should access all attributes in a com-

pletely cohesive class, which is not a good design.

Names Tight Class Cohesion

Acronyms TCC

References [BK95a, BDW98b]

19

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Definition TCC is the normalized ratio between the number of methods directly connected

with other methods through an instance variable and the total number of possible

connections between methods.

A direct connection between two methods exists if both access the same instance

variable directly or indirectly through a method call (see Figure 1.5).

– NP = N×(N−1)
2 : maximum number of possible connections where N is

the number of visible methods

– NDC: number of direct connections

– TCC = NDC
NP

TCC takes its value in the range [0, 1].

For TCC only visible methods are considered, i.e., they are not private or imple-

ment an interface or handle an event. Constructors and destructors are ignored.

Scope Class

Analysis TCC measures a strict degree of connectivity between visible methods of a class.

TCC satisfies all cohesion properties defined in [BDW98b].

The higher TCC is, the more cohesive the class is. According to the authors,

TCC < 0.5 points to a non-cohesive class. TCC = LCC = 1 is a maximally

cohesive class: all methods are connected.

Constructors are a problem, because of indirect connections with attributes. They

create indirect connections between methods which use different attributes, and

increase cohesion, which is not real.

Names Loose Class Cohesion

Acronyms LCC

References [BK95a, BDW98b]

Definition LCC is the normalized ratio between the number of methods directly or indirectly

connected with other methods through an instance variable and the total number

of possible connections between methods.

There is an indirect connection between two methods if there is a path of direct

connections between them. It is defined using the transitive closure of the direct

connection graph used for TCC (see Figure 1.5).

– NP = N×(N−1)
2 : maximum number of possible connections where N is

the number of visible methods

– NIC: number of indirect connections

20

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

m2 m3 m4

m1

a b

m5
m method

a attribute

access or call

direct connection
through a/b

indirect connection

Figure 1.5: In this example depicting five methods and two attributes of a class, we

have TCC = 4
10 (counting red and blue lines) and LCC = 6

10 (adding purple lines to

the count).

– LCC = NDC+NIC
NP

– By definition, LCC ≥ TCC

LCC takes its value in the range [0, 1].

For LCC only visible methods are considered, i.e., they are not private or imple-

ment an interface or handle an event. Constructors and destructors are ignored.

Scope Class

Analysis LCC measures an overall degree of connectivity between visible methods of a

class. LCC satisfies all cohesion properties defined in [BDW98b].

The higher LCC is, the more cohesive the class is. According to the authors,

LCC < 0.5 points to a non-cohesive class. LCC = 0.8 is considered “quite co-

hesive”. TCC = LCC indicates a class with only direct connections. TCC =
LCC = 1 is a maximally cohesive class: all methods are connected.

Constructors are a problem, because of indirect connections with attributes. They

create indirect connections between methods which use different attributes, and

increase cohesion, which is not real.

21

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

1.4 Design Metrics: Package Architecture

Package Design Principles. R.C. Martin discussed principles of architecture and

package design in [Mar97, Mar05a, Mar00]. He proposes several principles:

• Release / Reuse Equivalence principle (REP): The granule of reuse is the granule

of release. A good package should contain classes that are reusable together.

• Common Reuse Principle (CRP): Classes that are not reused together should not

be grouped together.

• Common Closure Principle (CCP): Classes that change together, belong together.

To minimize the number of packages that are changed in a release cycle, a pack-

age should contain classes that change together.

• Acyclic Dependencies Principle (ADP): The dependencies between packages

must not form cycles.

• Stable Dependencies Principle (SDP): Depend in the direction of stability. The

stability is related to the amount of work required to make a change on it. Con-

sequently, it is related to the package size and its complexity, but also to the

number of packages which depend on it. So, a package with lots of incoming

dependencies from others packages is stable (it is responsible to those packages);

and a packages with not any incoming dependency is considered as independent

and unstable.

• Stable Abstractions Principle (SAP): Stable packages should be abstract pack-

ages. To improve the flexibility of applications, unstable packages should be

easy to change, and stable packages should be easy to extend, consequently they

should be highly abstract.

Some metrics have been built to assess such principles: For example, the Abstract-

ness and Instability metrics are used to check SAP.

Martin Package Metrics. The following metrics defined by Martin [Mar97] aim at

characterizing good design in packages along the SDP and SAP principles. However,

the measurements provided by the metrics are difficult to interpret.

Names Efferent Coupling (module)

Acronyms Ce

References [Mar05b]

Definition Efferent coupling for a module is the number of modules it depends upon (out-

going dependencies, fan-out, Figure 1.6).

Scope Class, Package

22

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Analysis In [Mar00], efferent coupling for a package was defined as the number of classes

outside the package that classes inside depend upon. In [Mar97], efferent cou-

pling for a package was defined as the number of classes in the package which

depend upon classes external to the package.

The current definition is generalized with respect to the concept of module,

where a module is always a class or always a package.

Names Afferent Coupling (module)

Acronyms Ca

References [Mar05b]

Definition Afferent coupling for a module is the number of modules that depend upon this

module (incoming dependencies, fan-in, Figure 1.6).

Scope Class, Package

Analysis In [Mar97], afferent coupling for a package was defined as the number of classes

external to the package which depend upon classes in the package.

Names Abstractness

Acronyms A

References [Mar97]

Definition Abstractness is the ratio between the number of abstract classes and the total

number of classes in a package, in the range [0, 1]. 0 means the package is fully

concrete, 1 it is fully abstract.

Scope Package

Analysis This metric can not be analyzed in isolation. In any system, some packages

should be abstract while other should be concrete.

Names Instability

Acronyms I

References [Mar97]

23

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Figure 1.6: Each module is represented by a box with enclosed squares. It is either a

class enclosing methods and attributes, or a package enclosing classes. Efferent cou-

pling is the number of red modules (Ca = 2); afferent coupling is the number of blue

modules (Ce = 2).

Definition I = Ce(P)
Ce(P)+Ca(P) , in the range [0, 1]. 0 means package is maximally stable (i.e.,

no dependency to other packages and can not change without big consequences),

1 means it is unstable.

This metric is used to assess the Stable Dependencies Principle (SDP): according

to Martin [Mar97], a package should only depends on packages which are more

stable than itself, i.e. it should have a higher I value than any of its dependency.

The metric only gives a raw value to be used while checking this rule.

Scope Package

Analysis Instability is not a measure of the possibility of internal changes in the package,

but of the potential impact of a change related to the package. A maximally sta-

ble package can still change internally but should not as it will have an impact on

dependent packages. An unstable package can change internally without conse-

quences on other packages. Intermediate values, in the range]0, 1[, are difficult

to interpret.

A better way to understand Instability is as a Responsible/Independent couple.

A stable package (I = 0) is independent and should be responsible because

of possible incoming dependencies. An unstable package is dependent of other

packages and not responsible for other packages.

The stability concept, understood as sensitivity to change, should be transitively

defined: a package can only be stable if its dependencies are themselves stable.

24

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Names Distance

Acronyms D

References [Mar97]

Definition D = A+I−1√
2

or (normalized) D′ = A + I − 1. A package should be balanced

between abstractness and instability, i.e., somewhere between abstract and stable

or concrete and unstable. This rule defines the main sequence by the equation

A+ I − 1 = 0. D is the distance to the main sequence.

This metric is used to assess the Stable Abstractions Principle (SAP): stable

packages should also be abstract packages (A = 1 and I = 0) while unstable

packages should be concrete (A = 0 and I = 1).

Scope Package

Analysis This metric assumes a one-to-one inverse correlation between Abstractness and

Instability to assert the good design of a package. However, such a correlation

seems uneasy given the difference in data nature on which each metric is com-

puted. To our knowledge, no large scale empirical study has been performed to

confirm this assumption.

This metric is sensitive to extreme cases. For example, a package with only

concrete classes (A = 0) but without outgoing dependencies (I = 0) would

have a distance D′ = −1. Yet this package does not necessarily exhibit a bad

design.

25

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Chapter2. New package metrics to support ap-

plication remodularisation

The authors of the following work are Hani Abdeen and Stéphane Ducasse. A short

version of these research results has been published as a short paper in WCRE (Work-

ing Conference on Reverse Engineering) with Houari Sahraoui as co-author and a long

version as technical report on HAL http://hal.inria.fr.

Since some decades now, there exist many legacy large object-oriented software

systems consisting of a large number of inter-dependent classes. In such systems,

classes are at a low level of granularity to serve as a unit of software modularization. In

object-oriented languages such as Java, Smalltalk and C++, package structure allows

people to organize their programs into subsystems. A well modularized system enables

its evolution by supporting the replacement of its parts without impacting the complete

system. A good organization of classes into identifiable and collaborating packages

eases the understanding, maintenance, test and evolution of software [DK76].

However, even for well modularized software systems, code decays: as software

evolves over time with the modification, addition and removal of classes and inter-class

dependencies. As consequence, the modularization gradually drifts and looses quality,

where some classes may not be placed in suitable packages and some packages need to

be re-structured [EGK+01, GN93]. To improve the quality of software modularization,

assessing the package organization and relationships is required.

Although there exist a lot of works in the literature proposing metrics for object-

oriented software, the majority of these previous works focused mostly on characteriz-

ing a single class [CC92, BDW98a, BDW99b, BMB99, eAC94, LH93b, Li98, CK94a,

GM00, DB10]. Few previous efforts measure the quality of some aspects of pack-

age organization and relationships [AK01, Fow01, Mar02, AG01, PN06]. Much of

these efforts are focused on package cohesion and coupling from the point of view of

maximizing intra-package dependencies. But although this point of view is important

for assessing an aspect of package structure, it is definitely not enough for assessing

software modularization[AG01, Mar02, DPS+07, ADSA09, ADPA10]. Fortunately,

Santonu Sarkar et al. [SKR08, SRK07] have recently proposed a set of metrics that

characterize several aspects of the quality of modularization. Their metrics are defined

with respect to the APIs of the modules (i.e., packages), and with respect to object-

oriented intermodule dependencies that are caused by inheritance, associations, state

access violations, fragile base-class design, etc. Unfortunately, their metrics are mainly

based APIs. They assume that each package explicitly declares its APIs, which is not

the case for most legacy object-oriented software systems. Therefore, in the absence of

declared APIs at package level, their metrics could not be applied without additional

interpretations and heuristics. Although their metrics are valuable and they character-

ize many aspects of software modularization, we believe that some important aspects

are still not characterized.

Our goal is to provide a complementary set of metrics that follow the principles of

good software modularity as explained by Parnas [Par72] and R. Martin [Mar02]. Since

26

http://hal.inria.fr

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

we address large legacy software systems, consisting of a very large number of classes

and packages, we consider that packages are the units of software modularization:

a package should provide well identified services to the rest of the software system,

where the role of classes inside a package is implementing the package services. But

unfortunately, in legacy object-oriented systems, APIs/Services are often, if any, not

pre-defined explicitly at package level (i.e., systems are not API-based). Therefore, the

metrics we propose in this paper are are not API-based.

In this paper, we consider package and module to be synonymous concepts. On

another hand, we consider the interfaces of a given package to be the package classes

interacting with classes of other packages. For a given modularization, we consider

classes to be at the lowest level of granularity.

In the following, Section 2.1 underlines the modularity principles that we address

with these metrics. In Section 2.2 we define the terminology and the notations we

use to define our metrics. We define a set of coupling metrics in Section 2.3 and a

set of complementary cohesion metrics in Section 2.4. In Section 2.5 we show how

our metrics satisfy all the mathematical properties that are defined by Briand et al.

[BDW98a, BDW99b]. We discuss our metrics in Section 2.6 and we compare them to

previous works related to software metrics in Section 2.7.

2.1 Modularity Principles

In software engineering practices, a module is a group of programs and data struc-

tures that collaborate to provide one or more expected services to the rest of the soft-

ware. According to Parnas [Par72] and R. Martin [Mar02], a module should hide its

design decisions and should provide its services only through its interfaces. The main

goal of modules is information hiding: only the module interfaces are accessible by

other modules. Some object-oriented programming technologies support the definition

of module interfaces through the declaration of APIs (Application Programming Inter-

face) [SSP07, SM08]: an API may be a set of methods that are implemented in the

module classes. Unfortunately, almost all legacy object-oriented software systems are

not API-based.

In addition, it is not enough to group some programs inside a module, then declar-

ing the module interfaces. Since a module should provide well identified services to

other modules, the module programs should have a common goal: capturing the mod-

ule design decisions and implementing the module services. It is widely known that a

good modularization of a software supports the software changeability, maintainability

and analyzability. In the rest of this section we underline the principles that a software

modularization should follow, and that we address with these metrics.

2.1.1 Hiding Information and Encapsulation.

As mentioned above, modules should encapsulate their implementations and pro-

vide their services via well identified interfaces.

For a legacy object-oriented systems, where the APIs are not pre-defined, the iden-

tifiable package interfaces are the package classes that interact with classes of other

packages. In such a case, we assume that the principle of hiding information and of

encapsulation requires the following (Principle I):

27

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

• We consider that hiding information is similar to hiding information exchange or

communications. In this way, the communications (interactions) between pack-

ages should be as little as possible.

• We consider that every package should encapsulate its design decisions and hide

its implementation from other packages as much as possible. Thus, the number

of methods/implementations/classes that a package exposes to other packages

should be relatively small.

2.1.2 Changeability, Maintainability and Reusability.

It’s well known that Maintenance activities represent a large and important part

of the software life-cycle. One of the primary expected goals from modules is facili-

tating the software maintenance. Such a goal is usually supported by the localization

of module changes impact on other modules. In other words, when changing a given

module, the propagation of changing impact on other modules should be minimal (as

little as possible). In the same context, modules should be reusable pieces of software.

As stated earlier, a module should interact with other modules via well identified in-

terfaces and requires identifiable services from other modules. Therefore, to support

software changeability, maintainability and reusability at package level, we assume that

(Principle II):

• Inter-package connectivity should be as little as possible.

2.1.3 Commonality-of-Goal vs. Similarity-of-Purpose.

As explained above, a module should provide particular (i.e., well identified) ser-

vices to other modules. Therefore, the programs inside a module should have a com-

mon goal, which should be: capturing the module design decisions and implementing

the module services. We refer to this principle as commonality-of-goal. In another

side, if a module is expected to provide more than one service, the module services

then should be as segregated as possible: each service should have a well identified

purpose, and the service purpose should be different than the purpose of other pro-

vided services. To fulfill these objectives, we assume the following (Principle III):

• Ideally, a package should be as a provider of only one service to the rest of the

software.

• If not, the goal of each package interface should be as consistent as possible.

In other words, for an interface participates with other interfaces to provide a service, it

is an ideal state if that interface does not participate, aside from those other interfaces,

to provide different service(s). In such a case, all the interfaces that participate to pro-

vide a service will have only one common goal, which is: implementing and providing

that service.

Our Contribution. We propose a set of metrics that measure “to which extent a

given OO software modularization is well-organized”, with regard to the principles we

28

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

have underlined in this section. We organize our metrics into two subsets: 1) metrics

characterize packages coupling with regard to the principles I and II; 2) and metrics

characterize packages cohesion with regard to the principle III.

2.2 Terminology and Notation

We assume that the dependencies of a package to other packages are due to the

dependencies of the classes inside the considered package to classes outside it. Those

dependencies are either method calls or inheritance relationships. In this section we

define the terminology and the notation we use in this report.

2.2.1 Dependency Types

By definition, we say that a class c1 extends another class c2 if c1 is a direct subclass

of c2. We say that a class a is a subclass of another class b if a belongs to the subclass

hierarchy of b. By definition, we say that a class x uses a class y if x is not a subclass

of y, and there is a method directly implemented in x either calls a method directly

implemented in y, or refers to an attribute directly defined in y.

For packages, whatever the number of classes inside a package p that have depen-

dencies pointing to classes inside another package q, we say that p depends on q. This

is regardless the number of concerned classes inside q and the number of inter-class

dependencies. In this way, we say that p is client to q and q is provider to p. By def-

inition, we say that package p extends another package q if there is a class in p that

extends a class in q. Similarly, we say that p uses q if there is a class in p that uses a

class in q.

2.2.2 Package Interfaces and Relationships

We assume that packages in large object-oriented software are the units of the soft-

ware modularization. The role of classes inside a package is to implement and fulfill

the package services. But due to the complexity of the services to provide, a package

may contain a large number of classes, and it may require services from other packages.

In absence of pre-defined APIs at package level, we assume that the relationships

of a package p to other packages form two sets of p classes. Those classes of p that

play the role of p interfaces to the rest of the software system: p classes that have either

incoming dependencies from classes outside p or outgoing dependencies pointing to

classes outside p.

In-Interfaces

for a package p, the in-interfaces are the p classes that have incoming use or/and

extend dependencies from p clients (i.e., from classes belonging to other packages).

The p in-interfaces via use dependencies represent the services that p provides to the

rest of the software system. The p in-interfaces via extend dependencies represent the

p’s services (abstract services) that other packages extend (implement).

29

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Out-Interfaces

for a package p, the out-interfaces are the p classes that have dependencies point-

ing to p providers (i.e., pointing to classes belonging to other packages). The p out-

interfaces via use dependencies represent the p classes that require services from the

rest of the software system. They represent the requirements that p needs to fulfill its

services. The p out-interfaces via extend dependencies represent the p’s implementa-

tions of abstract services declared in other packages.

2.2.3 Modularization, Packages, Classes and Interfaces

We define a Modularization of an object-oriented software system by M =<

P,D >. P is the set of all packages and D is the set of pairwise dependencies among

the packages: D ⊆ P×P . Packages are the containers of classes: each package p ∈ P
involves a set of classes C(p) ⊆ C: C is the set of all classes. Every class c belongs to

only one package p(c).

The classes of a package p that have dependencies to classes outside p represent

the interfaces of p Int(p) ⊆ C(p). Formally, I ⊆ C: I is the set of all interfaces.

The interfaces of a package p are either in-interfaces InInt(p) relating p to its client

packages Clientsp(p) ⊂ P , or out-interfaces OutInt(p) relating p to its provider

packages Providersp(p) ⊂ P: Int(p) = InInt(p) ∪ OutInt(p). Taking liberties

with the notation Clientsp(p), we use Clientsp(c) to denote the set of all packages

containing classes that depend upon c. Similarly, we use the notation Providersp(c)
to denote the set of all packages containing classes that c depends upon them. We also

use the notation Clientsc(p) to denote the set of all classes outside p that depend upon

classes inside p. Similarly, we use the notation Providersc(p) to denote the set of all

classes outside p that c depends upon them.

2.2.4 Dependencies Notation

In this section we define the notations of different types of dependencies. We define

the set of dependencies by D = {Uses ∪ Extends}. According to this, we define the

notations of dependencies as follows:

Extend dependencies. For two classes c1 and c2 we define the predicate Ext(c1, c2)
that is true if c1 extends c2. For convenience, we use the same predicate at package

level: Ext(p1, p2) is true if p1 extends p2. We also use the one-argument version of

the Ext predicate, as in Ext(c), to denote the set of all classes directly extended by the

class c. Similarly we use this version at package level, as in Ext(p), to denote the set

of all packages extended by the package p.

Use dependencies. For two classes c1 and c2 we define the predicate Uses(c1, c2)
that is true if c1 uses c2. For convenience, we use the same predicate at package level:

Uses(p1, p2) is true if p1 uses p2. We also use the one-argument version of the Uses

predicate, as in Uses(c), to denote the set of all classes used by the class c. Similarly,

we use this version at package level, as in in Uses(p), to denote the set of all packages

used by the package p.

30

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

2.3 Coupling Metrics:

Metrics related to Information-Hiding and Changeability Principles

2.3.1 Index of Inter-Package Interaction

In this section we want to measure to which extent packages hide inter-class com-

munication. This is by answering the following questions: to which extent classes

belonging to different packages are not dependent on each other?

The goal of this section is to provide metrics that address the Hiding-Information

principle explained in Section 2.1.1. We define 2 similar metrics, IIPU (Index of

Inter-Package Usage) and IIPE (Index of Inter-Package Extending): one dealing with

Uses and the other with Extends.

Index of Inter-Package Usage

As defined in Section 2.2, let C and P denote respectively the set of all classes and

the set of all packages. Let UsesSum(C) be the sum of all use dependencies among

the classes C, and let UsesSum(P) be the sum of all the use dependencies among the

packages P:

UsesSum(C) =
∑

ci∈C
|Uses(ci)|

ExternalUses(c) = {x ∈ C|Uses(c, x)&p(x) 6= p(c)}

UsesSum(P) =
∑

pj∈P

∑

ci∈C(pj)

|ExternalUses(ci)|

IIPU(M) = 1−
UsesSum(P)

UsesSum(C)
(2.1)

Interpretation. IIPU is the index of inter-package usage within a modularization

M. It takes its value in the range [0,1] where 1 is the optimal value and 0 is the worst

value: the greater value IIPU has, the smallest inter-package usage the modularization

has. IIPU provides an index about the extent to which packages hide the actual inter-

class usage. It is an indicator to the degree of collaboration among classes belonging

to same packages.

Index of Inter-Package Extending

We define a similar metric to IIPU but from the extending interactions standpoint.

Let ExtSum(C) be the sum of all inheritance dependencies among the classes C, and

let ExtSum(P) be the sum of all inheritance dependencies among the packages P:

i.e., the sum of all the inheritance dependencies among classes belonging to different

packages.

ExtSum(C) =
∑

ci∈C
|Ext(ci)|

31

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

ExternalExt(c) = {x ∈ C|Ext(c, x)&p(x) 6= p(c)}

ExtSum(P) =
∑

pj∈P

∑

ci∈C(pj)

|ExternalExt(ci)|

IIPE(M) = 1−
ExtSum(P)

ExtSum(C)
(2.2)

Interpretation. IIPE is the index of inter-package extending within a modularization

M. It takes its value in the range [0,1] where 1 is the optimal value and 0 is the worst

value: the greater value IIPE has, the smallest number of inter-package inheritance

dependencies the modularization has. IIPE provides an index about the extent to which

class hierarchies are well organized into packages. It is an indicator to the degree of

concreteness of packages (i.e., concreteness of services that packages provide). As

example, let the value of IIPE for a given modularization be 0.5, which means that

50% of inheritance dependencies are among classes belonging to different packages.

This could be interpreted as follows:

• The software system is mainly plugins-based, where the core software (some

packages) declares abstract services that are implemented by other packages

(plugins).

• The software system contains some packages that play as the root of large num-

ber of other packages. In this case some packages declare abstract services that

are implemented by a large number of other packages. In this way, we can say

that a large number of packages are similar from the point of view of interfaces

they implement.

• Finally, it may simply mean that the class hierarchies are not well organized into

packages. In this case the modularization need a revision.

2.3.2 Index of Package Changing Impact

In Section 2.3.1 we defined measurements that characterize inter-package cou-

pling/interactions based on inter-package dependencies. In this section we want to

provide other measurements that complement those defined in Section 2.3.1 by an-

swering the following: in the context of a given modularization M, to which extent

M packages are inter-connected? to which extent modifying a package within M may

impact other packages?

We want to define metrics characterizing, at package level, the maintainability of

M (ref. Section 2.1.2). We believe that reducing inter-package dependencies, if it does

not take into account the number of inter-dependent packages, may negatively affect

the modularization maintainability. By example, Figure 2.1 shows the package p has 7

dependencies coming from classes belonging to one package; while the package q has 3

incoming dependencies coming from classes belonging to 3 distinct packages. In such

a case, and at package granularity, maintaining/modefying p may require an impact

32

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

analysis to one package (p1), while maintaining q may require an impact analysis to 3

packages (q1, q2 and q3). Therefore, from the point of view of impact localization, q is

harder to be maintained than p.

As stated in Section 2.2, let Clientsp(p) denotes the set of all packages that depend

on p; let P denotes the set of all packages in the modularization M. According to what

we stated above, we define the index of package changing impact as follows:

IPCI(p) = 1−
Clientsp(p)

1− |P|
(2.3)

IPCI(M) =

∑

pi∈P IPCI(pi)

|P|

Interpretation. IPCI takes its value between 0 and 1, where 1 is the optimal value

and 0 is the worst value. For a package p in a modularization M, a IPCI(p) value of

0 indicates that all packages in M are dependent on p. As a consequence, any changes

on p may impact the whole modularization. In the context of the whole modularization,

the IPCI(M) value indicates the extent to which M is free for changes: i.e., the index

to which M packages are not inter-dependent.

2.3.3 Index of Package Communication Diversion

In this section we define metrics that measure the extent to which package commu-

nication (Section 2.3.1) is focused or diverted. Our vision of package communication

diversion can be explained as follows: let p be a package that uses 5 classes packaged

into 5 different packages, and let q be a package that uses 5 classes packaged in one

package. In such a case we say that p communication is completely diverted, while

q communication is completely focused. This is because p communication starts out

with maximal number of coupling paths (5 provider classes cause 5 different coupling

paths via 5 different provider packages), while q starts out with minimal coupling paths

(one coupling path via one provider package).

p1 p q1

qq2

q3dependency
changes
impact

Figure 2.1: Explanation for Package Changing Impact

p

p1

q1

q2q3

k1

k2k3

k5

k4

q k

Figure 2.2: Explanation for Package Usage Diversion

33

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Index of Inter-Package Usage Diversion

We define inter-package communication diversion on the usage dependencies. Let

Uses(p) denotes the packages that p uses; let Usesc(p) denotes the classes that p uses;

and let 1 be the minimal number of coupling paths that p may start with. Then we

define index of inter-package usage diversion as follows:

PUF (p) =
1

|Uses(p)|

IIPUD(p) =

PUF (p)× (1−
1−|Uses(p)|
|Usesc(p)|

)

1 : |Usesc(p)| = 0

IIPUD(M) =

∑

pi∈P IIPUD(pi)

|P|
(2.4)

Interpretation. IIPUD is the index of inter-package usage diversion and PUF is

package usage factor. We used this factor to distinguish packages that use a large

number of packages from packages that use a small number.

The IIPUD(p) value ranges from 0 to 1. A IIPUD(p) value of 1 indicates that p

communication diversion is minimal: as shown in Figure 2.2, p starts out with only

one coupling path, where it uses only one package p1. It means that p requires ser-

vices from only one package, thus it requires particular, non-dispersed, functionalities.

Otherwise, the smallest value the IIPUD(p) has, the largest diversion of usage commu-

nication p has. We assume by our definition of PUF(p) and IIPUD(p) the following: if

a given package uses a large number of packages it will have a worst IIPUD(p) value

than another package that uses a smaller number of packages, this is even if the term
1−|Uses(p)|
Usesc(p)

has the same value for both packages. As example, Figure 2.2 shows that q

uses 4 classes distributed over 3 packages, and shows that k uses 8 classes distributed

over 5 packages. In such a case,
1−|Uses(q)|
Usesc(q)

= 1−|Uses(k)|
Usesc(k)

= 0.5. But the IIPUD(q)

value (0.53) is better than the IIPUD(k) value (0.55) –Since q uses a smaller number of

packages than k.

For a given modularization M, a max IIPUD(M) value of 1 indicates an ideal focus-

ing of package usage communication: each package in M uses, at maximum, only

one package. Otherwise, as the value of IIPUD(M) decreases, the diversion of usage

communication between packages increases. This can be an indicator to the following:

• A large number of packages require services that are dispersed over distinct pack-

ages. In such a case, the schema of usage communication paths is characterized

as complex. Thus, a revision to M is required.

• Some packages are characterized by very small value of IIPUD(p). In such a

case, to minimize the schema’s complexity of usage communication paths, the

maintainers may start by focusing on those packages.

34

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Index of Inter-Package Extending Diversion

We define the index of package extending diversion (IIPED) similarly to IIPUD

defined above, but with regard to extending dependencies. Let Ext(p) denotes the

packages that p extends; let Extc(p) denotes the classes that p extends; and let 1 be the

minimal number of coupling paths that p may start with.

PEF (p) = 1
|Ext(p)|

IIPED(p) =

PEF (p)× (1−
1−|Ext(p)|
|Extc(p)|

)

1 : |Extc(p)| = 0

IIPED(M) =

∑

pi∈P IIPED(pi)

|P|
(2.5)

Interpretation. The interpretation of IIPED(p) is similar to what we stated above

for IIPUD(p) in Section 2.3.3. Note that IIPED is defined with regards to extending

dependencies rather than usage dependencies. IIPED also takes its value between 1 and

0, where 1 is the optimal value and 0 is the worst value. When the value of IIPED(p)

goes closer to 0 is an indicator that p extends a relatively big number of classes that

are distributed over distinct packages. This could mean that p plays the role of a plugin

of a big number of packages. It also indicates that p implements interfaces that are

completely not similar from the point of view of their providers. As summary, p is

expected to provide complex service(s). Take as example a package p that extends 10

classes belonging to 10 different packages, thus IIPED(p) = 0.01. In such a case, p is a

plugin for 10 packages and it requires a particular attention.

2.4 Cohesion Metrics:

Metrics related to Commonality-of-Goal Principle

2.4.1 Index of Package Goal Focus

In this section we assume that a package, in its ideal state, should focus on provid-

ing one well identified service to the rest of the software system. What do we mean by

focused service? and how to characterize such an aspect?

From the point of view of the package role, we say that a package provides a fo-

cused service if it plays the same role with all its client packages. In other words, for a

package p, we say that p services are focused if they are always used together by every

client package to p. In such a case, for an ideal situation, the p in-interfaces are always

used together, so they represent a single composite service provided by p to the rest of

the system. In this way, we say that p is focused (i.e., the p goal is focused). Otherwise,

where the p in-interfaces are used via relatively small portion per client package, p is

then not focused: p plays different roles with its clients.

Let Req(x, c) be true if x uses or extends c; let InInt(p,q) denotes the set of p in-

interfaces required by q; and let Role(p, q) denotes the role that p plays with its client

35

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

q. We define then the Focus of a package p as the average of p roles with respect to all

p clients:

InInt(p, q) = {c ∈ InInt(p)|∃x ∈ q : Req(x, c)}

Role(p, q) =
InInt(p, q)

InInt(p)
: q ∈ Clients(p)

PF (p) =

∑

pi∈Clientsp(p)
Role(p, pi)

|Clientsp(p)|
(2.6)

PF (M) =

∑

pi∈P PF (pi)

|P|

Interpretation. PF(p) always takes its value between 0 and 1, where 1 is the optimal

value and 0 is the worst value. The largest value PF(p) has, the highest frequency of

requiring largest portion of p in-interfaces. Ideally, when the package in-interfaces are

always used together by every client package to that package, as for p in Figure 2.3,

PF(p) takes then a max value of 1. The goal of PF(p) is to provide one answer for both

following questions: (1) to which extent p services are required together? (2) to which

frequency p clients require all the p services?

To better understand the behavior of PF(p) we take 3 examples (the cases of q, k and y

in Figure 2.3):

1. Figure 2.3 shows that the package q exposes 5 in-interfaces to 4 clients q1, q2, q3
and q4; where each of them uses only 2 classes of q in-interfaces. In this case,

PF (q) = 2
5

2. Figure 2.3 shows that the package k also exposes 5 in-interfaces to 4 clients k1,

k2, k3 and k4; where k4 uses 4 classes of k in-interfaces, while each of other

clients uses only 2 classes. In this case, PF (q) < PF (k) = 1
2

3. Finally, Figure 2.3 shows that the package y also exposes 5 in-interfaces to 4

clients: y1, y2, y3 and y4; where each of y2, k3, k4 uses 3 classes of y in-

interfaces, while y1 uses only 2 classes. In this case, PF (k) < PF (y) = 11
20

As summary, when the value of PF(p) decreases, we expect that p clients frequently

require relatively-small sets of p services. For a given modularization M, PF(M) also

takes its value from 0 to 1, where 1 is the optimal value and 0 is the worst value. When

PF(M) decreases, we say that the definition of package roles within M gets worse.

2.4.2 Index of Package Services Cohesion

Unlike what we stated above in Section 2.4.1, in this section we assume that a

package may be expected to provide several services. Therefore, we want to address

the following questions: what if the purpose of a package p is to play distinct roles with

36

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

regard to its clients? in this case, to which extent p services are cohesive with regard to

their common use?

In absence of pre-defined APIs at package level that declare explicitly which ser-

vices a package provides to the rest of the software, we assume the following: since

each client package q to a package p represents a requirement to a subset of p in-

interfaces, we define such a subset as a composite service CS(p, q) provided by p to

q:

CS(p, q) = {int ∈ InInt(p)|int ∈ Providerc(q)}

According to this definition, we say that two composite services of p, CS(p, q)
and CS(p, k): q, k ∈ Clientsp(p), are identical if both represent the same group of

classes. In this way, we measure the cohesiveness for a composite service by measuring

the similarity of purpose of the service classes: to which extent the service classes are

required together?

For example, let α be a composite service presented by 3 classes {c1, c2, c3}, and

suppose that either these classes are always required together or there is no subset of

these classes used apart. In this case we say that α is fully cohesive from similarity

of purpose perspective. Another example, let β be also a composite service of p to

q, CS(p, q). Suppose that each class of β classes is always required, by other client

packages than q, aside from other ones. In this case we say that β is fully segregated

from similarity of purpose perspective.

Let λq,k denotes the set of classes results from the intersection of 2 composite

services of a package p: λq,k = |CS(p, q) ∩ CS(p, k)|. Let SPk(p, q) a measurement

of the similarity of purpose for a composite service CS(p, q) with regard to another

composite service CS(p, k):

SPk(p, q) =

|λq,k|
|CS(p,q)| |λq,k| 6= 0

1 Else

The similarity of purpose for a composite service α with respect to another one β is

given by: the relative size of the subset of in-interfaces that are shared in both services

with respect to the size of the α classes set. The largest set of α classes is involved in

β, the highest value of similarity that α has with regard to β. SPk(p, q) always takes

its value between 0 and 1, where 1 is the optimal value and 0 is the worst value. If there

is no classes shared between α and β, then we say that β does not affect the similarity

of purpose of α.

p
p1

p2

p3

p4

q
q1

q2

q3

q4

k
k1

k2

k3

k4

y
y1

y2

y3

y4

Figure 2.3: Explanation for Package Focus

37

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

q1q2q3

p

CS1

c1

c2

c3

CS3

c6

c7

c4

c5

CS2

(a) p provides 3 composite services: CS1 =

{c1, c2, c3}, CS2 = {c4, c5} and CS3 = {c6, c7}.

CS1

CS3

q1

q2

q3

p

c1

c2

c3

c4

c5

c6

c7

CS2

(b) CS1 is changed

from (a): CS1 =

{c1, c2, c3, c4, c5}.

c1

c2

c3

c4

c5

c6

c7

CS1

CS2

CS3

q1

q2

q3

p

(c) CS3 is changed from (b):

CS3 = {c5, c6, c7}.

Figure 2.4: Explanation for Package Services Cohesion.

According to what we stated above, we define the cohesion of a composite service

by the average of its similarity of purpose with regard to all p’s clients. We define then

the index of package services cohesion, for a package p, by the average of cohesion for

all the composite services that p provides:

CScohesion(p, q) =

∑

ki∈Clientsp(p)
SPki

(p, q)

|Clientsp(p)|

IPSC(p) =

∑

qi∈Clientsp(p)
CScohesion(p, qi)

|Clientsp(p)|
(2.7)

IPSC(M) =

∑

pi∈P IPSC(pi)

|P|

Interpretation. CScohesion(p, q) takes its value between 0 and 1, where a value

of 1 indicates that CS(p, q) is completely cohesive, while a value of 0 indicates that

CS(p, q) is completely segregated. IPSC(p) and IPSC(M) both take their value be-

tween 0 and 1, where 1 is the optimal value and 0 is the worst value. Figure 2.4

38

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

shows a package p in 3 different cases from the perspective of common usage of p ser-

vices. In the 3 cases, p provides 7 classes {c1, c2, c3, c4, c5, c6, c7} to 3 client packages

{q1, q2, q3}. The figure also shows that p provides 3 different composite services: CS1,

CS2 and CS3.

• In Figure 2.4(a), the classes of any composite service CS of p are always re-

quired together: none of the CS classes is used aside from the other classes of

CS. Therefore, we say that similarity of purpose for the CS classes is very well

defined: all the classes that are in a CS have the same purpose, which is provid-

ing services to the same group of client packages. Thus, CSicohesion
= 1. In this

case, the value of IPSC for p is maximal: IPSC(p) = 1.

• In Figure 2.4(b), the difference from Figure 2.4(a) is that a small subset {c4, c5}
of CS1 classes has also another purpose, which is providing services to q2.

Therefore, the similarity of purpose for the CS1 classes is not well defined:

CS1cohesion
= 4

5 . In this case, the IPSC(p) value is smaller than in the pre-

vious case (a): IPSC(p) = 14
15 .

• In Figure 2.4(c), the difference from Figure 2.4(b) is that the subset {c5} of

CS2 classes has also another purpose, which is providing services to q3. This

negatively affects the similarity of purpose for both CS3 and CS2, since {c5} is

currently a subset of CS3 also: CS2cohesion = 2
3 and CS3cohesion

= 2
3 . In this

case, the IPSC(p) value 32
45 is smaller than in the previous case (b).

2.5 Validation

In this section we provide a theoretical validation of our coupling and cohesion

metrics. This is by showing that our metrics satisfy all the mathematical properties that

are defined by Briand et al. [BDW98a, BDW99b].

2.5.1 Coupling Metrics Validation

The widely known properties to be obeyed by a coupling metric are: Non Neg-

ativity, Monotonicity and Merging of Modules. The following of this section shows

how our coupling metrics (IIPU , IIPE, IPCI , IIPUD and IIPED) satisfy these

properties.

*Non Negativity property according to this property, for any given software modular-

ization M, the coupling metric value for M should be greater than 0. According to

what we discussed in Section 2.3, all our coupling metrics take their value between 0

and 1, where 0 is the worst value.

*Monotonicity property this property assumes that adding additional interactions to a

module cannot decrease its coupling. To check this property: let p be a package in

a given modularization M, that has d dependencies pointing to or/and coming from

n packages. Now let p′ in M′ be the same package than p but with one additional

dependency (d+ 1) pointing to one additional client/provider package (n+ 1). In this

case, all the following conditions are true: IIPU(M) > IIPU(M′) (IIPE(M) >

39

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

IIPE(M′)) ; IPCI(M) > IIPCI(M′) ; IIPUD(M) > IIPUD(M′) (IIPED(M) >
IIPED(M′)). This means that all our coupling metrics satisfy the monotonicity prop-

erty.

*Merging-of-Modules property this property assumes that the sum of the couplings of

two modules is not less than the coupling of the module which is composed of the data

declarations of the two modules. To check this property, let p and q be two packages

in M, that have respectively n and m dependencies pointing to or/and coming from x

and y packages. Now, let k be the merging of p and q (i.e., k contains only the classes

of both packages), and let M′ be the resulting modularization after the merging. In this

case, the sum of the dependencies that k has with other packages N cannot be greater

than n+m (N 6 n+m). Similarly, the number of the k client and provider packages

R cannot be greater than x+ y (R 6 x+ y). In this case, any of our coupling metrics

will indicate that the coupling in M′ is less than (or equal to) the coupling in M. As

consequence, all our coupling metrics satisfy the merging-of-modules property.

2.5.2 Cohesion Metrics Validation

The widely known properties to be obeyed by a cohesion metric are: Normaliza-

tion, Monotonicity and Cohesive Modules. The following of this section shows how

our cohesion metrics (PF and IPSC) satisfy these properties.

*Normalization property this property assumes that the value of a cohesion metric

should belongs to a specified interval [0,Max]. As explained in Section 2.4, our co-

hesion metrics are normalized and take their value in the interval [0, 1]. Therefore, our

cohesion metrics satisfy this property.

*Monotonicity property this property assumes that adding cohesive interactions to a

module/modularization cannot decrease its cohesion. To check this property, let p be

a package in a given modularization M. Supposing that we add to p a new class c,

where c is always used by other packages in M′ together with a non-empty set of p′

in-interfaces, and it is never used aside from that set: p′ and M′ are respectively the

resulting package and modularization after adding c to p. In this case, the value of both

PF (p′) and IPSC(p′) metrics cannot be smaller than their values for p. In this way,

our cohesion metrics satisfy the monotonicity property.

*Cohesive-Modules property this property assumes the following: if p1 and p2 are co-

hesive packages in M, but there is no cohesive relationships between p1 classes and

p2 classes, then merging p1 and p2 into one package q in M′ should not increase the

modularization cohesion. To check these property, we suppose that none of the p1 in-

interfaces is required by packages require p2 in-interfaces. In this case, the value of

PF (q) cannot be greater than PF (p1) value nor than PF (p2) value. Thus, PF (M′)
value cannot be greater than PF (M). As a consequence, PF satisfies the cohesive-

modules property.

In the same context, since none of the p1 in-interfaces is required by packages require

p2 in-interfaces, the composite services CSs of q are exactly those of p1 and p2 and

their cohesion values still the same. On another hand, the number of the q’s client pack-

ages is equal to the sum of the p1 client packages and the p2 client packages. Thus the

40

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

IPSC(q) value cannot be greater than the IPSC(p1) value nor the IPSC(p2) value.

In this way, IPSC(M′) value cannot be greater than IPSC(M). As a consequence,

IPSC also satisfies the cohesive-modules property.

2.6 Discussion

In this section, we discuss our metrics with regard to the modularity principles we

underlined in Section 2.1.

2.6.1 Assessing Package Encapsulation

The goal of the IIPU and IIPE metrics is measuring the extent to which packages

hide inter-class communication. They measure the extent to which packages encapsu-

late system complexity at class granularity, where this last is given by the frequency

of inter-class interactions. According to Callebaut et al. [CG05], where they suppose

that: “the frequencies of interaction among elements in any particular subsystem of

a system should be two times greater than the frequencies of interaction between the

subsystems”. From this point of view, we defined our metrics to assess packages en-

capsulation within a given modularization by the ratio of inter-package interactions to

all interactions at class granularity.

From IIPU perspective, for a given modularization M, if all the method call interac-

tions are among classes belonging to different packages, thus they all represent inter-

package interactions. In this case, packages encapsulation of inter-class usage is at the

worst level, where IIPU(M) = 0.

As complementary metrics to IIPU and IIPE, we defined IIPUD and IIPUE

that measure to which extent the interactions of a package p are spread over other

packages. It is worth to note that other aspects can also participate in assessing package

encapsulation, such as: the relative number of in-interfaces that a package exposes

(i.e.,
InInt(p)
C(p)

). At method granularity, the relative number of methods used outside

their classes’ package can also be an indicator for package encapsulation quality.

2.6.2 Assessing Package Changeability

The goal of the IPCI metric is assessing package changeability from the stand-

point of the localization of changes impact. Our standpoint is that changing a package

may directly impacts other packages depending on the changed package. According to

this, the IPCI(p) metric assesses p changeability with regards to the p clients pack-

ages. We defined IPCI(p) as a ratio to the number of all packages within the modu-

larization to give a measurement relative to the context of the given software: i.e., let

p and q be two packages within the modularizations M1 and M2, respectively; where

M1 consists of 1000 packages and M2 consists of 20 packages; suppose that p and

q have the same number (e.g., 10) of client packages; in such a context, the impact of

changing q on M2 is greatly larger than the impact of changing p on M1.

41

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

2.6.3 Assessing Package Role and Reusability

To characterize the role of a given package p with within its modularization M and

to assess p reusability, we defined the metrics PF and IPSC. On the first hand, the

goal of PF (p) is to provide us with answers to the following questions: (1) does p

provide one service to the rest of the rest of the software? (2) to which extent p classes

are used together by the rest of the software?

On the other hand, if p provides multiple services, the goal of IPSC(p) is to measure

the cohesiveness of p services from the commonality-of-goal vs. similarity-of-purposes

perspectives (Section 2.1.3). IPSC(p) provides us with answers to the following ques-

tions: (3) to which extent p is a provider of well-identified (particular) services to the

software system? (4) to which extent p is a provider of utility (general) services to the

software?

Our standpoint is that if p services are used together in an identifiable way, then it is

easier to understand the goal, the scope and the purpose of p services than if p services

are used together in a non-identifiable (arbitrary) ways. In this last case, understanding

the p services requires an understanding of each p in-interface aside from others.

2.7 Relevant Related Works vs. Our Metrics

To cope with software system complexity, Parnas et al. [Par72] have introduced

the idea of decomposing software systems with the intention of increasing module

cohesion and minimizing inter-module coupling. Since then, many metrics have been

defined to compute the cohesion and coupling of a module, where module concept is

usually used to represent a composite software entity (e.g., a class or a package).

A large body of previous works on Object-Oriented software metrics is mainly fo-

cused on the issue of characterizing the class design, either looking at class internal

complexity or relationships between a given class and other classes [CK94a, eAC94,

LH93b, Li98, HS96b, BK95b, BK98, BMB99, BDW98a, BDW99b, DB10]. Some of

these works characterize a class by counting its internal components, such as count-

ing the number of methods and the number of attributes. Others characterize a class

by looking at its relationships with other classes, as for the coupling between objects

(CBO), or characterize the class cohesion with regard to the similarity between pairs of

methods and pairs of attribute types in the given class. Few number of these previous

works provide metrics that do not characterize a single class, such as metrics measure

the depth of the inheritance tree in a software.

In the literature, there is also a body of work that focus on object-oriented metrics

from the standpoint of their correlation with software changeability [KKL01], or from

the standpoint of their ability to predicate software maintability [BVT03, DJ03]. Other

researchers argue that the measures resulted by the cohesion and coupling metrics of

the previous works cited above are open to interpretation [KKL01, BDW99b]. This is

due to polymorphic method calls, where it is difficult to capture through static analysis

which method is actually being called for execution.

In general, there are few metrics in the literature devoted to packages. In the fol-

lowing we present those metrics according to their perspectives: either Cohesion or

Coupling perspective.

42

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

2.7.1 Cohesion Metrics

Emerson presents a metric to compute cohesion applicable to modules in the sense

of Pascal procedures [Eme84]. His metric is based on a graph theoretic property that

quantifies the relationship between control flow paths and references to variables. Patel

et al. [PCB92] compute the cohesion of Ada packages based on the similarity of their

members (programs). The idea is to measure cohesion based on subprograms simi-

larity. They use the keywords shared between subprograms. They consider only the

specification of the package, not the keywords present in the body, which are invisi-

ble from outside the package. Similarly, Allen and Khoshgoftaar define information

theory-based (as opposed to counting) coupling and cohesion measures for subsystems

[AK01]. Their measures are applied to modules, which are represented as graphs. They

define cohesion in terms of the similarity between the objects of the concerned mod-

ules. However these approaches do not take into account classes and the relationships

they cause inter-packages and/or intra-package.

Misic adopts a different perspective and measures the cohesion of a package as an

external property [Mis01]. He claims that the internal organization of a package is not

enough to determine its cohesion. Similarly, Ponisio et al. introduce the notion of use

cohesion (or conceptual cohesion) [PN06]. They measure the cohesion of a package

considering the usage of the package classes from the client packages. Their cohesion

metric does not take into account the explicit dependencies among the package classes

(e.g., method call).

Recently, Martin proposed the Rational Cohesion metric. It is defined as the av-

erage number of package internal dependencies per class. Martin’s cohesion metric

measures the connectivity among the internal classes of a given package, regardless

the amount of dependencies that the package classes have with external classes.

Finally, Sarkar et al. proposes an API-based cohesion metric [SKR08]. They define

the APIU metric that measures the extent to which a service-API is cohesive, and the

extent to which it is segregated from other service-APIs. This is from the common us-

age point of view. However, their metric is API based and apply that each module (i.e.,

package) explicitly declares its service-APIs. Otherwise, the metric is not applicable.

Our Cohesion metrics. The IPSC cohesion metric we provide is similar to cer-

tain extent to the APIU metric provided by Sarkar et al. [SKR08], but it is not API-

based. In addition, we provide a new cohesion metric (PF) with the aim to measure

the extent to which a package plays a consistent role with regard to its usage by its

client packages. The standpoint is that, ideally, a package should focus to provide one

service for other packages. Otherwise, where a package provides more than one ser-

vice, we provide the IPSC metric that measures the cohesiveness of package services

from the similarity-of-purpose perspective.

2.7.2 Coupling Metrics

Martin [Mar02] defines two kinds of package coupling: efferent coupling (Ce) and

afferent coupling (Ca). The Ce is to assess the coupling degree between a package

p and its provider packages. While the Ca is to assess the coupling degree between

43

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

p and its client packages. He defines the Ce metric for a package p as the number

of p’s provider classes, and defines the Ca metric as the number of p’s client classes.

Recently, in 2005 [Mar05], he redefines these metrics: p’s Ce is the number of p’s

provider packages, while p’s Ce is the number of p’s client packages. However, these

coupling metrics do not take in consideration the context of the package modulariza-

tion. Hautus addresses cyclic package coupling [Hau02]. He proposes a tool to analyze

the structure of Java programs and a metric that indicates the percentage of changes to

make a package structure acyclic.

Finally, Sarkar et al. propose coupling metrics [SKR08]. First of all, they propose

API-based coupling metric (MII) that calculates how frequently the methods listed in

a module’s APIs are called by the other modules. Then they assume that modules may

also interact with each other by calling methods that are not listed in the APIs of the

modules. Therefore, they provide another metric (NC) that measures, for a given mod-

ule, the disparity between the declared API methods and the methods that are actually

participating in intermodule call traffic. However, both metrics are not applicable when

modules are not API-based. In the same paper, Sarkar et al. propose also the following

coupling metrics: (1) The IC metric, to measure inheritance-based intermodule cou-

pling; (2) The AC metric, to measure intermodule association-induced coupling. IC

and AC, are defined in the same way, but with regard to Uses and Extends depen-

dencies, respectively. For a package p, the value of AC (IC) is given by the smaller

value among the following: the number of p’s client classes, the number of p’s client

packages, or the number of p’s out-interfaces. In this way, they do not take care about

the evidence indicates that the number of p’s client packages is surely not bigger than

the number of p’s client classes. Also, they also do not provide us with the rationale

beyond their definition, nor with an interpretation of their metrics.

Our Coupling metrics. They are not API-based and characterize three different

aspects of inter-package coupling within a given modularization. First of all, we pro-

vided metrics (IIPU and IIPE) that measure the extent to which packages follow

the hiding-information principle, with regard to inter-package communication. Then,

we provided other metrics (IIPUD and IIPUE) which measure the extent to which

the package communication is focused or dispersed. Finally, we provided a metric

(IPCI) measures the package changing impact: it measures the extent to which a

package modification impacts the whole software modularization.

44

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

Chapter3. Conclusion

This document presents the state of the art on software metrics related to source code

entities. We present different metrics related to classes, methods, and software pack-

ages. The document also provides a critique of the existing metrics.

45

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

Bibliography

[ADPA10] Hani Abdeen, Stéphane Ducasse, Damien Pollet, and Ilham Alloui. Pack-

age fingerprint: a visual summary of package interfaces and relationships.

Info. and Sof. Tech., 52:1312–1330, 2010.

[ADSA09] Hani Abdeen, Stéphane Ducasse, Houari Sahraoui, and Ilham Alloui. Au-

tomatic package coupling and cycle minimization. In Int. Work. Conf. on

Rev. Eng., pages 103–112. IEEE Computer Society Press, 2009.

[AG01] Fernando Britoe Abreu and Miguel Goulao. Coupling and cohesion as

modularization drivers: are we being over-persuaded? In Fifth Europ.

Conf. on Sof. Maintenance and Reengineering, pages 47–57, 2001.

[AK01] E. Allen and T. Khoshgoftaar. Measuring coupling and cohesion of soft-

ware modules: An information theory approach. In Seventh Int. Sof. Met-

rics Symposium, 2001.

[BDPW98] L.C. Briand, J. Daly, V. Porter, and J. Wust. A comprehensive empir-

ical validation of design measures for object-oriented systems. Software

Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth International,

pages 246–257, Nov 1998.

[BDW98a] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A Unified Framework

for Cohesion Measurement in Object-Oriented Systems. Empirical Soft-

ware Engineering: An International Journal, 3(1):65–117, 1998.

[BDW98b] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified Frame-

work for Cohesion Measurement in Object-Oriented Systems. Empirical

Software Engineering: An International Journal, 3(1):65–117, 1998.

[BDW99a] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified Frame-

work for Coupling Measurement in Object-Oriented Systems. IEEE

Transactions on Software Engineering, 25(1):91–121, 1999.

[BDW99b] Lionel C. Briand, John W. Daly, and Jürgen K. Wüst. A Unified Frame-

work for Coupling Measurement in Object-Oriented Systems. IEEE TSE,

25(1):91–121, 1999.

[BGE95] F. Brito e Abreu, M. Goulao, and R. Esteves. Toward the design quality

evaluation of object-oriented software systems. In Proc. 5th Int’l Conf.

Software Quality, pages 44–57, October 1995.

[BK95a] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented

system. In Proceedings ACM Symposium on Software Reusability, April

1995.

[BK95b] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented

system. In ACM Symposium on Software Reusability, April 1995.

46

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

[BK98] J.M. Bieman and B.K. Kang. Measuring design-level cohesion. IEEE

TSE, 24(2):111–124, February 1998.

[BMB96] Lionel C. Briand, Sandro Morasca, and Victor Basili. Property-based soft-

ware engineering measurement. Transactions on Software Engineering,

22(1):68–86, 1996.

[BMB99] Lionel C. Briand, Sandro Morasca, and Victor R. Basili. Defining and

validating measures for object-based high-level design. IEEE TSE, pages

722–743, 1999.

[BVT03] Rajendra K. Bandi, Vijay K. Vaishnavi, and Daniel E. Turk. Predicting

maintenance performance using object-oriented design complexity met-

rics. IEEE TSE, 29:77–87, 2003.

[CC92] J. Chris Coppick and Thomas J. Cheatham. Software metrics for object-

oriented systems. In ACM Conf. on Computer Science’92, pages 317–322,

1992.

[CG05] Werner Callebaut and Diego Gutman. Modularity: Understanding the

Development and Evolution of Natural Complex Systems. MIT press, 05.

[CK94a] Shyam R. Chidamber and Chris F. Kemerer. A metrics suit for object

oriented design. IEEE TSE, 20:476–493, 1994.

[CK94b] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object

oriented design. IEEE Transactions on Software Engineering, 20(6):476–

493, June 1994.

[DB10] Jehad Al Dallal and Lionel C. Briand. An object-oriented high-level

design-based class cohesion metric. Inf. and Sof. Tech., 52(12):1346–

1361, 2010.

[DJ03] Melis Dagpinar and Jens H. Jahnke. Predicting maintainability with

object-oriented metrics - an empirical comparison. In 10th Work. Conf.

on Rev. Eng., WCRE ’03, pages 155–164. IEEE Computer Society, 2003.

[DK76] Frank DeRemer and Hans H. Kron. Programming in the large versus pro-

gramming in the small. IEEE TSE, 2(2):80–86, 1976.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen, and Ilham

Alloui. Package surface blueprints: Visually supporting the understanding

of package relationships. In IEEE Int. Conf. on Sof. Maint., pages 94–103,

07.

[eAC94] Fernando Brito e Abreu and Rogério Carapuça. Candidate metrics for

object-oriented software within a taxonomy framework. Journal of Sys.

Sof., 26:87–96, 1994.

47

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

[EGK+01] Stephen Eick, Todd Graves, Alan Karr, J. Marron, and Audris Mockus.

Does code decay? assessing the evidence from change management data.

IEEE TSE, 27(1):1–12, 2001.

[Eme84] Thomas Emerson. A discriminant metric for module cohesion. In ICSE,

1984.

[Fow01] Martin Fowler. Reducing coupling. IEEE Software, 2001.

[FP96] Norman Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rig-

orous and Practical Approach. International Thomson Computer Press,

London, UK, second edition, 1996. 06-8147-I*, envoye a l’inria lille le 19

aout.

[GFS05] Tibor Gyimóthy, Rudolf Ferenc, and Istvá Siket. Empirical validation of

object-oriented metrics on open source software for fault prediction. IEEE

Transactions on Software Engineering, 31(10):897–910, 2005.

[GM00] Mohsen D. Ghassemi and Ronald R. Mourant. Evaluation of coupling in

the context of java interfaces. In the conf. on OO prog., sys., lang., and

app. (Addendum), OOPSLA ’00, pages 47–48. ACM, 2000.

[GN93] William G. Griswold and David Notkin. Automated assistance for pro-

gram restructuring. ACM Trans. Softw. Eng. Methodol., 2(3):228–269,

1993.

[Hau02] E. Hautus. Improving Java software through package structure analysis.

In Int. Conf. Sof. Eng. and App., 2002.

[HK00] Jiawei Han and Micheline Kamber. Data Mining: Concept and Tech-

niques. Morgan Kaufmann, 2000.

[HM95] Martin Hitz and Behzad Montazeri. Measuring product attributes of

object-oriented systems. In Proc. ESEC ‘95 (5th European Software En-

gineering Conference, pages 124–136. Springer Verlag, 1995.

[HS96a] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Com-

plexity. Prentice-Hall, 1996.

[HS96b] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of Com-

plexity. Prentice-Hall, 1996.

[Kan02] Stephen H. Kan. Metrics and Models in Software Quality Engineering.

Addison Wesley, 2002.

[KKL01] Hind Kabaili, Rudolf K. Keller, and Frantçois Lustman. Cohesion as

changeability indicator in object-oriented systems. In Fifth Europ. Conf.

on Sof. Maintenance and Reengineering, CSMR ’01, pages 39–46, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

48

INRIA LNE- LIRMM Cutter ANR 2010 BLAN 0219 02

[LH93a] W. Li and S. Henry. Object oriented metrics that predict maintainability.

Journal of System Software, 23(2):111–122, 1993.

[LH93b] Wei Li and Sallie Henry. Object-oriented metrics that predict maintain-

ability. Journal of Sys. Sof., 23:111–122, 1993.

[Li98] Wei Li. Another metric suite for object-oriented programming. Journal of

Sys. Sof., 44:155–162, December 1998.

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practi-

cal Guide. Prentice-Hall, 1994.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice.

Springer-Verlag, 2006.

[Mar05] Robert C. Martin. The tipping point: Stability and instability in oo design,

05. Software Development.

[Mar97] Robert C. Martin. Stability, 1997. www.objectmentor.com.

[Mar00] Robert C. Martin. Design principles and design patterns, 2000.

www.objectmentor.com.

[Mar02] Robert Cecil Martin. Agile Software Development. Principles, Patterns,

and Practices. Prentice-Hall, 2002.

[Mar05a] Robert C. Martin. The tipping point: Stability and instability in oo design,

2005. http://www.ddj.com/architect/184415285.

[Mar05b] Robert C. Martin. The tipping point: Stability and instability in oo design,

2005. Software Development.

[May99] Tobias Mayer. Only connect. an investigation into the relationship between

object-oriented design metrics and the hacking culture, 1999.

[McC76] T.J. McCabe. A measure of complexity. IEEE Transactions on Software

Engineering, 2(4):308–320, December 1976.

[Mis01] Vojislav B. Misic. Cohesion is structural, coherence is functional: Dif-

ferent views, different measures. In Int. Sof. Metrics Symposium. IEEE,

2001.

[MR04] Radu Marinescu and Daniel Raţiu. Quantifying the quality of object-

oriented design: the factor-strategy model. In Proceedings 11th Work-

ing Conference on Reverse Engineering (WCRE’04), pages 192–201, Los

Alamitos CA, 2004. IEEE Computer Society Press.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into

modules. CACM, 15(12):1053–1058, December 1972.

[PCB92] Sukesh Patel, William Chu, and Rich Baxter. A measure for composite

module cohesion. In Int. Conf. on Sof. Eng., pages 38–48, 1992.

49

Cutter ANR 2010 BLAN 0219 02 INRIA LNE-LIRMM

[PN06] Laura Ponisio and Oscar Nierstrasz. Using context information to re-

architect a system. In 3rd Sof. Measur. Europ. Forum, pages 91–103, 06.

[SKR08] Santonu Sarkar, Avinash C. Kark, and Girish Maskeri Rama. Metrics

for measuring the quality of modularization of large-scale object-oriented

software. IEEE TSE, 34(5):700–720, 08.

[SM08] Inc. Sun Microsystems. Jsr-294: Improved modularity support in the java

programming language. Technical report, Sun Microsystems, Inc., 08.

[SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM

Systems Journal, 13(2):115–139, 1974.

[SRK07] Santonu Sarkar, Girish Maskeri Rama, and Avinash C. Kark. Api-based

and information-theoretic metrics for measuring the quality of software

modularization. IEEE TSE, 33(1):14–32, 07.

[SSP07] R. Strnisa, P. Sewell, and M. Parkinson. The java module system: Core de-

sign and semantic definition. OO Prog. Sys., Lang. and App., 42(10):499–

514, 07.

[TNM08] Ewan Tempero, James Noble, and Hayden Melton. How do java pro-

grams use inheritance? an empirical study of inheritance in java soft-

ware. In ECOOP ’08: Proceedings of the 22nd European conference on

Object-Oriented Programming, pages 667–691, Berlin, Heidelberg, 2008.

Springer-Verlag.

50

	State of the Art on Software Metrics
	Primitive Metrics
	Design Metrics: Class Coupling
	Design Metrics: Class Cohesion
	Design Metrics: Package Architecture

	New package metrics to support application remodularisation
	Modularity Principles
	Terminology and Notation
	Coupling Metrics: Metrics related to Information-Hiding and Changeability Principles
	Cohesion Metrics: Metrics related to Commonality-of-Goal Principle
	Validation
	Discussion
	Relevant Related Works vs. Our Metrics

	Conclusion

