
HAL Id: hal-00647138
https://hal.inria.fr/hal-00647138

Submitted on 1 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIRA: Schedule Independent Register Allocation for
Software Pipelining

Sid Touati, Christine Eisenbeis

To cite this version:
Sid Touati, Christine Eisenbeis. SIRA: Schedule Independent Register Allocation for Software Pipelin-
ing. Workshop on Compilers for Parallel Computers, Jun 2001, Edinburgh, United Kingdom. �hal-
00647138�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49941008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00647138
https://hal.archives-ouvertes.fr

SIRA: Schedule Independent Register Allocation for Software
Pipelining

Sid Ahmed Ali Touati, Christine Eisenbeis
A3 Project, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France

Sid-Ahmed-Ali.Touati@inria.fr Christine.Eisenbeis@inria.fr

Abstract

The register allocation in loops is generally carried out af-
ter or during the software pipelining process. This is be-
cause doing the register allocation at first step without as-
suming a schedule lacks the information of interferences
between values live ranges. The register allocator intro-
duces extra false dependencies which reduces dramati-
cally the original ILP (Instruction Level Parallelism). In
this paper, we give a new formulation to carry out the reg-
ister allocation before the scheduling process, directly on
the data dependence graph by inserting some anti depen-
dencies arcs (reuseedges). This graph extension is first
constrained by minimizing the critical cycle and hence
minimizing the ILP loss due to the register pressure. The
second constraint is to ensure that there is always a cyclic
register allocation with the set of available registers, and
this for any software pipelining of the new graph. We give
the exact formulation of this problem with linear integer
programming.

1 Introduction

1.1 Background

The problem of minimizing the register requirement for
vertical code1 (single issue processors) is an old problem
proven NP-complete in [Set75] for general DAGs. In the
case where the DDG is a tree (arithmetic expression for
instance), the optimal register allocation can be computed
in polynomial complexity. The problem of minimizing
the number of registers needed to evaluate an expression
tree without spills was first resolved by Nakata [Nak67]
and Redziejowski [Red69]. Sethi and Ullman extended
that result in [SU70] to minimize the amount of spill
code needed to evaluate an expression tree, given a fixed
number of registers.

1No static ILP can be expressed by the generated code.

With the introduction of multiple issue processors
(VLIW and superscalar processors), the register allo-
cation became constrained by the total schedule time.
Both the problems of minimizing the register requirement
with a fixed total schedule time, or minimizing the total
schedule time with a fixed number of registers was proven
NP-hard [EGS95] , even for DAGs. A special case was
described by Meleis in [MD99] where he gave a poly-
nomial algorithm which produced an optimal schedule
of a binary tree given a fixed number of registers : the
tree could not contain unary operations, the latency of
the operations must be 1, and the machine was restricted
to issue no more than one memory operation and one
arithmetic operation per time slot.

1.2 Motivation

This report address the problem of register pressure in
cyclic data dependence graphs (DDGs), with multiple
registers types and non unit assumed latencies. Our aim is
to decouple the registers constraints and allocation from
the scheduling process and analyse the trade-off between
memory and parallelism constraints. The principal reason
is that the register allocation process is more important,
as an optimization issue, than the code scheduling. This
is because the code performance is far more sensitive to
the memory access than to the fine-grain scheduling : a
cache miss inhibits the processor from achieving a high
dynamic ILP, even if the scheduler has extracted it at
compile time. Our approach is to take into account the
registers constraints before the code scheduling without
hurting the ILP or restricting the scheduler.

In our previous work [Tou01d, Tou01b], we have con-
sidered the register saturation problem for acyclic Data
Dependency Graphs (DDG). Register saturation is based
on analyzing the DDG and answering the question:

What is the maximal number of registers re-
quired for any schedule of this code?

u u

v1 v2

k_u

(δ, λ1) (δ,λ2)

(0, −λ2)(0, −λ1)

(0,µ) v’2

k_u’

v’1

u’

(0,µ)
v’2

k_u’

v’1

u’u

v1 v2

k_u

v

(δ, λ)

(0, µ − λ)

(a) Simple Reuse Circuit (b) Killing Tasks (c) Another Allocation Scheme

(0,µ)

(0,µ)

Figure 1: Steps of Register Pressure Analysis and Man-
agement

If this factor is less than the number of available registersR (see Figure 2.a), then the register pressure has no effects
on the scheduler, and the DDG is left as it is. However,
if the saturation exceedsR (see Figure 2.b), we add serial
arcs into the DDG to reduce it below the limitR while
minimizing the corresponding increasing of critical path .

In this paper we address the same issue for loops and
base our analysis of the Data Dependency Graph of the
loop. The starting point is based on the following idea,
that can be thought as a variant of [SCFS98]:

When two variables of some program are allocated into
the same registerR, this creates an antidependency be-
tween the operation that reads the first variable fromR
and the operation that writes the second variable intoR.
This dependency is called a “reuse” dependency, also
called “Universal Occupancy Vector”(UOV) in [SCFS98].
This dependency or UOV in turn affects the performance
of the program, estimated in terms of critical path for
acyclic DDG, critical cycle for simple loops or schedule
length for more general programs.

Our work here considers software pipelining of sim-
ple loops without conditionals, represented as DDG. We
define the notion of reuse dependencies for software
pipelined loops and analyze their influence on register
pressure and Initiation Interval. We can either fix II and
find the minimal number of registers required or alterna-
tively fix a number of registers and find the minimum II.
In both cases we are sure that any software pipelined loop
generated after this modified DDG will not use more than
the given register count.

Our paper is organized as follows : next section intro-
duces a motivating example, then we formalize the prob-
lem. Finally we give a formulation with linear integer
programming techniques and conclude with related work.
For every detail about loop software pipelining and cyclic
register allocation, one can refer to [AJLA95, WEJS94,
ELM95].

R
RS

RF

RS

RS

RF

RF

(c) Unavoidable Spill Code(b) Possible Spill Code Insertion(a) Null Register Pressure

reduced by
adding arcs

reduced by
spilling

Figure 2: Register Pressure Configurations

2 Motivating Example

Let us consider the following loop with two instructionsu
andv.

for {i=1; i <=n; i++}
{
/* u */

A(i+3) = ...
/* v */

... = A(i)
}

There is a flow dependency betweenu andv with dis-
tance� = 3. This means that the operationv reads the
value produced byu � iterations earlier. This serialisation
constraint is represented through an edgeu! v with two
labels: � is the latency of operationu, � is the distance
of the dependence. This means that in the final schedule
there should be at least� clock cycles or time units be-
tween issue ofu(i) andv(i+ �) for any iterationi.

Let us assume now that we use� different registersR1, R2, ... ,R�, cyclically for carrying this value,A(4),
written byu(1), is stored inR1, A(5) in R2, ... A(� + 3)
in R�, A(�+ 4), written byu(�+ 1), in R1, ... (figure 3)
Thenu(� + 1) stores its result in the same registerR1.
Hencev(� + 1) should be scheduled beforeu(� + 1)
and there is an anti-dependency betweenv(� + 1) andu(� + 1) with a distance� � �, see Figure 4.(a) where
the values are shown with bold circles and flow arcs with
bold lines. Dashed ones represent the anti-dependencies.
Since u has some delay�w before writing into the
result register, the latency of this anti-dependency is set
to �w. This anti-dependency must in turn be counted
when computing the new minimum initiation intervalMII � l ���w� m

Hence controlling register pressure means first deter-
mining which operations reuse registers killed by other
operations (where should antidependencies be added?)
and secondly determining variable lifetime, or equiva-
lently register pressure (how many iterations later (�)
should (direct) reuse occur)? The lower the� the lower
the register pressure but also the larger the critical cycle.

When an operation creates a value that is read by more
than one operation, we cannot know in advance which
of these consumers would actually kill the value (which
one would be scheduled to be the last reader), and hence
we cannot know in advance when a register is freed.
We propose a trick which defines for each valueut of
type t a fictitious killing taskkut . We insert an arc from
each consumerv 2 Cons(ut) to kut to reflect the fact
that this killing task is scheduled after the last scheduled
consumer, see Figure 4.(b). The latency of this serial
arc is �r;t(v), and we set its distance to�� where� is
the distance of the flow dependence betweenu and its
consumerv. This means that the operationkut(i+���)
i.e. kut(i) is scheduled when the valueut(i) is killed.
Now, a register allocation scheme consists of defining
the edges of reuse as defined just above. Hence defining
for eachu the taskv which reuses the same register.
We add then an edge fromkut to v (representing an
anti-dependence from the killer ofu to v) with a latency��w;t(v) and a distance�u;v to be defined.

There are three main constraints that the resulting de-
pendency graph must meet. First, the sum of distances
along each circuit must be positive, else the problem

{
/* u, iteration 1*/

R1 = ...
/* v, iteration 1*/

... = A(1)
/* u, iteration 2*/

R2 = ...
/* v, iteration 2*/

... = A(2)
/* u, iteration 3*/

R3 = ...
/* v, iteration 3*/

... = A(3)
/* u, iteration 4*/

R4 = ...
/* v, iteration 4*/

... = R1
/* u, iteration 5*/

R5 = ...
/* v, iteration 5*/

... = R2
/* u, iteration rho+1 (rho=5)*/

R1 = ...
/* v, iteration rho+1*/

... = R3

....

}

Figure 3: Cyclic register al-
location

u u

v1 v2

k_u

(δ, λ1) (δ,λ2)

(0, −λ2)(0, −λ1)

(0,µ) v’2

k_u’

v’1

u’

(0,µ)
v’2

k_u’

v’1

u’u

v1 v2

k_u

v

(δ, λ)

(0, µ − λ)

(a) Simple Reuse Circuit (b) Killing Tasks (c) Another Allocation Scheme

(0,µ)

(0,µ)

Figure 4: Examples of Register Reuse Schemes

would not have a solution. Second, the number of reg-
isters used by an allocation schema (decision) is

P� (we
will prove this assertion in the next section) and must be
lower or equal to the number of available registers. And
finally - this is not a constraint - but a choice in our work -,
a register released by an operation can be reused by only
one operation, and each operation reuses only one regis-
ter. This means that we have the same reuse pattern for
every iteration, so that there is a one-to-one mapping be-
tween the killing nodes and the operations that have a re-
sult operand.

Let us consider the dependency graph of figure 4.(c).
We can decide thatu andv use disjoint sets of registers.u reuses only registers killed byku andv reuse only reg-
isters killed bykv . In this case we have the following
system (� is the number of register required):8>>>><>>>>: II � ��II � �0�0� > 0�0 > 0� = �+ �0

We can also decide that registers carry alternatively val-
ues fromu andu0 (figure 4.c) and we obtain the system:8<: II � �+�0�+�0� + �0 > 0� = � + �0

In both cases, we can fixII and minimize� or fix � and
minimizeII . It is easy to find out that the second choice
is always better that the first one.

The reuse relation between the values are described by
defining a new graph calleda reuse graph. Figure 5.(a)
shows the a first reuse decision where for instanceu (v
resp.) reuses the register used by itself�1 (�2 resp.) it-
erations earlier. Figure 5.(b) is the second reuse choice
whereu (v resp.) reuses the register used byv (u resp.)�1 (�2 resp.) iterations earlier. The resulted data depen-
dency graph after adding the killing tasks and the anti-
dependencies (Figure 4) to apply the register reuse deci-
sions is called thethe DDG associated to a reuse graph:
Figure 4.(b) is the associated DDG to Figure 5.(a), and
Figure 4.(c) is the one associated to Figure 5.(b). In the
next section, we give a formal definition and modeling to
the register allocation problem based on the reuse graphs.

u
µ1

u u’

µ1

µ2

u’
µ2

(a) First Reuse Graph (b) Second Reuse Graph

Figure 5: Reuse Graphs

3 Reuse Graphs for Register Alloca-
tion

In this section, we consider a Data Dependency Graph
(DDG) G = (V;E; �; �). Nodes of the DDG are op-
erations, that may generate output results. In that case,
one register of some typet 2 T is needed for storing
this variable, and the operation is also called avalueop-
eration. Edges may be flow dependencies (in that case
there are due to some variable that has to be stored into
some register), or simple serialisation constraints due to
other data dependencies or external reason. A software
pipeline scheduling function assigns to each operationu
a scheduling issue date�u, that satisfies the serialisation
constraints: for each edge(u; v; �; �),�u + � � �v + �:II
.

A register allocation consists of choosing which opera-
tions reuses which released register. We define :

Definition 3.1 (Reuse Relation)Let G = (V;E; �; �)
be a DDG. A reuse relation for a register typet 2 T is a
bijection betweenVR;t andVR;t such thatreuset(u) = v
iff the statementv reuses the register of typet released
by the statementu. We note alsoreuse�1t (v) = u. We
associate to this relation a reuse distance�tu;v such that
the operationsv(i + �tu;v) reuses the register of typet
released by the operationu(i)

We represent the reuse relation by a graph (see Fig-
ure 5) :

Definition 3.2 (Reuse Graph)Let G = (V;E; �; �) be
a DDG and reuset a reuse relation of a register typet 2 T . The reuse graphGr = (VR;t; Er; �) is defined
by :Er = fe = (ut; vt) = reuset(u) = v ^ �t(e) = �tu;vg

We call each arc inGr a reuse arc, and each path inGr a
reuse path.

Lemma 3.1 Each reuse pathP constructed by inserting
all the successive nodesui; ui+1 such that :reuset(ui) = ui+1 =) ui+1 2 P
is an elementary circuit which we call a reuse circuit. And
all the reuse circuits ofGr are disjoined :8C 6= C 0 two reuse circuits C \ C 0 = �
We noteC the set of all the reuse circuits ofGr.
Lemma 3.2 LetGr = (VR;t; Er; �) be a reuse DDG ac-
cording to a reuse relationreuset. Then, any valueut 2 VR;t of a register typet 2 T belongs to a unique
reuse circuitC in Gr.

Let be�t(Gr) the sum of all the reuse distances be-
tween values of typet :�t(Gr) = Xe=(u;v)2Er �tu;v
and we note also�t(C) the sum of all the reuse distances
between values of typetwhich belongs to the reuse circuitC : 8C 2 C �t(C) = Xe=(u;v)2C �tu;v

To report the register reuse decision in the DDG, we
have to ensure that ifreuset(u) = v with a distance�tu;v
thenut(i) must be killed before the definition ofvt(i +�tu;v). The distance�tu;v means that there is�tu;v registers
allocated betweenut(i) andvt(i+�tu;v). For this purpose,
we define for each valueut of type t a fictitious killing
taskkut which corresponds to its killing date. We insert an
anti-dependency arc betweenkut andv iff reuset(u) =v.

Definition 3.3 (Killing Node) LetG = (V;E; �; �) be a
DDG andT a set of registers types. A killing nodekut of
a valueut 2 VR;t of typet is a fictitious operation that
corresponds to (an upper bound of) the killing date ofut.
It is defined by inserting in the DDGG the nodekut for
all ut 2 VR;t with the the following serial arcs :� add a serial arce = (v; kut) from each consumerv 2 Cons(ut) to kut ;� for each inserted arce = (v; kut) , set its latency to�(e) = �r;t(v), and its distance to�(e) = �d such

that d is the distance of the flow dependence fromu
to v through a register of typet : d = �(e0) withe0 = (u; v) 2 ER;t.

Note that the distance in terms of iterations of the path
between each value and its killer is null. The set of all the
killing nodes of typet is notedKt :Kt = fkut = ut 2 VR;tg

The resulted data dependency graph after adding the
killing tasks and the anti-dependencies arcs is called the
DDG associated to the reuse relation.

Definition 3.4 (DDG associated to a Reuse Relation)
Let G = (V;E; �; �) be a DDG with its inserted killing
nodesKt. The DDG associated to a reuse relationreuset of a register typet 2 T is an extended DDG ofG
such that we add an arce = (kut ; v) iff reuset(u) = v.
We set its latency to�(e) = ��w;t(v), and its distance to�(e) = �tu;v (to be defined).

Parts (b) and (c) of Figure 4 are two examples of the
DDGs associated to the reuse relation defined in parts (a)
and (b) of Figure 5 resp. We note the DDG associated to
the reuse relation asG!r. One can remark that a reuse
arc (u; v) is the counterpart of a path(u; v) in the meet-
ing graph of any software pipelining schedule ofG!r.
Any arc(kut ; v) in G!r according to a reuse relation en-
sures that the life interval of the valueut(i) ends before
the definition of the valuevt(i+ �tu;v).

Furthermore, a reuse distance�tu;v defines an anti-
dependence between the killer ofu andv with a distance�tu;v � � � 0 where� is the distance betweenu and its
killer.

Each reuse circuit has a counterpart inG!r which we
call animageof the reuse circuit :C = (u0; � � � ; un; u0) a reuse circuit()C = (u0; u00; ktu0 ; � � � ; un; u0n; ktun ; u0) a circuit inG!r
where u0i is a consumer ofui. For instance, the
reuse circuit (u; v; u) in Figure 5.(b) has an image(u; v1; ku; u0; v01; ku0 ; u) in Figure 4.(c). Note that a
reuse circuit can have more than one image inG!r be-
cause a value can have more than one consumer : for
instance, a second image for(u; v; u) in Figure 5.(b) is(u; v2; ku; u0; v02; ku0 ; u) in Figure 4.(c). The distance of
any image circuit is (see Figure 6) :�(C) = �t(C) > 0 (1)

There is some constraints that a reuse relation must
meet in order to be valid : the existence of at least a soft-
ware pipelining schedule forG!r (i.e. all the introduced
circuits must have a positive distance) defines the validity
condition of the reuse relation.

�1 ��1 �2 ��2 �n ��nu00u0 v2ku1u01u1ku0 un u0n kun�u0;u1 �u1;u2�un;u0
Figure 6: The Sum of Distances in the Reuse Circuits Im-
ages

u

v1 v2

k_u

v’2

k_u’

v’1

u’

(3, 1) (3,0)

(0, 0)(0, −1)

(−3, 2)

(4, 0) (4, 1)

(0,0) (0,−1)

(−2,1)

v’2

k_u’

v’1

u’u

v1 v2

k_u

(3, 1) (3,0)

(0, −1) (0, 0)

(4, 0) (4, 1)

(0,0) (0,−1)

(−4, 2)

(−3,1)

(b) Second Valid Reuse Scheme(a) First Valid Reuse Scheme

Figure 7: Valid Reuse Relations

Definition 3.5 (Valid Reuse Relation)Let G!r be a
DDG associated to a reuse relationreuset. We say thatreuset is valid iff there exists a distance�(e) = �tu;v for
each arce = (kut ; v) such that :�L(G!r) 6= �() 8 circuit C in G!r �(C) > 0() 8C a reuse circuit

X(u;v)2C �tu;v > 0
Figure 7 shows two examples of DDGs associated to valid
reuse relations. Note that the case of a circuit with null
distance and negative latency(�(C) = 0 ^ �(C) � 0)
cannot exist because the anti-dependencies can never
create a circuit with a null distance, otherwise it means
that an operation (statement instance) reuses the register
used by itself, which is impossible (no sense).

If a reuse relation is valid, we can build a cyclic register
allocation in the DDG associated to it as explained in the
following theorem.

Theorem 3.1 Let G!r be a reuse DDG according to a
valid reuse relationreuset such that there is only one
reuse circuit inGr. Then the unique reuse circuitC de-
fines a cyclic register allocation forG!r with exactly�t(C) registers if we unroll the loop� = �t(C) times.

Proof :

Let unroll G!r �t(C) times : each operationu 2 V has now� copies in the unrolled loop.
We note byui the ith copy of the operationu 2 VR;t. For the clarity of this proof, we

v’2

k_u’

v’1

u’u

v1 v2

k_u

u

v1 v2

k_u

v’2

k_u’

v’1

u’ u

v1 v2

k_u

v’2

k_u’

v’1

u’

R0 R1 R0R1 R2 R2
(1)

(0)
(1)

(1)

iter i iter i+1 iter i+2

(0)

(0)

Figure 8: Cyclic Register Allocation with One Reuse Cir-
cuit

illustrate it by the example of Figure 8 which
builds a cyclic register allocation with 3 regis-
ters for Figure 7.(b) : we have unrolled this loop
3 times. We allocate�t(C) = 3 registers in the
unrolled loop as follows :

1. for each reuse arce = (u; v), allocate�t(e) registers in the loop to the�t(e) val-
ues produced byu. For instance, the reuse
arc (u; u0) needs 2 registersR1 andR2
which we allocate tou0 andu1 resp. in
Figure 8.

2. Since the reuse relation is valid, we are
sure that for each reuse arc(u; v), the
killing date of each valueut(i) is sched-
uled before the definition date ofvt(i +�tu;v). So, we allocate the same register
to vt�(i + �tu;v) mod�� as the one allo-
cated tout(i). For instance in Figure 8,
we allocate the same registerR1 tou1 andu0((1 + 2) mod3) = u00.

Finally, we have allocated�t(C) registers in the
unrolled loop to all the values. The dashed lines
in Figure 8 represent the anti-dependencies
with their corresponding distances after the un-
rolling. y

Note that we can also build a cyclic register allocation
with exactly�t(C) registers if we unroll the loopk � �
times, where� = �t(C) andk 2 N+ as follows :

1. unroll the loop� times and build a cyclic register al-
location with�t(C) registers as explained in Theo-
rem 3.1 ;

2. unroll the allocated loopk times.

At this point, we can state in the following theorem that
the set of the reuse circuits define a cyclic register alloca-
tion with �t(Gr) registers.

v’2

k_u’

v’1

u’u

v1 v2

k_u

u

v1 v2

k_u

v’2

k_u’

v’1

u’

R0 R0R1 R2

iter i iter i+1

(0)

(1)

(1) (1)

Figure 9: Cyclic Register Allocation

Theorem 3.2 Let G!r be a reuse DDG according to a
valid reuse relationreuset of a register typet 2 T . Then
the reuse graphGr defines a cyclic register allocation forG!r with exactly�t(Gr) registers if we unroll the loop�
times where :� = lcm(�t(C1); � � � ; �t(Cn))
with C = fC1; � � � ; Cng is the set of all the reuse circuits.

Proof :

It is a direct consequence of Theorem 3.1. The
cyclic register allocation is build as follows :

1. unroll the loop� times. Each reuse circuitC is duplicated ��t(C) times ;

2. build a cyclic register allocation for each
reuse circuit as explained in Theorem 3.1.

Figure 9 is an example of a cyclic register allo-
cation of Figure 7.(a) which contains two reuse
circuits ; (u; u) with a distance 1, and(u0; u0)
wit a distance 2. The unrolling degree is hencelcm(1; 2) = 2. The dashed lines represent the
anti-dependencies after unrolling the loop.y

Corollary 3.1 LetG!r be a reuse DDG according to a
valid reuse relationreuset of a register typet 2 T . Then
any valid software pipeline ofG!r admits a cyclic regis-
ter allocation that uses less than�t(Gr).
Proof :

According to Theorem 3.2, we can build a
cyclic register allocation with�t(Gr) available
registers. Then, the cyclic register requirement
of any software pipeline cannot exceed�t(Gr).y

Corollary 3.2 LetG = (V;E; �; �) be a loop with a set
of values typesT . To each value typet 2 T is associated
a valid reuse relationT and a reuse graphGrt . The loopG = (V;E; �; �) can be allocated with�t(Gr) registers
for each value typet if we unroll it � times, where� = lcm(�t1 ; � � � ; �tn)
with �ti is the valid unrolling degree of the value typeti.
Proof :

Direct consequence of Theorem 3.2. The cyclic
register allocation is build as follows :

1. unroll the loop� times. Each reuse circuitCt of a register typet is duplicated�t ���t(C) times ;

2. build a cyclic register allocation for each
reuse circuit of each register typet as ex-
plained in Theorem 3.2. y

4 SIRA Problem Formulation

From the previous section, we deduce that doing a cyclic
register allocation of a DDG is equivalent to find a valid
reuse relation.

Problem 4.1 (SIRA) Let G = (V;E; �; �) be a loop
DDG andRt the number of available registers of typet. Find a valid reuse relationreuset such that the corre-
sponding reuse graphGr = (VR;t; Er; �) has�t(Gr) � Rt
where the critical circuit inG!r is minimized.

Theorem 4.1 SIRA is NP-complete.

Proof :

The SIRA decision problem can be formulated
as :

Problem 4.2 (dec(SIRA)) LetG = (V;E; �; �) be a loop DDG andRt
the number of available registers of typet, andk a positive integer. Does there exist a valid
reuse relationreuset such that�t(Gr) � Rt
andMII � k.

First, dec(SIRA) belongs to NP :� to check if a reuse relation is valid, we
check if the sum of distances of the reuse
circuits are all strictly positive. The set
of all the reuse circuits is simply done by
looking for the strongly connected compo-
nents of the reuse graph because the reuse
circuits are elementary and disjoined ;� the tests �t(Gr) � Rt
andMII � k are linear.

Second, dec(SIRA) does not belong to P since it
can be reduced easily to the problem of register
allocation with a minimum number of registers
under a fixed critical path, proven NP-complete
in [EGS95]. y

4.1 Two comments

There are however some more optimistic results. For in-
stance it should be noted that when we enforce that any
two operations do not share registers (this means thatreuset(u) = u for each operationu), then minimizing
the register pressure amounts to minimizing buffers in the
terminology of [NG93]. In the latter paper it is proven
that minimizing buffers in software pipelined loops is a
polynomial problem. Based on this property we conjec-
ture thanwhen the reuse relation is fixed then we the
problem of minimizing the register pressure is a poly-
nomial problem.

The second comment is based on the same observation
like in the example of section 2. In terms of register pres-
sure andII , it is always better to have one single reuse
circuit instead of two or more. This means that we should
only considerHamiltonian reuse circuits. This is inter-
esting because Hamiltonian reuse circuits result in register
allocation schemes that can be directly implemented on
rotating register files [ELM95, RLTS92]. This however
may not be a good solution when also the unrolling de-
gree for achieving such a register allocation is taken into

account. In the case of an Hamiltonian circuit and no ro-
tating register file on the processor, then the unrolling de-
gree (and consequently the code size duplication factor) is
exactly the register pressure.

4.2 ILP Formulation

In order to obtaining a basis for further experiments,
we have considered formulating SIRA under the form
of a linear integer program.rdietperform experiments Our
model is built for a fixed execution rateII . We write the
linear constraints which define a reuse relation for each
register type.

Basic Variables� a schedule variable�u for each operationu 2 V in-
cluding one for each killing nodekut ;� a binary variables�tu;v for each(u; v) 2 V 2R;t and
for each register typet 2 T which is set to 1 iffreuset(u) = v ;� a distance�tu;v for the anti-dependence through the
register typet betweenu andv for all (u; v) 2 V 2R;t.

Linear Constraints

Cyclic Scheduling Constraints� bound the scheduling variables (we assume a worst
schedule time of one iteration;8u 2 V �u � �u � �u� bound the anti-dependence distance�tu;v by the
number of available registers :8(u; v) 2 V 2R;t �tu;v � Rt� data dependencies8e = (u; v) 2 E �u + �(e) � �v + II � �(e)� schedule killing nodes for consumed values :8ut 2VR;t8v 2 Cons(ut) �kut � �v + �r;t(v) + :::::: maxe=(u;v)2ER;t �(e)� II

� there is an anti-dependency betweenu and v iffreuset(u) = v. Then we add an arc fromkut tov : 8t 2 T 8(u; v) 2 V 2R;t�tu;v = 1 =) �kut � �w;t(v) � �v + II � �u;v
Since�tu;v is binary, we write in the model :8t 2 T 8(u; v) 2 V 2R;t �u;v � 1 =)�kut � �w;t(v) � �v + II � �u;v
We use the linear expression of the implication de-
fined in [Tou00, Tou01a, Tou01c]

Reuse Relation Constraints The reuse relation must
be a bijection :� a register can be reused by only one operation :8t 2 T 8u 2 VR;t Xv2VR;t �tu;v = 1� one value can reuse only one released register :8t 2 T 8u 2 VR;t Xv2VR;t �tv;u = 1� if no register reuse between two values(reuset(u) 6=v), then set the anti-dependence distance to null :8t 2 T 8(u; v) 2 V 2R;t�tu;v = 0 =) �tu;v = 0

Since�tu;v is binary, we write in the model :8t 2 T 8(u; v) 2 V 2R;t �tu;v � 0 =) � �tu;v � 0�tu;v � 0
Objective Function We want to minimize the the num-
ber of registers required for the register allocation. so, we
chose an arbitrary register typet which we use as an ob-
jective function :

Minimize
X(u;v)2V 2R;t �tu;v

The other registers types are bounded in the model by
their respective number of available registers.

Summary The reuse relation produced is necessarily
valid since we succeed in constructing a cyclic schedule.
The complexity of the model is bounded byO(jV j2) vari-
ables andjEj + O(jV j2) constraints. To solve SIRA, we
proceed by ;

1. begin withII =MII ;

2. if the solution is greater thanRt, then incrementII or use a dichotomy betweenII and a maximumIImax = L ;

3. if we reach the maximumIImax without finding a
solution, there is no cyclic register allocation withRt
registers and hence spill code must be introduced.

Minimizing the unrolling degree is to minimizelcm(�i)
the least common multiple of the anti-dependence dis-
tances of the reuse circuits. This problem is very difficult
since there is no way to express linearly the least common
multiple. We can consider two solutions :

1. limit the reuse distances with strictly positive con-
stants(�1 � c1; � � � ; �n � cn) : the unrolling de-
gree becomes limited byc1 � � � � � cn. More these
constants are sufficiently small, more the unrolling
degree is minimized, more the critical circuit in-
creases while the system becomes more difficult to
solve. We think that this solution is non efficient and
inaccurate ;

2. look for only one reuse (hamiltonian) circuit : the un-
rolling degree becomes limited by

P�i � Rt.
We have already implemented this formulation directly
and performed preliminary experiments. Up to now, we
could solve the SIRA problem of minimizing the register
pressure under the constraint of not increasing the mini-
mum initiation interval for loops with number of opera-
tions up to 20.

5 Related Work

Scheduling with registers constraints tries to ensure
that the number of values simultaneously alive does not
exceed the number of available registers, guaranteeing the
existence of a register allocation with the set of available
registers.

In the field of cyclic scheduling, Huff was the first
who proposed in [Huf93] a software pipelining heuristic
which tried to minimize the values lifetimes, hoping
that this would minimize the register requirement. Its
technique was based on computing dynamically the
scheduling interval of the operations. Ning and Gao
defined an approximation of register requirement called
buffers in [NG93, Nin93]. The difference between a
buffer and a register is that if the life intervals of two
values do not interfere, they can share a register but not a
buffer. In fact, a buffer is a special register which passes
the successive copies of the values produced from one

software pipelining motif to the successive ones. The
authors showed that in practical cases the buffers was a
good approximation of the register requirement : they
found in their treated example that the number of buffers
is in worst case less by one than the register need. Wang
et al [WKEE94, WKE95] proposed a software pipelining
technique which tried to reduce the register requirement.
They maintained dynamically a graph which reflected
an approximation of the register requirement during
scheduling. The RESIS methodology was studied in
[SC96] which tried to minimize the maximal number of
values simultaneously alive . The authors proceeded by
changing the motif without incrementing the initiation
interval. SWING [LVA95, LGAV96, Llo96] is a heuristic
which constructed a motif with a reduced number of
values lifetimes as the Huff’s technique, and also tried to
reduce the initiation interval.

Sawaya wrote an integer programming model which re-
duced the exact register requirement in [ES96a, ES96b].
The complexity of his model wasO(jV j � �maxh) vari-
ables andO(jEj + jV j � �maxh) constraints. A better
formulation was given in [EDA96] withO(jV j � h) vari-
ables andO(jEj+ jV j � h) constraints. Our modeling isO(jV j2) variables andO(jEj+ jV j2) constraints which is
better since it depends only on amount of input data (the
size of the input DDG) and not on the data itself (spec-
ified operation latencies and critical cycle). Also we are
able to control register pressure without directly looking
for a solution, making our approach more flexible.

6 Conclusion

In this work we have presented a new clean framework for
analyzing register pressure in software pipelined loops by
working directly on the Data Dependency Graph instead
of looking for a solution by any cheap heuristic or expen-
sive exact method. In our framework trade off between
register pressure and Initiation Interval is explicited.

We are able to transform the DDG so that register pres-
sure is guaranteed. This DDG can then be processed by
any software pipelining algorithm that does not have to
consider register constraints. We have also introduced and
implemented an ILP exact formulation, which provides
a good starting point for further work in this framework
where memory and parallelism constraints are decoupled.
We expect that this work can be extended to other memory
components such as cache or local memory.

References

[AJLA95] Vicki H. Allan, Reese B. Jones, Randall M.
Lee, and Stephen J. Allan. Software pipelin-
ing. ACM Computing Surveys, 27(3):367–
432, 1995.

[Alt95] Eric Altman. Optimal Software Pipelining
with Functional Units and Registers. PhD
thesis, McGill University, Montreal, October
1995.

[EDA96] Alexandre E. Eichenberger, Edward S.
Davidson, and Santosh G. Abraham. Min-
imizing Register Requirements of a Mod-
ulo Schedule via Optimum Stage Schedul-
ing. International Journal of Parallel Pro-
gramming, 24(2):103–132, April 1996.

[EGS95] Christine Eisenbeis, Franco Gasperoni, and
Uwe Schwiegelshohn. Allocating Regis-
ters in Multiple Instruction-Issuing Proces-
sors. InProceedings of the IFIP WG 10.3
Working Conference on Parallel Architec-
tures and Compilation Techniques, PACT’95,
pages 290–293. ACM Press, June 27–29,
1995.

[ELM95] Christine Eisenbeis, Sylvain Lelait, and
Bruno Marmol. The meeting graph: A
new model for loop cyclic register allocation.
In Lubomir Bic, Wim Böhm, Paraskevas
Evripidou, and Jean-Luc Gaudiot, editors,
Proceedings of the IFIP WG 10.3 Work-
ing Conference on Parallel Architectures and
Compilation Techniques, PACT ’95, pages
264–267, Limassol, Cyprus, June 27–29,
1995. ACM Press.

[ES96a] Christine Eisenbeis and Antoine Sawaya.
Optimal Loop Parallelization under Regis-
ter Constraints. InSixth Workshop on Com-
pilers for Parallel Computers CPC’96.,
pages 245–259, Aachen - Germany, Decem-
ber 1996.

[ES96b] Christine Eisenbeis and Antoine Sawaya.
Optimal Loop Parallelization under
Register Constraints. Technical Re-
port RR-2781, INRIA, January 1996.
ftp://ftp.inria.fr/INRIA/publication/publi-ps-
gz/RR/RR-2781.ps.gz.

[GAG94] R. Govindarajan, Erik R. Altman, and
Guang R. Gao. Minimizing Register
Requirements under Resource-Constrained

Rate-Optimal Software Pipelining. InMI-
CRO27, pages 85–94, December 1994.

[Huf93] R. Huff. Lifetime-Sensitive Modulo
Scheduling. InPLDI 93, pages 258–267,
Albuquerque, New Mexico, June 1993.

[LGAV96] J. Llosa, A. Gonzalez, E. Ayguadé, and
M. Valero. Swing Modulo Scheduling: A
Lifetime-Sensitive Approach. InPACT 96,
Boston, Massachusetts, October 20-23 1996.

[Llo96] Josep Llosa.Reducing the Impact of Register
Pressure on Software Pipelined Loops. PhD
thesis, Universitat Politecnica de Catalunya
(Spain), 1996.

[LVA95] J. Llosa, M. Valero, and E. Ayguadé. Hy-
pernode Reduction Modulo Scheduling. In
micro28, pages 350–360, Boston, Mas-
sachusetts, November 1995.

[MD99] Waleed M. Meleis and Edward S. David-
son. Dual-Issue Scheduling with Spills for
Binary Trees. InProceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 678–686, New York, Jan-
uary 17–19 1999. ACM-SIAM.

[Nak67] I. Nakata. On Compiling Algorithms for
Arithmetic Expressions.Communications of
the ACM, 10:492–494, July 1967.

[NG93] Qi Ning and Guang R. Gao. A Novel
Framework of Register Allocation for Soft-
ware Pipelining. InConference Record of
the Twentieth ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages, pages 29–42, Charleston, South Car-
olina, January 1993. ACM Press.

[Nin93] Qi Ning. Optimal Register Allocation
to Support Time Optimal Scheduling for
Loops. PhD thesis, School of Computer Sci-
ence, McGill University, Montreal, Quebec,
Canada, 1993.

[Red69] R. R. Redziejowski. On Arithmetic Expres-
sions and Trees. Communications of the
ACM, 12(2):81–84, February 1969.

[RLTS92] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S.
Schlansker. Register Allocation for Soft-
ware Pipelined Loops.SIGPLAN Notices,
27(7):283–299, July 1992. Proceedings of
the ACM SIGPLAN ’92 Conference on Pro-
gramming Language Design and Implemen-
tation.

[SC96] Fermin Sanchez and Jordi Cortadella. RE-
SIS: A New Methodology for Register Opti-
mization in Software Pipelining. InProceed-
ings of Second International Euro-Par Con-
ference, Euro-Par’96, Lyon, France, August
1996.

[SCFS98] Michelle Mills Strout, Larry Carter, Jeanne
Ferrante, and Beth Simon. Schedule-
independent storage mapping for loops. In
Proceedings of the Eighth International Con-
ference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems, pages 24–33, San Jose, California, Oc-
tober 3–7, 1998. ACM SIGARCH, SIGOPS,
SIGPLAN, and the IEEE Computer Society.

[Set75] R. Sethi. Complete register allocation
problems. SIAM Journal on Computing,
4(3):226–248, 1975.

[SU70] R. Sethi and J. D. Ullman. The Generation
of Optimal Code for Arithmetic Expressions.
Journal of the ACM, 17(4):715–728, 1970.

[Tou00] Sid-Ahmed-Ali Touati. Optimal Reg-
ister Saturation in Acyclic Super-
scalar and VLIW Codes. Research
Report, INRIA, November 2000.
ftp.inria.fr/INRIA/Projects/a3/touati/optiRS.ps.gz.

[Tou01a] Sid-Ahmed-Ali Touati. EquiMax: A New
Formulation of Acyclic Scheduling Prob-
lem for ILP Processors. InInteraction be-
tween Compilers and Computer Architec-
tures. Kluwer Academic Publishers, 2001.

[Tou01b] Sid-Ahmed-Ali Touati. Maximizing for Re-
ducing Register Need in Acyclic Schedules.
In Proceedings of 5th International Work-
shop on Software and Compilers for Embed-
ded Systems, SCOPES, St Goar, Germany,
March 2001.

[Tou01c] Sid-Ahmed-Ali Touati. Optimal Acyclic
Fine-Grain Schedule with Cache Effects for
Embedded and Real Time Systems. In
Proceedings of 9th nternational Symposium
on Hardware/Software Codesign, CODES,
Copenhagen, Denmark, April 2001. ACM.

[Tou01d] Sid-Ahmed-Ali Touati. Register Saturation
in Superscalar and VLIW Codes. InPro-
ceedings of The International Conference
on Compiler Construction, Lecture Notes
in Computer Science. Springer-Verlag, April
2001.

[WEJS94] Jian Wang, Christine Eisenbeis, Martin Jour-
dan, and Bogong Su. DEcomposed Software
Pipelining: A new perspective and a new
approach. International Journal of Parallel
Programming, 22(3):351–373, June 1994.

[WKE95] Jian Wang, Andreas Krall, and M. Anton
Ertl. Decomposed Software Pipelining with
Reduced Register Requirement. InProceed-
ings of the IFIP WG10.3 Working Confer-
ence on Parallel Architectures and Compila-
tion Techniques, PACT95, pages 277 – 280,
Limassol, Cyprus, June 1995.

[WKEE94] Jian Wang, Andreas Krall, M. Anton Ertl,
and Christine Eisenbeis. Software Pipelin-
ing with Register Allocation and Spilling. In
Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 95–
99, San Jose, California, November 1994.
ACM SIGMICRO and IEEE Computer So-
ciety TC-MICRO.

