
HAL Id: hal-00647586
https://hal.inria.fr/hal-00647586

Submitted on 2 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Multi-Sequence Shift-Register Synthesis with the
Euclidean Algorithm

Alexander Zeh, Antonia Wachter-Zeh

To cite this version:
Alexander Zeh, Antonia Wachter-Zeh. Fast Multi-Sequence Shift-Register Synthesis with the Eu-
clidean Algorithm. Advances in Mathematics of Communications, AIMS, 2011, 5 (4), pp.667-680.
�10.3934/amc.2011.5.667�. �hal-00647586�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49940603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00647586
https://hal.archives-ouvertes.fr


Advances in Mathematics of Communications doi:10.3934/amc.2011.5.667
Volume 5, No. 4, 2011, 667–680

FAST MULTI–SEQUENCE SHIFT–REGISTER SYNTHESIS

WITH THE EUCLIDEAN ALGORITHM

Alexander Zeh

Institute of Communications Engineering

Ulm University, Albert-Einstein-Allee 43, 89083 Ulm, Germany
and

Research Center INRIA Saclay - Île-de-France

École Polytechnique, 91128 Palaiseau Cedex, France

Antonia Wachter

Institute of Communications Engineering

Ulm University, Albert-Einstein-Allee 43, 89083 Ulm, Germany
and

Institut de Recherche Mathémathique de Rennes (IRMAR)

Université de Rennes 1, 35042 Rennes Cedex, France

(Communicated by Michael O’Sullivan)

Abstract. Feng and Tzeng’s generalization of the Extended Euclidean Algo-

rithm synthesizes the shortest–length linear feedback shift–register for s ≥ 1

sequences, where each sequence has the same length n. In this contribution,
it is shown that Feng and Tzeng’s algorithm which solves this multi–sequence

shift–register problem has time complexity O(sn2). An acceleration based on

the Divide and Conquer strategy is proposed and it is proven that subquadratic
time complexity is achieved.

1. Introduction

Multi–sequence linear feedback shift–register (LFSR) synthesis plays an impor-
tant role in cryptography and coding theory, e.g. for decoding Interleaved Reed–
Solomon (IRS) codes [3, 8, 9, 12]. A codeword of an IRS code can be seen as s
parallel codewords from Reed–Solomon codes of same length. Transmitting an IRS
codes provides s syndrome sequences, which can be used to determine one common
error locator polynomial for the s parallel codewords. This error locator polyno-
mial can be interpreted as the connection polynomial of a shift register, which
generates each of these s syndrome sequences. Another application is decoding of
binary cyclic codes up to the Hartmann–Tzeng [7] bound, where multiple sets of
consecutive roots result in multiple syndrome sequences of equal length.

Solving the multi–sequence LFSR synthesis problem for s ≥ 1 sequences means
finding the shortest–length LFSR that generates each of the s sequences.

2000 Mathematics Subject Classification: Primary: 94A55, 94B15; Secondary: 94B35.
Key words and phrases: Divide and conquer, (extended) Euclidean algorithm, interleaved reed–

Solomon codes, fast algorithms, (multi–sequence) shift–register synthesis.
The work of A. Zeh is supported by the German Research Council Deutsche Forschungsge-

meinschaft (DFG) under Grant No. Bo867/22-1. The work of A. Wachter is supported by the

German Research Council Deutsche Forschungsgemeinschaft (DFG) under Grant No. Bo867/21-1.

667 c©2011 AIMS-SDU

http://dx.doi.org/10.3934/amc.2011.5.667


668 Alexander Zeh and Antonia Wachter

Mainly, there are two algorithms for finding the shortest–length LFSR for se-
quences of equal length n. Both were introduced by Feng and Tzeng: one based on
the Berlekamp–Massey Algorithm [5] and one based on the Euclidean Algorithm [4].
A generalization of Feng and Tzeng’s Euclidean Algorithm to Euclidean modules
was considered in [14].

However, the complexity of [4] has not been analyzed so far. Many efficient
algorithms are based on the so–called Divide and Conquer (DC) strategy. Assume,
a problem of size M is given, then the DC strategy splits the problem into two
halves, each of size M/2. The structure of these halves should be the same as the
original problem. The calculation can be accelerated if [1, 2, 6]

1. there are algorithms with less than half of the complexity for the divided
problems,

2. and they can be combined into the solution of the whole problem with low
complexity.

In this contribution, we accelerate Feng and Tzeng’s (Extended) Generalized Eu-
clidean Algorithm ((E)GEA) [4] using the DC strategy. We show that the EGEA
has complexityO(sn2) when solving the multi–sequence shift–register problem. Our
fast algorithm has subquadratic complexity O(s2n log2 sn).

This paper is organized as follows. In Section 2, we state the problem and
explain Feng and Tzeng’s original EGEA [4]. Section 3 provides and proves our fast
algorithm for solving the multi–sequence LFSR synthesis problem for sequences of
equal length. In Section 4, we analyze the complexity of both, the original and the
fast algorithm and come to a conclusion in Section 5.

2. The (extended) generalized Euclidean algorithm

2.1. Problem statement. Let Fq denote a finite field of order q and Fq[x] stands
for the set of all univariate polynomials in the indeterminate x over Fq.

Problem 2.1 (Multi–sequence shift–register synthesis of equal length). Given s ≥ 1

sequences S(i) = (S
(i)
0 , S

(i)
1 , . . . , S

(i)
n−1), i = 0, . . . , s− 1, where each S

(i)
j ∈ Fq of the

same length n. Find the connection polynomial σ(x) = σ0 + σ1x+ · · ·+ σ`−1x
`−1 +

x` ∈ Fq[x] of minimal degree ` such that:

(1) S
(i)
j + σ`−1 · S(i)

j−1 + · · ·+ σ0 · S(i)
j−` = 0

for all j = `, `+ 1, . . . , n− 1 and for all i = 0, . . . , s− 1.

Similar to the well–known key equation for the single–sequence shift–register
synthesis problem, Feng and Tzeng reformulated an equation for Problem 2.1 [4,
Equation (3)]. An alternative derivation of this concatenated key equation can be
found in [15]. Here, we give the basic idea. Let the assumptions of Problem 2.1 be
fulfilled, define a polynomial S(x) ∈ Fq[x] with degS(x) < sn by

(2) S(x)
def
=

s−1∑
i=0

xs−1−i
n−1∑
j=0

S
(i)
j xs(n−1−j).

In [4], it was shown that solving Problem 2.1 is equivalent to the following problem.

Problem 2.2 (Solving Concatenated Key Equation). Given s ≥ 1 sequences S(i) =

(S
(i)
0 , S

(i)
1 , . . . , S

(i)
n−1), i = 0, . . . , s − 1 of the same length n and hence also the

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 669

polynomial S(x) with degS(x) < sn as defined in (2). Find a polynomial σ(xs) ∈
Fq[x] such that

(3) S(x) · σ(xs) ≡ r(x) mod xsn,

where deg r(x) < deg σ(xs).

Note that for s = 1, Equation (3) is the classical key equation for single–sequence
shift–register synthesis.

2.2. Overview of the algorithms. Figure 1 illustrates the connection between
Feng and Tzeng’s (E)GEA [4] and the classical (Extended) Euclidean Algorithm
((E)EA). The classical single–sequence shift–register synthesis problem (i.e., on-
ly one sequence is given) can be solved by the (E)EA [13]. Feng and Tzeng’s
generalization to the (E)GEA solves the multi–sequence shift–register synthesis
problem (Problem 2.2) for s ≥ 1 sequences. In general, the EA is used to cal-

Figure 1. Overview of Feng and Tzeng’s algorithms. The two parts
distinguish between the classical single–sequence problem, which can be
solved by the (E)EA, and the multi–sequence problem, which can be
solved by the (E)GEA. The basic algorithm of the (E)EA is the usual
division of two polynomials. For the (E)GEA, the modified and the gen-
eralized division are the equivalent of the division. The EA calculates
the GCD of two polynomials and the EEA additionally puts out coeffi-
cients to obtain a linear combination of the input polynomials in each
step. The EGEA is an extension of the GEA to obtain such coefficients
for each of the s + 1 input polynomials.

culate the Greatest Common Divisor (GCD) of two polynomials A0(x), B0(x). The
EEA additionally calculates polynomials Vj(x) and Uj(x) to obtain a linear com-
bination of the two input polynomials A0(x), B0(x) such that for the remainder
Rj(x) = Vj(x) · A0(x) + Uj(x) · B0(x) holds in each step j of the algorithm. The
basic algorithm of the (E)EA is the usual division algorithm of two polynomials.

The GEA can be seen as the generalization of the EA to s ≥ 1 sequences. The
EGEA extends the GEA by factors in the same way as the EEA extends the EA.

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



670 Alexander Zeh and Antonia Wachter

The EGEA solves Problem 2.2 and returns corresponding linear factors Vj(x
s),

{U (i)
j (xs)}s−1i=0 as the EEA in the single–sequence case. Thereby, the basic algo-

rithms of the EGEA are the so–called modified and generalized division. Note that
Feng and Tzeng called the EGEA Alternative Version of the Generalized Euclidean
Algorithm [4, Section II-D]. For s = 1, the EGEA is the EEA.

For a description of the (E)GEA, we give some definitions in the following and
explain the subalgorithms shown in Figure 1. We focus on the most important parts
and rewrite Feng and Tzeng’s algorithms in a compact form. Additional properties
(e.g. degree constraints) can be found in [4].

Definition 2.1 (Congruence Class [4]). Two polynomials A(x), B(x) ∈ Fq[x] are
equivalent if and only if

degA(x) ≡ degB(x) mod s.

We denote it by A(x) ∼ B(x), otherwise A(x) � B(x). Then, the congruence class
A of degree ν represented by A(x) with degA(x) mod s = ν, is the following set
of polynomials:

A =
{
f(x) ∈ Fq[x]

∣∣ deg f(x) mod s ≡ ν
}
.

Definition 2.2 (Set of Representatives). For an integer s, a set of representatives
B is the following set of all s polynomials {f (i)(x)}s−1i=0 :

(4) B =
{
{f (i)(x)}s−1i=0 ∈ Fq[x]

∣∣ f (i)(x) ∼ xi, ∀i
}
.

The modified division algorithm is the basic subalgorithm of the GEA and is
given in Algorithm 1.

Theorem 2.3 (Modified Division [4]). Given two polynomials A(x) ∼ B(x) in Fq[x]
where degA(x) ≥ degB(x), the modified division (Algorithm 1, ModDA) calculates
unique polynomials Q(xs) and R(x) such that

(5) A(x) = Q(xs) ·B(x) +R(x),

where degR(x) < degB(x) if R(x) ∼ B(x) and degR(x) ≥ degB(x) might be
possible if R(x) � B(x). We call Q(xs) the quotient and R(x) the remainder.

In Line 4 of Algorithm 1, lc(R(x)), lc(B(x)) denotes the leading coefficients of

R(x) and B(x). Since R(x) ∼ B(x), the result of this line is a monomial Q̃(xs)
with the indeterminate xs.

The modified division of two polynomials consists of the first steps of a usual
division of the same polynomials. The iterations of the modified division might
stop earlier, but never later than the iterations of the usual division. For s = 1, the
modified division is the same as the usual division of two polynomials.

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 671

Algorithm 1: Modified Division Algorithm (ModDA)

Input: A(x), B(x), s with A(x) ∼ B(x) and degA(x) ≥ B(x)
Initialize: R(x)← A(x), Q(xs)← 0

1 ν ← degA(x) mod s

2 ν̃ ← ν

3 while ν̃ = ν and degR(x) ≥ degB(x) do

4 Q̃(xs)← lc(R(x))/ lc(B(x)) · xdegR(x)−degB(x) // leading coefficients

5 Q(xs)← Q(xs) + Q̃(xs)

6 R(x)← R(x)− Q̃(xs) ·B(x)

7 ν̃ ← degR(x) mod s // calculate new congruence class

Output: R(x), Q(xs)

In the following, we give an example of this modified division. This example is the
same as the first step of [4, Section II, Example 1], but with more intermediate
steps as explanation.

Example 2.1 (Modified Division). The example considers sequences over F2. Let
the input be: A(x) = x11 + x8 + x2 + 1, B(x) = x5 + x + 1 and let s = 3. We
initialize R(x) ← A(x), Q(xs) ← 0 and ν ← 2. The steps of the algorithm are as
follows.

1. ν = ν̃ = 2 and degR(x) ≥ degB(x), hence we calculate

Q̃(xs)← x6,
Q(xs)← 0 + x6 = x6,
R(x)← R(x)− (x11 + x7 + x6) = x8 + x7 + x6 + x2 + 1,
ν̃ ← 2.

2. ν = ν̃ = 2 and degR(x) ≥ degB(x), hence we calculate

Q̃(xs)← x3,
Q(xs)← x6 + x3,
R(x)← R(x)− (x8 + x4 + x3) = x7 + x6 + x4 + x3 + x2 + 1,
ν̃ ← 1.

3. ν = 2 6= ν̃ = 1 and no further iteration is done.

The output is R(x) = x7 + x6 + x4 + x3 + x2 + 1 and Q(xs) = x6 + x3.

The so–called generalized division applies the modified division repeatedly. The
generalized division (together with the modified division) can be seen as the equiv-
alent in the EGEA to the usual division algorithm in the EEA (see Figure 1).

Theorem 2.4 (Generalized Division [4]). Given s + 1 polynomials A(x), B =
{B(i)(x)}s−1i=0 in Fq[x], where B is an element of the set of representatives (4) and

degA(x) ≥ B(i)(x) ∀i = 0, . . . , s−1. The generalized division (Algorithm 2, GenDA)
calculates s+ 1 polynomials R(x), {Q(i)(xs)}s−1i=0 such that

(6) A(x) =

s−1∑
i=0

Q(i)(xs) ·B(i)(x) +R(x),

where degR(x) < degB(ν)(x), where ν is chosen such that R(x) ∼ B(ν)(x).

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



672 Alexander Zeh and Antonia Wachter

Algorithm 2: Generalized Division Algorithm (GenDA)

Input: A(x), {B(i)
0 (x)}s−1i=0 with degA(x) ≥ degB(i)(x) ∀i = 0, . . . , s− 1

Initialize: R(x)← A(x), {Q(i)(xs)}s−1i=0 ← {0}
s−1
i=0

1 Calculate ν such that R(x) ∼ B(ν)(x)

2 while degR(x) ≥ degB(ν)(x) do

3 R(x), Q̃(xs)← ModDA
(
R(x), B(ν)(x), s

)
// modified division

4 Q(ν)(xs)← Q(ν)(xs) + Q̃(xs)

5 Calculate ν such that R(x) ∼ B(ν)(x) // calculate new congr. class

Output: R(x), {Q(i)(xs)}s−1i=0

For an example of the generalized division see [4, Section II, Example 1].
Based on the previous definitions and algorithms, we now describe the GEA

and extend it to the EGEA, which synthesizes the shortest–length multi–sequence
LFSR. The GEA is defined as follows [4, Equation (8)].

Theorem 2.5 (Generalized Euclidean Algorithm, GEA [4]). Given s + 1 polyno-

mials A0(x), B0 = {B(i)
0 (x)}s−1i=0 in Fq[x], where B0 is an element of the set of

representatives (4), A0(x) ∼ B
(ν0)
0 (x) and degA0(x) ≥ degB

(ν0)
0 (x). The GEA

repeatedly applies the generalized division (Algorithm 2) to obtain s+ 1 polynomials

Rj(x), {Q(i)
j (xs)}s−1i=0 such that

(7) Rj(x) = Aj(x)−
s−1∑
i=0

Q
(i)
j (xs) ·B(i)

j (x),

for j = 0, 1 . . . , where νj is chosen such that Rj(x) ∼ B
(νj)
j (x) and degRj(x) <

degB
(νj)
j (x). To calculate (7) for j ≥ 1, let

Aj(x)← B
(νj−1)
j−1 (x), B

(νj−1)
j ← Rj−1(x), B

(i)
j (x)← B

(i)
j−1(x), ∀i 6= νj .

as long as Rj(x) 6= 0.

An example of the GEA is given in [4, Section II, Example 2].
The EGEA additionally puts out linear factors for each input polynomial.

Theorem 2.6 (Extended Generalized Euclidean Algorithm, EGEA [4]). Given

s + 1 polynomials A0(x), B0 = {B(i)
0 (x)}s−1i=0 , where B0 is an element of the set of

representatives (4), A0(x) ∼ B
(ν0)
0 (x) and degA0(x) ≥ degB

(ν0)
0 (x). The EGEA

repeatedly applies the generalized division (Algorithm 2) to obtain (7) and calculate

polynomials Vj(x) and {U (i)
j (x)}s−1i=0 such that for each j = 0, 1 . . .

(8) Rj(x) = Vj(x
s) ·A0(x) +

s−1∑
i=0

U
(i)
j (xs) ·B(i)

0 (x).

Here, we do not explain in detail how Vj(x
s) and {U (i)

j (xs)}s−1i=0 are calculated,

but we give the connection to the notation from [4]. Let d
(i)
j (xs), uj(x

s) be the

polynomials from [4] that are calculated by [4, Equations (15.2)–(18.2)]. Then, the
connection to our notation is as follows:

(9) Vj(x
s)

def
= d

(ν0)
j (xs), U

(ν0)
j (xs)

def
= uj(x

s), U
(i)
j (xs)

def
= d

(i)
j (xs),∀i 6= ν0.

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 673

In order to use the EGEA for multi–sequence shift–register synthesis of s sequences
of equal length n, let the input of the EGEA be

(10) A0(x)← xsn+ν0 , B
(ν0)
0 (x)← S(x), {B(i)

0 (x)}s−1i=0,i6=ν0 ← {x
sn+i}s−1i=0,i6=ν0 ,

where S(x) is calculated by (2). Let the EGEA run up to the first remainder

where degRj(x) < U
(νj)
j (xs). According to [4, Lemma 4], σ(x)

def
= a · U (νj)

j (x) is

the shortest LFSR that generates each of the s sequences S(i), i = 0, . . . , s − 1
where a is an arbitrary constant. Algorithm 3 shows the EGEA with the breaking
condition for multi–sequence shift–register synthesis (Line 1). An example of the
EGEA applied for multi–sequence shift–register synthesis is shown in [4, Section III,
Example 3].

Algorithm 3: Extended Generalized Euclidean Algorithm (EGEA)

Input: A0(x), {B(i)(x)}s−1i=0 with A0(x) ∼ B(ν0)(x), degA0(x) ≥ degB(ν0)(x)

Initialize: R0(x)← A0(x), U
(ν0)
0 (xs)← 1, j ← 0

1 while degU
(νj)
j (xs) ≤ degRj(x) do // breaking condition

2 Calculate νj such that Rj(x) ∼ B(νj)(x)

3 Rj+1(x),{Q(i)(x)}s−1i=0 ← GenDA
(
Rj(x), {B(i)(x)}s−1i=0

)
// gen. division

4 Calculate Vj(x
s) and {U (i)

j (xs)}s−1i=0 by (9) and [4, Equations (15.2)–(18.2)]

5 j ← j + 1

Output: Vj(x
s), {U (i)

j (xs)}s−1i=0

3. Fast extended generalized Euclidean algorithm

3.1. Idea. In order to apply the DC strategy, we want to break the EGEA into
two halves. To reduce the complexity, we have to find an efficient way to calculate
the modified division (Algorithm 1) and the generalized division (Algorithm 2).
Together with a DC strategy of the EGEA (Algorithm 3), the overall complexity
can be reduced.

The modified division algorithm (Algorithm 1) of two polynomials A(x), B(x)
with A(x) ∼ B(x) and degA(x) ≥ B(x) consists of the first steps of a usual division
of the same two polynomials. The iterations of the modified division either stop
if the remainder is in another congruence class or if the remainder is still in the
same congruence class and degR(x) < degB(x). For an efficient calculation of the
modified division we can truncate the input polynomials as shown in the following.
A similar strategy was used by Aho and Hopcroft [1] to accelerate the EA and by
Blahut [2] to accelerate the EEA. Let us rewrite the input polynomials A(x), B(x)
by:

A(x) = Ã(x) · xk + Â(x),

B(x) = B̃(x) · xk + B̂(x),
(11)

where both deg Â(x),deg B̂(x) < k for some k satisfying

(12) k ≤ 2 degB(x)− degA(x).

If the modified division is applied to both pairs, A(x), B(x) and Ã(x), B̃(x), then
the quotients and some leading coefficients of the remainders coincide.

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



674 Alexander Zeh and Antonia Wachter

Theorem 3.1 (Truncation and the Modified Division). Given two pairs of poly-

nomials A(x) ∼ B(x) in Fq[x], with degA(x) ≥ degB(x) and Ã(x) ∼ B̃(x), with

deg Ã(x) ≥ deg B̃(x). Let us rewrite these polynomials as in (11) and let k satisfy
(12). Let

A(x) = Q(xs) ·B(x) +R(x),

Ã(x) = Q̃(xs) · B̃(x) + R̃(x)

be the results of the modified divisions (Algorithm 1). Then, the quotients and
remainders satisfy

Q(xs) = Q̃(xs),

R(x) = R̃(x) · xk + R̂(x),
(13)

where deg R̂(x) < k + degA(x)− degB(x).

Proof. In [2, Theorem 10.7.1], Blahut shows that (13) is fulfilled when the usual divi-
sion of two polynomials and their truncated polynomials is calculated. The modified
division is a usual division that might stop earlier than the usual division, but never
later. Therefore, at most the same number of coefficients of the input polynomials
influence the result compared to a usual division. Hence, we can truncate (at least)
the same number of coefficients as for a usual division and [2, Theorem 10.7.1] can
also be applied for the modified division.

From Theorem 3.1, if k ≤ 2 degB(x) − degA(x), the quotient polynomial of
the modified division Q(xs) does not depend on the k lower coefficients of A(x)
and B(x), where A(x) ∼ B(x). Similarly, these k lower coefficients affect only the
k + degA(x)− degB(x) lowest coefficients of the remainder R(x).

The following lemma proves that the missing part of the remainder R(x) has
no impact on half of the iterations of the generalized division (and hence of the
EGEA).

Lemma 3.2 (Truncation and the Generalized Division). Let A(x), {B(i)(x)}s−1i=0 be

s+ 1 polynomials with degA(x) ≥ degB(i)(x), ∀i. Let

Pj(x)
def
=

s−1∑
i=0

Q
(i)
j (xs) ·B(i)(x),

P̃j(x)
def
=

s−1∑
i=0

Q̃
(i)
j (xs) · B̃(i)(x),

where Q
(i)
j (xs) and Q̃

(i)
j (xs) are the quotients of the generalized division in step j

for the input polynomials A(x), B(i)(x) and Ã(x), B̃(i)(x), respectively. Then,

(14) Pj(x) = P̃j(x)

for each j where deg R̃j(x) ≥ (degA(x) − k)/2 and R̃j(x) is the remainder in the

generalized division for the input polynomials Ã(x), {B̃(i)(x)}s−1i=0 in step j.

Proof. From [2, Theorem 10.7.3], we know that if deg R̃j(x) ≥ (degA(x) − k)/2,
then the quotients of the usual divisions of both inputs coincide. Since the modified
division stops not later than a usual division, this also holds for the quotients of
the modified division. Hence, the results for the generalized divisions are the same

and Pj(x) = P̃j(x).

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 675

Hence, about half of the iterations can be calculated correctly without knowing
this part. By means of this fact, a fast recursive generalized division algorithm and
fast recursive EGEA can be designed that both use truncated polynomials.

3.2. Algorithms. We use the DC strategy combined with a truncation of the
polynomials to design a fast EGEA.

To apply the DC strategy, we split the EGEA into two halves. The first half
is given in Algorithm 5 (FH-EGEA). As typical for DC algorithms, Algorithm 5
contains two recursive calls with the truncated polynomials (Lines 7 and 21) and
a generalized division in between. The if–conditions are necessary to check if a
truncation is possible. Finally, in Line 24, we calculate the remainder. Note that
we use the symbol to denote that the output of an algorithm is not used further
(see Lines 7, 21 of Algorithm 5).

Algorithm 4 (F-EGEA) is the complete fast EGEA that consists of two halves.
The first degree condition in Line 1 decides whether the problem can immediately
be truncated in Algorithm 5 (FH-EGEA) or if a usual generalized division is done.
If degB(ν)(x) ≤ degA(x)/2, the truncation cannot be applied yet, since k ≤ 0 and
we call the usual generalized division. However, we do not lose the reduction of
complexity, since in this case one normal generalized division divides the size of the
problem in half. The second part of Algorithm 4 has the same form as the original
problem and hence, Algorithm 4 is called recursively in Line 8.

The algorithm terminates if degU (ν)(xs) > degA(x). Since this is a recursive
algorithm, it also needs V (x), {U (i)(x)}s−1i=0 as input. For the initialization, we

hand over V (x) = 0, U (ν)(x) = 1, {U (i)(x)}s−1i=0,i6=ν = {0}s−1i=0,i6=ν . In the recursions,
the current values are used. Note that in contrast to the original algorithms from
Section 2, the polynomials do not have the index j since it changes during the
recursive calls.

Algorithm 4: Fast EGEA (F-EGEA)

Input: A0(x), {B(i)(x)}s−1i=0 with A(x) ∼ B(ν0)(x), degA(x) ≥ degB(ν0)(x),

V (xs), {U (i)(xs)}s−1i=0

Initialize: A(x)← A0(x), {Q(i)(x)}s−1i=0 ← {0}
s−1
i=0 , k ← bdeg(A(x))/2c, ν

where A(x) ∼ B(ν)(x)

1 if degB(ν)(x) ≤ k or degA(x) ≤ degB(ν)(x) then

2 A(x), {Q(i)(x)}s−1i=0 ← GenDA
(
A(x), {B(i)(x)}s−1i=0

)
3 else
4 A(x), {Q(i)(x)}s−1i=0 ← FH-EGEA

(
A(x), {B(i)(x)}s−1i=0

)
5 Calculate V (xs) and {U (i)(xs)}s−1i=0 by (9), [4, Equations (15.2)–(18.2)]

6 Calculate ν where A(x) ∼ B(ν)(x)

7 if degU (ν)(xs) ≤ degA(x) then

8 A(x), V (x), {U (i)(x)}s−1i=0 ← F-EGEA
(
A(x), {B(i)(x)}s−1i=0 , V (x), {U (i)(x)}s−1i=0

)
Output: A(x), V (x), {U (i)(x)}s−1i=0

Remark 1 (Truncation in the Recursions). The choice of k = b 12 degA(x)c is
motivated by the fact that a Divide and Conquer approach requires that the problem
is halved. We now explain how this choice of k agrees with Theorem 3.1. In this
remark, we index the polynomials with the recursion level, e.g. Aj(x). Let the

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



676 Alexander Zeh and Antonia Wachter

current recursion level of Algorithm FH-EGEA be j = 0 and k = b 12 degA0(x)c. Let

the first if-condition be fulfilled, i.e., degB
(ν)
0 (x) ≤ k or degA0(x) ≤ degB(ν)(x),

then R0(x) = A0(x) and {Q(i)
0 (x)}s−1i=0 = {0}s−1i=0 (see Line 2) are returned. One

level higher (where j = 1), we calculate in Line 8 of Algorithm FH-EGEA A1(x) ←
A1(x) and we know from the lower recursion level that degB0(x) = degB1(x) −
degA1(x)/2 ≤ degA0(x)/2 = degA1(x)/4. Hence, B1(x) ≤ 3/4 degA1(x). Using
this, k = degA1(x)/2 ≤ 2B1(x) − degA1(x) is true and due to Theorem 3.1, the
generalized division GenDA can be applied (see Line 12).

Algorithm 5: Fast Half EGEA (FH-EGEA)

Input: A0(x), {B(i)(x)}s−1i=0

Initialize: A(x)← A0(x), {Q(i)(x)}s−1i=0 ← {0}
s−1
i=0 , k ← bdeg(A(x))/2c, ν

where A(x) ∼ B(ν)(x)

1 if degB(ν)(x) ≤ k or degA(x) ≤ degB(ν)(x) then // no trunc. possible

2 R(x)← A(x)

3 else

4 Ã(x)← (A(x)− (A(x) mod xk)) · x−k // truncation

5 for i = 0 to s− 1 do

6 B̃(i)(x)← (B(i)(x)− (B(i)(x) mod xk)) · x−k

7 , {Q(i)(x)}s−1i=0 ← FH-EGEA
(
Ã(x), {B̃(i)(x)}s−1i=0

)
// 1st recursion

8 A(x)← A(x)−
∑s−1
i=0 Q

(i)(x) · B̃(i)(x)

9 Calculate ν such that A(x) ∼ B(ν)(x)

10 k ← bdeg(A(x))/2c

11 if degA(x) > degB(ν)(x) then

12 A(x), {Q̃(i)(x)}s−1i=0 ← GenDA
(
A(x), {B(i)(x)}s−1i=0

)
// gen. division

13 for i = 0 to s− 1 do

14 Q(i)(x)← Q(i)(x) + Q̃(i)(x)

15 Calculate ν such that A(x) ∼ B(ν)(x)

16 k ← bdeg(A(x))/2c

17 if degA(x) > degB(ν)(x) > k then

18 Ã(x)← (A(x)− (A(x) mod xk)) · x−k // truncation

19 for i = 0 to s− 1 do

20 B̃(i)(x)← (B(i)(x)− (B(i)(x) mod xk))x−k

21 , {Q̃(i)(x)}s−1i=0 ← FH-EGEA
(
Ã(x), {B̃(i)(x)}s−1i=0

)
// 2nd rec.

22 for i = 0 to s− 1 do

23 Q(i)(x)← Q(i)(x) + Q̃(i)(x)

24 R(x)← A0(x)−
∑s−1
i=0 Q

(i)(x) ·B(i)(x) // calculate remainder

Output: R(x), {Q(i)(x)}s−1i=0

4. Complexity analysis

4.1. Complexity of the EGEA. Feng and Tzeng did not analyze the complexity

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 677

of the EGEA in [4]. Based on the idea of Lipson [10, Chapter 7] for the complex-
ity analysis of the EEA, we give a bound on the time complexity of the EGEA
(Definition 2.6).

We count the number of multiplications in the finite field Fq of order q. Let

N ≥ degA0(x) ≥ deg{B(i)
0 (x)}s−1i=0 . Let us consider the GEA first. In the general

case, the GEA runs up to Rj(x) = 0 (see (7)). For simplicity, we assume that
in every jth step the degree of the polynomial Rj(x) (see (7)) decreases by one.
Consider Equation (7) of Definition 2.5. A simple division has the same complexity
as a multiplication of two polynomials with some scalar factor. The number of
operations Tj in Fq for the jth step of the GEA is:

Tj = c2 ·
1

s

s−1∑
i=0

degQ
(i)
j (xs) · degB

(i)
j (x),

where the factor 1/s comes from the “sparsity” (only every sth coefficient is con-

sidered) of the polynomials Q
(i)
j (xs). Summing up over all N iterations and since

degB
(i)
j (x) ≤ N ∀i, j, we obtain:

T =

N∑
j=1

Tj ≤ c
1

s

N∑
j=1

s−1∑
i=0

degQ
(i)
j (xs) · degB

(i)
j (x),

≤ c1

s
N

N∑
j=1

s−1∑
i=0

degQ
(i)
j (xs).

(15)

We know from [4, Equations (8.3), (8.4)] that:

degQ
(νj)
j (xs) = degAj(x)− degB

(νj)
j (x),

degQ
(i)
j (xs) < degAj(x)− degB

(i)
j (x) ∀i 6= νj ,

where degRj(x) ∼ B(νj)
j (x). Hence, we have:

N∑
j=1

s−1∑
i=0

degQ
(i)
j (xs) ≤

N∑
j=1

s−1∑
i=0

(degAj(x)− degB
(i)
j (x))

≤ sN.

As we assume that the degree of the remainder decreases by one, we obtain T ≤ cN2.
The additional calculations to extend the GEA to the EGEA do not affect this
bound on the time complexity and we conclude with the following theorem for the
EGEA.

Theorem 4.1 (Complexity of EGEA, Algorithm 3). For s+ 1 polynomials A0(x),

{B(i)
0 (x)}s−1i=0 ∈ Fq[x] with degree smaller than or equal to N , the EGEA (Algo-

rithm 3) of Feng and Tzeng has time complexity O(N2), assuming that coefficient
operations take constant O(1) time.

If Algorithm 3 is applied to Problem 2.2 at most n iterations (instead of sn) have
to be performed. Therefore, we have the following theorem.

Theorem 4.2 (Complexity of Algorithm 3 applied to Multi–Sequence Shift–Reg-
ister Synthesis). Let the s + 1 polynomials S(x) and {xsn+i}s−1i=0 in Fq[x] be given
for the fast EGEA as stated in Problem 2.2. Then the EGEA of Feng and Tzeng
solves Problem 2.2 with time complexity O(sn2).

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



678 Alexander Zeh and Antonia Wachter

This is equivalent to the time complexity of Feng and Tzeng’s generalized
Berlekamp-Massey [5] approach.

4.2. Complexity of the fast EGEA. Throughout this section, let MD(N)
denote the complexity of a modified division, where N = degA(x) ≥ degB(x).

Let us first analyze the complexity of the fast half EGEA, Algorithm 5 (FH-EGEA).
Let N ≥ degA0(x) and let TFHEGEA(N) denote the maximum running time of Al-
gorithm 5. The complexity of the splitting operations and the additions is negligible.
The generalized division can be implemented by (at most) s parallel modified di-
visions, i.e., it requires c1 · s · MD(N) operations, for a constant c1. In addition,
Algorithm 5 includes two recursive calls with half size. Hence, TFHEGEA(N) is
upper bounded by:

TFHEGEA(N) ≤ 2 · TFHEGEA
(
N

2

)
+ c1 · s · MD(N).

It is well–known that this linear recurrence relation implies (see e.g. [6, Lemma 8.2]):

TFHEGEA(N) ≤ c2 · s · MD(N) logN,

for some constant c2. Thus, Algorithm 5 requires O(s · MD(N) logN) operations
in Fq.

Based on the complexity of Algorithm 5, we can analyze the complexity of Al-
gorithm 4 (F-EGEA).

Theorem 4.3 (Complexity of fast EGEA, Algorithm 4). For s + 1 polynomials

A0(x), {B(i)
0 (x)}s−1i=0 ∈ Fq[x] with degree smaller than or equal to N , the fast EGEA

(Algorithm 4, F-EGEA) has a time complexity O(s ·MD(N) logN) ≤ O(sN log2N),
assuming that coefficient operations take constant O(1) time.

Proof. Let TFEGEA(N) denote the maximum running time of Algorithm 4. In the
first if–condition, the algorithm includes either a generalized division with com-
plexity s · MD(N) or a call of Algorithm 5 with complexity O(s · MD(N) logN).
Afterwards, there are additions with complexityO(N) to calculated the polynomials
V (xs), {U (i)(xs)}s−1i=0 and a recursive call with half the size.

Since TFHEGEA(N) = O(s ·MD(N) logN) > s ·MD(N) > O(N), TFEGEA(N)
is upper bounded by:

TFEGEA(N) ≤ TFHEGEA(N) + TFEGEA
(
N

2

)
.

Using [6, Lemma 8.2], this inequality can be upper bounded by:

TFEGEA(N) ≤ c3 · TFHEGEA(N) ≤ c4 · s · MD(N) logN,

and Algorithm 4 (F-EGEA) requires O(s · MD(N) logN) operations in Fq if N =
degA0(x). With worst case assumptions, MD(N) has the same complexity as
a usual division of two polynomials of length N . Such a usual division can be
done with the complexity of multiplying two polynomials of length N [6]. Hence,
using a fast Fourier transform for polynomial multiplication, we have MD(N) ≤
O(N logN) and

TFEGEA(N) ≤ O(sN log2N).

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680



Fast multi–sequence shift–register synthesis 679

For multi–sequence shift–register synthesis of equal length, each sequence has
length n and the overall length of the sequences is N = sn. With worst case
assumptions, we have MD(N) =MD(sn) ≤ O(N logN) = O(sn log(sn)).

Thus, the complexity of the fast EGEA is given by the following theorem.

Theorem 4.4 (Complexity of fast EGEA applied to Multi–Sequence Shift–Register
Synthesis). Let the s+ 1 polynomials S(x) and {xsn+i}s−1i=0 in Fq[x] be given for the
fast EGEA as stated in Problem 2.2. Then the fast EGEA (Algorithm 4, F-EGEA)
with the input polynomials as in (10), solves Problem 2.2 with time complexity

TFEGEA(N) ≤ O(sN log2N) ≤ O(s2n log2(sn))

This complexity is subquadratic, i.e., for large sequence lengths (and as usual,
small numbers of s), the complexity is reduced by our accelerated algorithms.

5. Conclusion

We investigated the multi–sequence shift–register synthesis problem for sequences
of equal length, which can be solved by Feng and Tzeng’s EGEA. The complexity
of the EGEA was analyzed and we reduced the time complexity to subquadratic
complexity by application of a DC strategy.

Acknowledgement

The authors thank Vladimir Sidorenko and the reviewers for their valuable com-
ments and suggestions.

References

[1] A. V. Aho and J. E. Hopcroft, “The Design and Analysis of Computer Algorithms,” Addison-

Wesley Longman Publishing Co., 1974.
[2] R. E. Blahut, “Fast Algorithms for Digital Signal Processing,” Addison-Wesley, 1985.

[3] D. Bleichenbacher, A. Kiayias and M. Yung, Decoding interleaved Reed–Solomon codes over
noisy channels, Theor. Comput. Sci., 379 (2007), 348–360.

[4] G. L. Feng and K. K. Tzeng, A generalized Euclidean algorithm for multisequence shift–

register synthesis, IEEE Trans. Inform. Theory, 35 (1989), 584–594.
[5] G. L. Feng and K. K. Tzeng, A generalization of the Berlekamp–Massey algorithm for mul-

tisequence shift–register synthesis with applications to decoding cyclic codes, IEEE Trans.
Inform. Theory, 37 (1991), 1274–1287.

[6] J. Gathen and J. Gerhard, “Modern Computer Algebra”, Cambridge University Press, 2003.

[7] C. Hartmann, Decoding beyond the BCH bound , IEEE Trans. Inform. Theory, 18 (1972),

441–444.
[8] V. Y. Krachkovsky, Reed–Solomon codes for correcting phased error bursts, IEEE Trans.

Inform. Theory, 49 (2003), 2975–2984.
[9] V. Y. Krachkovsky and Y. X. Lee, Decoding for iterative Reed–Solomon coding schemes,

IEEE Trans. Magnetics, 33 (1997), 2740–2742.

[10] J. D. Lipson, “Elements of Algebra and Algebraic Computing,” Addison-Wesley Educational
Publishers Inc, 1981.

[11] C. Roos, A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng

bound , J. Combin. Theory Ser. A, 33 (1982), 229–232.
[12] G. Schmidt, V. R. Sidorenko and M. Bossert, Syndrome decoding of Reed–Solomon codes

beyond half the minimum distance based on shift–register synthesis, IEEE Trans. Inform.

Theory, 56 (2010), 5245–5252.
[13] Y. Sugiyama, M. Kasahara, S. Hirasawa and T. Namekawa, A method for solving key equation

for decoding Goppa codes, Inform. Control, 27 (1975), 87–99.

[14] L. Wang, Euclidean modules and multisequence synthesis, in “Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes” (eds. S. Boztaş and I.E. Shparlinski), Springer,

Berlin, Heidelberg, (2001), 239–248.

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680

http://www.ams.org/mathscinet-getitem?mr=MR2329205&return=pdf
http://dx.doi.org/10.1016/j.tcs.2007.02.043
http://dx.doi.org/10.1016/j.tcs.2007.02.043
http://www.ams.org/mathscinet-getitem?mr=MR1022080&return=pdf
http://dx.doi.org/10.1109/18.30981
http://dx.doi.org/10.1109/18.30981
http://www.ams.org/mathscinet-getitem?mr=MR1136665&return=pdf
http://dx.doi.org/10.1109/18.133246
http://dx.doi.org/10.1109/18.133246
http://www.ams.org/mathscinet-getitem?mr=MR0342263&return=pdf
http://dx.doi.org/10.1109/TIT.1972.1054824
http://www.ams.org/mathscinet-getitem?mr=MR2027574&return=pdf
http://dx.doi.org/10.1109/TIT.2003.819333
http://dx.doi.org/10.1109/20.617715
http://www.ams.org/mathscinet-getitem?mr=MR0637467&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0677579&return=pdf
http://dx.doi.org/10.1016/0097-3165(82)90014-0
http://dx.doi.org/10.1016/0097-3165(82)90014-0
http://www.ams.org/mathscinet-getitem?mr=MR2808676&return=pdf
http://dx.doi.org/10.1109/TIT.2010.2060130
http://dx.doi.org/10.1109/TIT.2010.2060130
http://www.ams.org/mathscinet-getitem?mr=MR0381839&return=pdf
http://dx.doi.org/10.1016/S0019-9958(75)90090-X
http://dx.doi.org/10.1016/S0019-9958(75)90090-X
http://www.ams.org/mathscinet-getitem?mr=MR1913470&return=pdf


680 Alexander Zeh and Antonia Wachter

[15] A. Zeh and W. Li, Decoding Reed–Solomon codes up to the Sudan radius with the Euclidean
algorithm, in “Proceedings of the 2010 International Symposium on Information Theory and

its Applications (ISITA),” Taichung, Taiwan, (2010), 986–990.

Received November 2010; revised June 2011.

E-mail address: Alexander.Zeh@uni-ulm.de
E-mail address: Antonia.Wachter@uni-ulm.de

Advances in Mathematics of Communications Volume 5, No. 4 (2011), 667–680

http://dx.doi.org/10.1109/ISITA.2010.5649520
http://dx.doi.org/10.1109/ISITA.2010.5649520

	1. Introduction
	2. The (extended) generalized Euclidean algorithm
	2.1. Problem statement
	2.2. Overview of the algorithms

	3. Fast extended generalized Euclidean algorithm
	3.1. Idea
	3.2. Algorithms

	4. Complexity analysis
	4.1. Complexity of the EGEA
	4.2. Complexity of the fast EGEA

	5. Conclusion
	Acknowledgement
	References

