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Decoding Reed–Solomon Codes up to the Sudan
Radius with the Euclidean Algorithm

Alexander Zeh and Wenhui Li
Department of Telecommunications and Applied Information Theory

University of Ulm, Germany
{alexander.zeh,wenhui.li}@uni-ulm.de

Abstract—We modify the Euclidean algorithm of Feng and
Tzeng to decode Reed–Solomon (RS) codes up to the Sudan
radius. The basic steps are the virtual extension to an Interleaved
RS code and the reformulation of the multi–sequence shift–
register problem of varying length to a multi–sequence problem
of equal length. We prove the reformulation and analyze the
complexity of our new decoding approach. Furthermore, the ex-
tended key equation, that describes the multi–sequence problem,
is derived in an alternative polynomial way.

Index Terms—Reed–Solomon (RS) codes, Interleaved Reed–
Solomon (IRS) codes, Euclidean algorithm, Shift–Register syn-
thesis

I. INTRODUCTION

The Euclidean algorithm (EA) can be used to decode RS
codes up to half the minimum distance. The proof was given
by Sugiyama, Kasahara, Hirasawa and Namekawa (SKHN,[1])
in 1975 and the equivalence to the Berlekamp–Massey (BM,
[2]) algorithm, synthesizing the shortest linear feedback shift–
register (LFSR) generating one sequence S, is widely ac-
cepted.
Feng and Tzeng (FT) generalized the SKHN approach in
1989 [3] and the BM algorithm in 1991 [4] to multi-
ple sequences. Both generalizations synthesize the short-
est linear feedback shift–register generating of s sequences
S(0),S(1), . . . ,S(s−1) of equal length N .
While in [5] a modification of the 1991–Feng–Tzeng approach
for the case of many sequences with different lengths was
given, the adaption of the Euclidean–based algorithm (1989–
FT) is still missing. Feng–Tzeng’s Euclidean algorithm was
deduced by Wang [6] through the extension of the concept of
a Euclidean ring to arbitrary modules.
In our contribution we use FT’s Euclidean algorithm to de-
code Interleaved Reed–Solomon (IRS) codes ([7], [8]), more
specifically a virtual extension to an IRS code that has an
equivalent error–correcting capability as Sudan’s list–decoding
algorithm [9], [10].
The concepts of IRS codes and FT’s Euclidean algorithm are
explained in the following section. For the latter one we use
a new alternative derivation of the extended key equation. We
recall the basic principle of the virtual extension to an IRS
code and the corresponding decoding problem in Section III.
The reformulation of the multi–sequence problem of varying
length is shown and proved in Section IV. In Section V
we analyze the complexity for our new approach fitted to

the virtual extension and outline the reformulation for the
more general case in Section VI. Section VII concludes our
contribution.

II. FENG–TZENG’S EUCLIDEAN ALGORITHM FOR
HOMOGENEOUS REED–SOLOMON CODES

A. Basic Idea of Interleaved RS Codes

Let α1, α2, . . . , αn be the nonzero distinct elements (code–
locators) of the finite field F = GF (q). L = {α1, α2, . . . , αn}
is the set of the code–locators. Denote

f(L) = (f(α1), f(α2), . . . , f(αn))

for a given univariate polynomial f(x) ∈ F[x].
A Reed–Solomon code RS(n, k) over a field F with n < q
is given by

RS(n, k) = {c = f(L) : f(x) ∈ Fk[x]}, (1)

where Fk[x] stands for the set of all univariate polynomials
with degree less than k and the indeterminate x.
RS codes are known to be maximum–distance separable
(MDS), i.e., their minimum Hamming distance is d = n−k+1.
Let r = (r1, r2, . . . , rn) be the received word and r(x) =∑n

i=1 rix
i−1 the corresponding polynomial. With the syn-

dromes Si = r(αi) ∀i = 1, . . . , n− k (and the corresponding
syndrome polynomial S(x) =

∑n−k
i=1 Six

i−1) we can deter-
mine the error–locator–polynomial (ELP)

σ(x) =
∏

j∈J
(x− αj), (2)

where J is the set of error locations. The Key Equation (KE):

S(x) · σ(x) ≡ Ω(x) mod xn−k, (3)

where degΩ(x) < n − k − τ gives us the polynomial
relation of the ELP and the syndrome polynomial. It is well–
known that determining the ELP is equivalent to the prob-
lem of synthesizing the shortest linear feedback shift–register
(LFSR) σ(x) that generates the given syndrome sequence
S = (S1, S2, . . . , Sn−k).

Definition 1 (Interleaved Reed–Solomon Code) Let the set
K:

K = {k1, k2, . . . , ks},
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consist of s elements of F, where all ki < n.
An Interleaved Reed–Solomon code IRS(n,K, s) of order s
is given by

IRS(n,K, s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
C =

⎛
⎜⎜⎜⎝

f1(L)
f2(L)

...
fs(L)

⎞
⎟⎟⎟⎠ : fi ∈ Fki

[x]

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

where i = 1, . . . , s. If ki = k ∀i = 1, . . . , s the IRS code is
called homogeneous. The burst–error–correcting capability of
a heterogeneous IRS code is given by

τIRS =
s

s+ 1

(
n− 1

s

s∑

i=1

ki

)
. (5)

B. Generalized Key Equation for Homogeneous IRS Codes
Revisited

In this section we derive a “concatenated” key equation for
homogeneous IRS codes in a polynomial way. It completes
the approach of Feng and Tzeng [3, Section 1]. For a ho-
mogeneous IRS code IRS(n,K, s), where we assume that
burst–errors occur, we can formulate s key equations of the
following form:

S(i)(x)σ(x) + C(i)(x)xn−k = Ω(i)(x) ∀i = 1, . . . , s, (6)

with the same ELP σ(x).
Let us spread and shift to:

xi−1S(i)(xs)σ(xs) + xs(n−k)+i−1C(i)(xs) = xi−1Ω(i)(xs),
(7)

for all i = 1, . . . , s. Adding the s equations leads to:

σ(xs)

(
s∑

i=1

S(i)(xs)xi−1

)

︸ ︷︷ ︸
S̃(x)

≡ Ω̃(x) mod xs(n−k), (8)

where deg Ω̃(x) < s(n− k − τ).

C. Basic Principle of FT’s Euclidean Algorithm

First of all let’s state the problem based on Equation (8)
and then define a modified division algorithm.

Problem 1 (FT’s Euclidean algorithm) Given (s+1) poly-
nomials S̃(x) and xs(n−k)+i ∀i = 0, 1, . . . , s − 1, then we
search two polynomials σ(x), Ω̃(x) such that (8) holds, where
deg Ω̃(x) < deg σ(xs).

Definition 2 (Congruence Class) Let a(x), b(x) be two
polynomials over Fn[x], if deg a(x) mod s = deg b(x)
mod s, then a(x) is congruent to b(x), denoted as a(x) ∼
b(x). A full congruence class consists of s congruence classes,
i.e., [xi], for i = 0, 1, . . . , s− 1.

The polynomials S̃(x) and xs(n−k)+i in (8) can be regarded as
rj(x) and b

(i)
j (x) when j = 0. b(i)j (x), i = 0, 1, . . . , s− 1 has

a full congruence class of s. Thus one of them, say b
(vj)
j (x),

where vj = deg rj mod s, must be congruent to rj(x),
namely, b

(vj)
j (x) ∼ rj(x). Additionally, if deg b

(vj)
j (x) ≥

deg rj(x), then the unique polynomials q(xs) �= 0 and R(x)
exit such that

b
(vj)
j (x) = q(xs)rj(x) +R(x).

The division stops when degR(x) < deg rj(x) if R(x) ∼
rj(x) or when R(x) � rj(x) for the first time. This is what
we called modified division algorithm proceeded between two
polynomials. By repeatedly applying the modified division
algorithm, a generalized division algorithm [3, Section 2],
is derived. It is based on the division of more than one
polynomial.
Given (s+ 1) polynomials b

(i)
j (x) for i = 0, 1, . . . , s− 1 and

rj(x), we consider the generalized division algorithm to obtain

b
(vj)
j (x) = p̃j+1(x

s)rj(x) +

s−1∑

i=0
i �=vj

q̃
(i)
j+1(x

s)b
(i)
j (x) + rj+1(x).

It can be rewritten as

rj+1(x) = pj+1(x
s)rj(x) +

s−1∑

i=0

q
(i)
j+1(x

s)b
(i)
j (x), (9)

where

pj+1(x
s) = −p̃j+1(x

s),

q
(i)
j+1(x

s) = −q̃(i)j+1(x
s), for i �= vj ,

q
(vj)
j+1(x

s) = 1.

For j ≥ 1, we have b
(vj)
j+1(x) = rj(x), b

(i)
j+1(x) = b

(i)
j (x),∀i �=

vj for updating since b
(vj)
j (x) ∼ rj(x) and deg b

(vj)
j (x) >

deg rj(x). At each update step,

rj(x) = Uj(x
s)r0(x) mod xs(n−k) (10)

fulfills, where

Uj+1(x) = pj+1(x)Uj(x) +

s−1∑

i=0

q
(i)
j+1(x)V

(i)
j (x).

The update rule is V
(vj)
j+1 (x) = Uj(x), V

(i)
j+1(x) =

V
(i)
j (x),∀i �= vj [3, Section 3]. U0(x) and V

(i)
0 (x) are initial-

ized as 1 and 0 respectively. If deg rj−1(x) ≥ degUj−1(x
s)

and deg rj(x) < degUj(x
s), let k = j, Uk(x) = σ(x).

An example is considered in the appendix.
Note that for s = 1, FT’s Euclidean algorithm becomes the
classic Euclidean algorithm and the modified division based
on the congruence classes simplifies to the normal division
with only two polynomials.

III. VIRTUAL EXTENSION TO AN IRS CODE

A. Basic Principle

We shortly describe the Schmidt–Sidorenko–Bossert
scheme [11]. The basic idea is the virtual extension of a RS
code to an Interleaved Reed–Solomon (IRS) code. This IRS
code is denoted by VIRS(n, k, s), where n and k are the
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parameters of the original RS(n, k) code. The parameter s
denotes the order of interleaving of the heterogeneous IRS
code.
Let p(x) =

∑n−1
j=0 pjx

j be a univariate polynomial in Fn[x].
Then p<i>(x) ∈ Fn[x] represents the polynomial

p<i>(x) =

n−1∑

j=0

pijx
j ,

in which each coefficient is raised to the power i. The virtually
extended IRS code is defined as follows.

Definition 3 (Virtual Extension to an IRS code) Let
RS(n, k) be a Reed–Solomon code with the evaluation
polynomial f(x) as defined in (1). The virtually extended
Interleaved Reed–Solomon code VIRS(n, k, s) of order s is
given by VIRS(n, k, s) =

⎛
⎜⎜⎜⎝

c<1>

c<2>

...
c<s>

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f(L) : f(x) ∈ Fk[x]
f2(L) : f2(x) ∈ F2(k−1)+1[x]

...
fs(L) : fs(x) ∈ Fs(k−1)+1[x]

⎞
⎟⎟⎟⎠ . (11)

Clearly, the parameter s must satisfy s(k − 1) + 1 ≤ n.
The scheme is restricted to low–rate Reed–Solomon codes
and allows to decode beyond half the minimum distance. The
virtual extension of order 3 is illustrated for an RS(31, 4)
code in Figure 1, where the information length of the i-th

Fig. 1. Illustration of the virtual extension VIRS(31, 4, 3) of an RS(31, 4)
code with interleaving factor s = 3.

codeword is ki = i(k − 1) + 1. The decoding procedure
for the virtual extension of an RS code is as follows: the
received word r = c + e is raised element per element
(r<2>, r<3>, . . . , r<s>) and the mentioned heterogeneous IRS
code is obtained. Clearly, through the virtual extension, the
error is also ”extended” and every single received word r<i>

is at the same position erroneous (virtual burst error). Due to
the additional equations, the decoding radius is increased to:

τ =

⌊
sn−

(
s+1
2

)
(k − 1)− s

s+ 1

⌋
. (12)

The radius τ is greater than 	(n − k)/2
 for Reed–Solomon
codes with code rate R < 1/3. (For further details of this
scheme, see [11]). We remark that the rate–restriction and the

increased decoding radius are similar to the original Sudan
algorithm [9], [10]. Figure 2 illustrates the decoding procedure

Fig. 2. The multi–sequence shift–register problem.

as a multi–sequence shift–register problem. If s = 1 the BM or
the SKHN algorithm can be used to solve the single–sequence
problem.

IV. SEQUENCE SHIFTING FOR THE VIRTUAL EXTENSION

In this section, we investigate the decoding problem for the
virtual extension to an IRS code. The multi–sequence problem
of varying length is reformulated and the reformulation is
proved.

Problem 2 (Multi–sequence equal length) Let s sequences
S(h) = (S

(h)
0 , S

(h)
1 , . . . , S

(h)
N−1), h = 0, . . . , s − 1 of the same

length N be defined over F. Then we search the connection
polynomial σ(x) = σ0 + σ1x+ · · ·+ σ�−1x

�−1 + x� with the
smallest degree � such that:

S
(h)
i + σ�−1 · S(h)

i−1 + · · ·+ σ0 · S(h)
i−� = 0 (13)

for all i = �, � + 1, . . . , N − 1 and for all h = 0, . . . , s − 1
holds.

Problem 3 (Multi–sequence varying length) Let s sequen-
ces S(h) = (S

(h)
0 , S

(h)
1 , . . . , S

(h)
Nh−1) of different lengths

N0, N1, . . . , Ns−1 be defined over F. Then we search the
connection polynomial σ(x) = σ0+σ1x+· · ·+σ�−1x

�−1+x�

with smallest degree � such that:

S
(h)
i + σ�−1 · S(h)

i−1 + · · ·+ σ0 · S(h)
i−� = 0 (14)

for all i = �, � + 1, . . . , Nh − 1 and for all h = 0, . . . , s − 1
holds.

In the following we assume that that the minimal length � is
smaller than or equal to Nmin = mini Ni.
From the s sequences S(0),S(1), . . . ,S(s−1) of Problem 3 with
different lengths we define

s̃ = s+

s−1∑

i=0

(Ni −Nmin) (15)

sequences S̃(h,j) with the same length Nmin in the following
manner:

S̃(h,j) = (S
(h)
j , S

(h)
j+1, . . . , S

(h)
j+Nmin−1)

= (S̃
(h,j)
0 , S̃

(h,j)
1 , . . . , S̃

(h,j)
Nmin−1) (16)

for all h = 0, . . . , s− 1 and j = 0, . . . , Nh −Nmin.
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Proposition 1 (Reformulated multi–sequence problem) In
the following we assume that the degree � of the connection
polynomial σ(x) is smaller than or equal to Nmin. Given the
s̃ sequences S̃(0,0), . . . , S̃(s−1,Ns−1−Nmin) with equal length
Nmin as defined in Equation (16). Then the connection
polynomial σ(x) for these sequences solving Problem 2 is
always the same as the one solving Problem 3 for the original
s sequences S(0), . . . ,S(s−1).

Proof: Clearly, we have the following relation from
Definition (16):

S̃
(h,j)
i = S

(h)
i+j , (17)

for all i+ j = 0, 1, . . . , Nh − 1.
For the sequences S̃(h,0), S̃(h,1), . . . , S̃(h,Nh−Nmin) and for a
connection polynomial σ(x) = σ0+σ1x+ · · ·+σ�x

� (σ� = 1)
we have the following relation after solving Problem 2:

S̃
(h,j)
i + σ�−1 · S̃(h,j)

i−1 + · · ·+ σ0 · S̃(h,j)
i−� = 0, (18)

for all i = �, . . . , Nmin − 1 and j = 0, . . . , Nh − Nmin and
h = 0, . . . , s− 1. With Equation (17) we can write:

S(h)
ι + σ�−1 · S(h)

ι−1 + · · ·+ σ0 · S(h)
ι−� = 0, (19)

for all ι = �, . . . , Nh − 1 and h = 0, . . . , s − 1. That is
the original multi–sequence shift–register problem of varying
length.
Clearly, the complexity of solving the equivalent multi–
sequence problem of equal length will be higher. We investi-
gate it for the special case of the virtual extension to an IRS
code in the following section.

V. COMPLEXITY ANALYSIS FOR THE VIRTUAL EXTENSION

Feng and Tzeng did not analyze the time complexity in their
contribution [3]. We assume a time complexity for s sequences
with the same length N of O

(
sN2

)
.

For the virtual extension to an IRS code of Section III with
interleaving factor s, we obtain s sequences with length Ni =
n− k − (i− 1)(k − 1) ∀i = 1, . . . , s.
With the reformulation of the previous section, the length of
all new sequences equals the length of the shortest one and is

Nmin = Ns = n− k − (s− 1)(k − 1). (20)

Let us calculate the number of new sequences s̃ of equal length
Nmin more explicitly:

s̃ = s+
s∑

i=1

(Ni −Ns)

= s+

s−1∑

i=1

(s− 1)(k − 1)− (i− 1)(k − 1)

= s+

(
s

2

)
(k − 1). (21)

The overall complexity of the IRS–scheme is O
(
s̃N2

min

)
, that

is:

= O
(
(s+

(
s

2

)
(k − 1)) · (n− k − (s− 1)(k − 1))2

)

≈ O
(
s2k · (n− k)2

)
. (22)

VI. GENERALIZED SEQUENCE SHIFTING

Let us again consider the general multi–sequence shift–
register problem of varying length. In Section IV we assumed

Algorithm 1: Multi–Sequence Shift–Register Analysis of
Varying Length

Input: Sequences S(0),S(1), . . . ,S(m−1) of length
N0 ≥ N1 ≥ · · · ≥ Nm−1

Output: Shortest Shift–Register σ(x) of degree �

generating S(0),S(1), . . . ,S(m−1)

Initialize:
Arbitrary Shift–Register σ(x) of degree Nm−1;

Integers
(
N
κ

)
←

(
Nm−1

0

)
;

while (N == Nm−1−κ) do1

σ(x)← Shift(S(0),S(1), . . . ,S(m−1−κ));2

N ← deg σ(x);3

κ← κ+ 1;4

that the degree of connection polynomial σ(x) (and so the
length of the generating shift–register) is guaranteed to be
smaller than or equal to the shortest sequence of Problem 3.
This holds for the virtually extended RS code. Nevertheless,
the more general case needs a small modification.
Algorithm 1 is our proposed method. It is well–known that for
a given shift–register σ(x) with degree � solving Problem 3
any sequence of length smaller than or equal to � can be

Algorithm 2: Shift(S(0),S(1), . . . ,S(m−1))

Input: Sequences S(0),S(1), . . . ,S(m−1) of length
N0 ≥ N1 ≥ · · · ≥ Nm−1

Output: Intermediate Shift–Register σ(x)

Initialize: Calculate m̃ according to Equation (15)

for i = 0 to m̃− 1 do1

Initialize S̃(i) according to Equation (16);2

σ(x)← ShiftEqual(S̃(0), S̃(1), . . . , S̃(m̃−1));3

added to the problem set and will be generated by the given
σ(x). So if the degree of the connection polynomial σ(x) is
equal to the length of the actual smallest sequence, returned
by Algorithm 2, then we restart the generation without taking
into account the shortest sequence.
Note, any algorithm solving a multi–sequence shift–register
problem can be used as ShiftEqual.

VII. CONCLUSION

We derived the generalized key equation of Feng–Tzeng
for the multi–sequence shift–register analysis in an alterna-
tive polynomial way. For our new decoding approach up to
the Sudan radius, we used the combination of a virtually
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TABLE I
FT’S EUCLIDEAN ALGORITHM FOR A VIRS(10, 3, 2) WITH SHIFTED SEQUENCES.

j rj(x) pj(x) q
(0)
j (x) q

(1)
j (x) q

(2)
j (x) q

(3)
j (x) Uj(x)

0
2x19+9x18+5x17+8x16+9x15+5x14+3x12+
5x11+8x9+8x6+x5+3x4+8x3+x2+4x+3

− − − − − 1

1
4x18+3x17+4x15+3x14+7x13+4x12+3x11+
7x10+x9+4x8+7x7+x6+3x5+8x4+7x3+
5x2 + 9x+ 4

5x+ 5 4 8 10 1 5x+ 5

2
3x16 +9x13 +5x12 +9x10 +3x9 +8x8 +2x7 +
8x6 + 3x5 + 4x4 + 5x3 + 2x2 + 8x+ 6

8x+ 8 0 9 1 6 7x2 + 3x+ 2

3
8x17+2x16+8x14+10x13+x12+3x11+x10+
10x9 + 6x8 + 2x7 + 3x6 + x5 + 9x4 7x 1 0 0 0 5x3+10x2+3x

4
2x15 +8x14 +8x13 +x12 +9x10 +9x9 +3x8 +
6x7 + 8x6 + 7x5 + 6x4 + 10x3 + 4x2 + 5x+ 1

4x+ 1 x 1 3 0
9x4 + 8x3 +
3x2 + 9x+ 4

extended RS code and a reformulation of the corresponding
multi–sequence shift–register problem of varying length for
the heterogeneous IRS code. The reformulated problem was
solved by the generalized Euclidean algorithm of Feng and
Tzeng.
The reformulation to a multi–sequences problem of equal
length was proved. The increased complexity was analyzed.
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APPENDIX

We consider a RS(10, 3) code over F = GF (11). For the
virtual extension of Section III with interleaving factor s = 2
the decoding radius can be increased to τ = 4 according to
Equation (12).
One can take αi = 2i−1 mod 11, i = 1, 2, . . . , 10 with k = 3
and f(x) = x we obtain the corresponding codeword:

c = (1, 2, 4, 8, 5, 10, 9, 7, 3, 6),

We add an error-word of weight τ = 4 and obtain the
following received word r<1> and its squared counterpart
r<2>:

r<1> = (10, 9, 9, 7, 5, 10, 9, 7, 3, 6)

r<2> = (1, 4, 4, 5, 3, 1, 4, 5, 9, 3).

By evaluating r<1> and r<2>, we obtain the two syndromes:

S(1) = (2, 9, 5, 0, 8, 1, 4),

S(2) = (8, 3, 0, 3, 3).

Obviously, S(2) has the shortest length Nmin = n− k− (s−
1)(k − 1) = 5. From the sequence S(1) we construct three
sequences of length Nmin by shifting, as follows:

S̃(0,0) = (2, 9, 5, 0, 8),

S̃(0,1) = (9, 5, 0, 8, 1),

S̃(0,2) = (5, 0, 8, 1, 4),

S̃(1,0) = (8, 3, 0, 3, 3).

These reconstructed syndromes can be applied as the input
to FT’s Euclidean algorithm. Here, the intermediate results
according to this algorithm are listed in Table I.
Since degU4(x

4) = 16 > deg r4(x) = 15, we have k = 4
and the monic polynomial δU4(x) = x4 + 7x3 + 4x2 + x+ 9
is the ELP. It can be easily checked that 20, 21, 22, and 23 are
roots of δU4(x). Hence the received word is with errors in the
first, second, third and fourth positions.
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