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Abstract—The Welch–Berlekamp approach for Reed–Solomon
(RS) codes forms a bridge between classical syndrome–based
decoding algorithms and interpolation–based list–decoding pro-
cedures for list size � = 1. It returns the univariate error–locator
polynomial and the evaluation polynomial of the RS code as a
y–root.
In this paper, we show the connection between the Welch–
Berlekamp approach for a specific Interleaved Reed–Solomon
code scheme and the Guruswami–Sudan principle. It turns out
that the decoding of Interleaved RS codes can be formulated as a
modified Guruswami–Sudan problem with a specific multiplicity
assignment. We show that our new approach results in the same
solution space as the Welch–Berlekamp scheme. Furthermore,
we prove some important properties.

Index Terms—Guruswami–Sudan (GS) interpolation, Reed–
Solomon (RS) codes, Interleaved Reed–Solomon (IRS) codes

I. INTRODUCTION

The Guruswami–Sudan (GS) [6] approach for Reed–

Solomon (RS) codes consists of an interpolation and a fac-

torization step of a degree–restricted bivariate polynomial.

The usage of multiplicities in the first stage improved the

error–correcting capability of Sudan’s original work [14].

The set of y–roots of the bivariate interpolation polynomial

gives the candidates of the evaluation polynomials of the

corresponding RS codes. The GS principle coincides with

the Welch-Berlekamp (WB) approach [2] when the list size

is � = 1. Then, τ0 = �(n − k)/2� errors can be uniquely

corrected, where n is the length and k the dimension of the

RS code.

Interleaved Reed–Solomon (IRS) codes are most effective if

correlated errors affect all words of the interleaved scheme

simultaneously (see [9]). Because of this, IRS codes are

mainly considered in applications where error bursts occur.

Bleichenbacher et al. [3], [4] formulated an IRS decoding

procedure with the WB method.

Our contribution covers the reformulation of the Bleichen-

bacher approach in terms of a modified GS interpolation

problem for a heterogeneous IRS scheme as it was investigated

in [13]. The heterogeneous IRS code is built by virtual

extension of an RS code. The rate restriction and the decoding

radius of this scheme are comparable with the parameters of

Sudan’s original algorithm (where the multiplicity for each

This work has been supported by DFG, Germany, under grants BO 867/17
and BO 867/22-1.

point equals one). Also, the corresponding syndrome formu-

lation (for Sudan done in [12], [11]) is equivalent. Hence, it

seems to be surprising that this scheme can be formulated as

a modified GS interpolation problem, where the multiplicities

are assigned in a specific manner.

The paper is organized as follows. First, we shortly describe

the GS principle for RS codes in Section III and outline

important properties that we will use later. The connection to

the WB approach is investigated in Section IV. The virtual

extension to an IRS code [13] is described in Section V.

Section VI links the GS list–decoding procedure with the

WB formulation of the previously described IRS scheme.

Furthermore, the equivalence of both approaches is proved and

an informal description is given. Finally, Section VII concludes

the paper. An example is given in the appendix.

II. DEFINITION AND NOTATION

Here and later, [n] denotes the set of integers {1, . . . , n}
and [n]0 denotes the set of integers {0, . . . , n}. The entries

of an m × n matrix S =‖ Si,j ‖ are denoted Si,j , where

i ∈ [m − 1]0 and j ∈ [n − 1]0. A univariate polynomial of

degree n is noted in the form A(x) =
∑n

i=0 Aix
i. A vector

of length n is denoted by r = (r1, r2, . . . , rn)T .

Let α1, α2, . . . , αn be nonzero distinct elements (code lo-

cators) of the finite field F = GF (q) of size q. L =
{α1, . . . , αn} is the set containing all code locators. Denote

f(L) = (f(αi), . . . , f(αn))

for a given polynomial f(x) over F .

An RS code RS(n, k) over F with n < q is given by

RS(n, k) = {c = f(L) : f(x) ∈ Fk[x]}, (1)

where Fk[x] stands for the set of all univariate polynomials

with degree less than k and indeterminate x.

RS codes are known to be maximum distance separable

(MDS), i.e., their minimum Hamming distance is d = n−k+1.

III. THE GS PRINCIPLE AND THE UNIVARIATE

FORMULATION

A. Guruswami–Sudan Approach for Reed–Solomon Codes

Let the n points {(αi, ri)}n
i=1 ,where αi, ri ∈ F and r =

(r1, . . . , rn) denotes the received word, be interpolated by a

bivariate polynomial Q(x, y). The number of errors, that can

be corrected, is denoted by τ . The parameter s is the order of
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multiplicity of the bivariate interpolation polynomial in the

GS algorithm. The list size is denoted by �. The nonzero

interpolation polynomial Q(x, y) has to satisfy the following

degree conditions:

DC1 :=
[

deg0,1 Q(x, y) ≤ �,
deg1,k−1 Q(x, y) < s(n− τ)

]
, (2)

where degu,v a(x, y) = udx + vdy is the (u, v)–weighted de-

gree of a bivariate polynomial a(x, y) =
∑dx

i=0

∑dy

j=0 ai,jx
iyj .

The interpolation constraints are:

IC1 :=
[
Q[a,b](αi, ri) = 0 ∀i ∈ [n] and∀a + b < s

]
, (3)

where Q[a,b](x, y) represents the mixed Hasse derivative

(see [7] for definition) of the polynomial Q(x, y) ∈ F[x, y] .

Analogously, one can say that the GS polynomial must have

a multiplicity of s at each point (αi, ri).

B. Univariate Formulation of Guruswami–Sudan

In [1], [15] the univariate reformulation of the bivariate GS

interpolation problem (key equations) was derived. Here, we

state some basic properties that will be used later on.

Proposition 1 (Augot-Zeh [1]) Given s ≥ 1, let Q(x, y) =∑�
t=0 Q(t)(x)yt be the Guruswami-Sudan interpolation poly-

nomial that satisfies (2) and (3) and let R(x) be the Lagrange
interpolation polynomial, such that R(αi) = ri ∀i ∈ [n]
holds. Furthermore, let G(x) =

∏n
j=1(x−αj). Then, Q(x, y)

satisfies (3), if and only if there exist s polynomials B(b)(x) ∈
F[x] ∀b ∈ [s− 1]0 with:

Q[b](x, R(x)) = B(b)(x) ·G(x)s−b, (4)

where deg B(b)(x) < �(n− k)− sτ + b.

We remark that Q[b](x, y) := Q[0,b](x, y) denotes the b–th

Hasse derivative of the bivariate polynomial Q(x, y) with

respect to the variable y.

IV. WELCH–BERLEKAMP APPROACH AS LIST–1 DECODER

We recall a simplified version (as in [5] or [8, Ch. 5]) of

the WB approach [10, Ch. 7.2] [2] for decoding RS codes up

to half the minimum distance (τ0 = �(n − k)/2�). It is seen

as special case of the list–decoding problem of GS.

The interpolation polynomial Q(x, y) of the GS algorithm for

� = s = 1 has the following form:

Q(x, y) = Q(0)(x) + Q(1)(x)y,

where deg Q(0)(x) < n− τ and deg Q(1)(x) < n− τ −k +1.

Condition (3) simplifies to Q(αi, ri) = 0 ∀i ∈ [n] and gives n
linear equations. The codeword c coincides with the received

word r in at least n− τ positions. Therefore, we have:

Q(x, f(x)) = Q(0)(x) + f(x) ·Q(1)(x) = 0.

So f(x) = −Q(0)(x)/Q(1)(x) and we can rewrite the original

interpolation polynomial:

Q(x, y) = Q(1)(x) ·
(

y +
Q(0)(x)
Q(1)(x)

)
= Q(1)(x) · (y − f(x)).

Clearly, Q(1)(x) is the error–locator polynomial (ELP), be-

cause it vanishes for τ0 αi’s. Let the classical ELP Λ(x) =∏
j∈J (x − αj), where J is the set of error locations. Then,

we can write:

Q(x, y) = Λ(x) · (y − f(x)). (5)

In the WB decoding procedure the polynomial Q(x, y) of (5)

is determined by solving n linear homogeneous equations. The

standard syndrome–based decoding procedure, that consists of

τ0 equations for the ELP, can be derived by reducing the WB

equation.

V. VIRTUAL EXTENSION TO AN IRS CODE

A. Basic Principle

We shortly describe the Schmidt–Sidorenko–Bossert

scheme [13] where an RS code is virtually extended to an

IRS code. This IRS code is denoted by VIRS(n, k, s),
where n and k are the original parameters of the RS(n, k)
code. The parameter s denotes the order of interleaving. Let

p(x) =
∑n−1

j=0 pjx
j be a univariate polynomial in Fn[x].

Then,

p<i>(x) =
n−1∑
j=0

pi
jx

j ,

is the polynomial in Fn[x] where each coefficient is raised

to the power i. Analogously, c<i> denotes the vector

(ci
1, . . . , c

i
n)T . The virtual IRS code can be defined as follows.

Definition 1 (Virtual Extension to an IRS code [13]) Let
RS(n, k) be an RS code with the evaluation polynomials
f(x) as defined in (1). The virtually extended Interleaved
Reed–Solomon code VIRS(n, k, s) of order s is given by

VIRS(n, k, s) =

⎛
⎜⎜⎜⎝

c<1>

c<2>

...
c<s>

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

f(L) : f(x) ∈ Fk[x]
f2(L) : (f(x))2 ∈ F2(k−1)+1[x]

...
fs(L) : (f(x))s ∈ Fs(k−1)+1[x]

⎞
⎟⎟⎟⎠ .

Clearly, the parameter s must satisfy s(k−1)+1 ≤ n. The

scheme is restricted to low–rate RS codes and allows to decode

beyond half the minimum distance. The virtual extension is

illustrated in Figure 1, where the information length of the

i–th codeword is k(i) = i(k−1)+1. The decoding procedure

for the virtual extension of an RS code is as follows; the

elements of received word r = c + e are raised to the power

i = 2, . . . , s (r<2>, r<3>, . . . , r<s>) and a heterogeneous

IRS code is obtained. Clearly, through the virtual extension,

the error is also “extended” and every single received word
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Fig. 1. Illustration of an RS(31, 4) code that has been virtually extended
with interleaving factor s = 3. The errors in the RS(31, 4) code are extended
to burst errors in the VIRS(31, 4, 3) code.

r<i> is erroneous at the same positions. Due to the additional

equations, the decoding radius is increased to:

τ =

⌊
sn− (

s+1
2

)
(k − 1)− s

s + 1

⌋
. (6)

The radius τ is greater than τ0 = �(n − k)/2� for RS codes

with code rate R < 1/3. (For further details (e.g. increased

failure probability) of this scheme, see [13]). We remark that

the rate–restriction and the increased decoding radius coincide

with the original Sudan algorithm (where the multiplicity s
equals one for all points (αi, ri)). Nevertheless, we will show

that this scheme is equivalent to a GS interpolation problem

with a modified multiplicity assignment and stricter degree

constraints. To start the logical chain, we will describe in the

following the corresponding system of equations of the s WB

equations for a VIRS(n, k, s) code.

B. Matrix form of the Set of Equations

Bleichenbacher et al. [3], [4] described the WB formulation

for IRS codes. We recall this approach for the virtually

extended Reed–Solomon code VIRS(n, k, s).
Clearly, we have s WB–equations (see (5)) of the form:

Q<b>(x, y) = Λ(x) · (yb − f b(x))

=: Q(s)(x)yb −Q(b)(x), (7)

for all b ∈ [s− 1]0.

For every single WB polynomial Q<b>(αi, ri) = 0 holds

(i ∈ [n]). Note, that through the virtual extension, each

received word r<i> has its errors at the same position and

therefore we search one common ELP Λ(x). We represent the

sn constraints of system (7) in matrix form. Therefore, let the

n× (τ + i(k − 1) + 1) matrix Mi be:

Mi =

⎛
⎜⎜⎜⎜⎜⎝

1 α1 α2
1 · · · αNi−1

1

1 α2 α2
2 · · · αNi−1

2

1 α3 α2
3 · · · αNi−1

3
...

...
...

. . .
...

1 αn α2
n · · · αNi−1

n

⎞
⎟⎟⎟⎟⎟⎠ , (8)

where Ni := τ + i · (k − 1) + 1 and let N be defined as:

N =
s∑

i=0

Ni = (s + 1)(τ + 1) +
(

s + 1
2

)
(k − 1). (9)

Furthermore, let the n×n matrix R have the following form:

R =

⎛
⎜⎜⎜⎝

r1 · · · 0 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn

⎞
⎟⎟⎟⎠ . (10)

Now, we can write the s polynomial equations from (7) in

matrix notation. Let Q = (Q(0),Q(1), . . . ,Q(s))T , where

Q(i) = (Q(i)
0 , Q

(i)
1 , . . . , Q

(i)
τ+(s−i)(k−1))

T . The homogeneous

set of equations is of the form A ·Q = 0, where the sn×N
matrix A is:

A =

⎛
⎜⎜⎜⎝

0 · · · 0 −M1 R ·M0

0 · · · −M2 0 R2 ·M0

... . .
. ...

...
...

−Ms 0 · · · 0 Rs ·M0

⎞
⎟⎟⎟⎠ . (11)

The vector Q(s) gives the coefficients of the ELP Λ(x).

VI. REFORMULATION AS A MODIFIED

GURUSWAMI–SUDAN PROBLEM

A. Specific Multiplicity Assignment

In this section, we formulate the decoding of an RS(n, k)
code virtually extended to a VIRS(n, k, s) code as a modified

GS interpolation problem. The constraints of the bivariate

interpolation polynomial with multiplicities are a modified

version of the general GS algorithm introduced in Section III.

We show the corresponding homogeneous set of equations

and prove the equivalence to the one of Bleichenbacher et
al. (see (11)).

Let Q(x, y) be a bivariate polynomial of F[x, y] \{0}, where

DC2 :=

[
deg0,1 Q(x, y) ≤ s,

deg Q
(t)

(x) ≤ τ + (s− t) · (k − 1)

]
. (12)

The modified interpolation constraints for Q(x, y) are:

IC2 :=
[
Q

[b]
(αi, ri) = 0 ∀i ∈ [n] and ∀b ∈ [s− 1]0

]
,

(13)

where the parameter s is such that s(k − 1) + 1 ≤ n holds

and Q
[b]

(x, y) denotes the b–th Hasse derivative with respect

to the variable y of the polynomial Q(x, y).

Theorem 1 It exists at least one nonzero polynomial Q(x, y)
which satisfies conditions (13).

Proof: Condition (13) gives sn homogeneous linear equa-

tions to the coefficients. The number of possible coefficients

is N (as defined in (9)), therefore we get a nonzero solution

for the decoding radius τ as in Equation (6) .

The bivariate polynomial Q(x, y) that fulfills condition (13)

has multiplicity s for all n − τ error–free positions and
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multiplicity one for all τ error positions. Let us state this

property in the following theorem.

Theorem 2 The bivariate polynomial Q(x, y) under the con-
straints DC2 and IC2 can be written as:

Q(x, y) = Q
(s)

(x) · (y − f(x))s, (14)

where Q
(s)

(x) is the ELP and f(x) is the information poly-
nomial of the RS code (see definition (1)).

Proof: Let us consider the “last” (s − 1)–th Hasse

derivative of Q(x, y) with respect to the variable y:

Q
[s−1]

(x, y) =
(

s− 1
s− 1

)
·Q(s−1)

(x) +
(

s

s− 1

)
·Q(s)

(x)y

= Q
(s−1)

(x) + s ·Q(s)
(x)y

= s ·Q(s)
(x) ·

(
y +

Q
(s−1)

(x)

s ·Q(s)
(x)

)
,

which is by (13) zero for the set {(αi, ri)}n
i=1. Clearly,

Q
[s−1]

(x, y) is a WB polynomial for the RS(n, k) code with

information polynomial f(x) = −Q
(s−1)

(x)/s ·Q(s)
(x) (see

Section IV).

The (s−2)–th Hasse derivative of the interpolation polynomial

Q
[s−2]

(x, y) can now be rewritten as:

Q
[s−2]

(x, y) =Q
(s−2)

(x) +
(

s− 1
s− 2

)
·Q(s−1)

(x)y+(
s

s− 2

)
·Q(s)

(x)y2

=Q
(s−2)

(x) + (s− 1) ·Q(s−1)
(x)y+

1
2
s(s− 1) ·Q(s)

(x)y2

=
1
2
s(s− 1) ·Q(s)

(x) · (y2 − f(x)y)+

Q
(s−2)

(x), (15)

where

Q
[s−2]

(x, f(x)) = 0

from the interpolation constraints holds. We can now express

Q
(s−2)

(x) as:

Q
(s−2)

(x) = −1
2
s(s− 1) ·Q(s)

(x) · (f(x)2 − 2f(x)2)

=
1
2
s(s− 1) · f(x)2 ·Q(s)

(x). (16)

Substituting this into (15), we obtain for the (s− 2)–th Hasse

derivative of Q(x, y):

Q
[s−2]

(x, y) =
1
2
s(s− 1) ·Q(s)

(x) · (y − f(x))2,

which has multiplicity two at the n − τ error–free positions

and multiplicity one at the τ erroneous positions. By induction

we can state that (y − f(x))s|Q(x, y) and Q(s)(x)|Q(x, y).
From DC2 we know, that no other polynomial factor occurs

in Q(x, y).

B. Informal Description

The degree condition DC2 and the interpolation constraint

IC2 for the polynomial Q(x, y) are a subset of the general

GS list–decoding constraints DC1 and IC1. The y–degree

of Q(x, y) corresponds to the number of codewords of the

VIRS(n, k, s) code. Similar to the univariate formulation of

the original GS interpolation problem (see (4)) it is sufficient

to consider only the Hasse derivatives with respect to variable

y.

In the original GS algorithm the b–th Hasse derivative of the

interpolation polynomial Q(x, y) is divisible by G(x)(s−b),

where G(x) =
∏n

i=1(x − αi) and n denotes the code

length. In our case the b–th Hasse derivative of the modified

interpolation polynomial Q(x, y) is divisible by G(x)(s−b).

Here, G(x) =
∏

i∈[n]\J (x − αi) and [n] \ J is the set of

error–free positions.

Furthermore, the ELP Q
(s)

(x), where deg Q
(s)

(x) can be

greater than �(n − k)/2�, is a factor of Q(x, y). The zeros

of Q
(s)

(x) have multiplicity one.

The scheme of Section V virtually extends the received vector

r = (r1, r2, . . . , rn) of an RS(n, k) code to s received

words r<i> = (ri
1, r

i
2, . . . , r

i
n) ∀i ∈ [s] of s different

RS(n, i(k − 1) + 1) codes with equal code length n.

C. Set of Equations

Now, we consider the homogeneous set of equations (13).
We have B · Q = 0, where Q is the vector notation of the
interpolation polynomial Q(x, y). The sn×N matrix B can
be written as:⎛
⎜⎜⎝

0 · · · 0
(

s−1
s−1

)
M1

(
s

s−1

)
RM0

0 · · ·
(

s−2
s−2

)
M2

(
s−1
s−2

)
RM1

(
s

s−2

)
R2M0

... . .
. ...

...
...

Ms RMs−1 · · · Rs−1M1 RsM0

⎞
⎟⎟⎠

where the sub–matrices Mi and R are defined in (8) and (10).

The binomial coefficients come from the Hasse derivatives of

Q(x, y):

Q
[b]

(x, y) =
s∑

t=b

(
t

b

)
·Q(t)

(x)yt−b. (17)

Note, that the first n rows of matrix B correspond to the

(s − 1)th Hasse derivative of the polynomial Q(x, y). The

second n rows represents the n interpolation constraints of

the (s− 2)–th Hasse derivative and so on. In the last n rows

of matrix B the interpolation polynomial Q(x, y) occurs with

all terms.

D. Equivalence of Both Sets of Equations

In the following, we show the equivalence between the

systems of equations determining the IRS scheme of Section V

and the one determining the modified GS interpolation poly-

nomial Q(x, y). Due to space limitations we will sketch the

basic steps of the proof.
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First, let us consider the relation between vectors Q and Q:

Q(x, y) =Q
(s)

(x)(y − f(x))s

=Q
(s)

(x) ·
(

s∑
i=0

(
s

i

)
(−1)iys−if(x)i

)
.

In vector notation, we have:

(Q(0), . . . ,

(
s

s− 2

)
Q(s−2),−

(
s

s− 1

)
Q(s−1),Q(s))T =

(Q
(0)

, . . . ,Q
(s−2)

,Q
(s−1)

,Q
(s)

)T .

Let the matrix B be such that:

B ·Q = B ·Q.

Matrix B is then (first column not printed):

B =⎛
⎜⎜⎜⎝

· · · 0 −
(

s
s−1

)
M1

(
s

s−1

)
RM0

· · ·
(

s
s−2

)
M2 −

(
s

s−1

)(
s−1
s−2

)
RM1

(
s

s−2

)
R2M0

. .
. ...

...
...

· · · · · · −
(

s
s−1

)
Rs−1M1 RsM0

⎞
⎟⎟⎟⎠ .

After simplification, we obtain:

B =⎛
⎜⎜⎝

· · · 0 −M1 RM0

· · · 1
2
s(s − 1)M2 −s(s − 1)RM1

1
2
s(s − 1)R2M0

. .
. ...

...
...

· · · · · · −sRs−1M1 RsM0

⎞
⎟⎟⎠ .

The second band of n rows of matrix B can be multiplied

with −Rs(s− 1)–times the first band of B and then divided

by − 1
2s(s−1). We obtain the second band of n rows of matrix

A. Repeating this operation, matrix B can be transformed into

matrix A (11).

VII. CONCLUSION

We investigated a virtual extension of an RS code to an

IRS code from an interpolation–based list–decoding approach

point of view.

The Bleichenbacher scheme was used to form the system

of equations for the IRS scheme (based on a virtual exten-

sion). Then, the original constraints of the GS list–decoding

algorithm were modified and the equivalence of the resulting

system of equations with the Bleichenbacher scheme for the

IRS code has been shown.
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APPENDIX

Let us consider an RS(16, 4) code over F = GF (17)
with parameter s = 2 (number of interleaving and multiplicity

for the modified GS algorithm). The corresponding increased

decoding radius is τ = 7 (see (6)).

The code locators are αi = αi−1 ∀i ∈ [n], where α is 3. For

the information polynomial f(x) = 1 + x + x2 + x3 (see (1))

and an error e of weight τ = 7 we get the following vectors:

c = (4, 6, 4, 6, 0, 3, 12, 2, 0, 14, 7, 9, 0, 15, 15, 4)
e = (1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0)

r<1> = (5, 8, 7, 10, 5, 9, 2, 2, 0, 14, 7, 9, 0, 15, 15, 4)

r<2> = (8, 13, 15, 15, 8, 13, 4, 4, 0, 9, 15, 13, 0, 4, 4, 16).

The conditions (13) on the modified bivariate polynomial

Q(x, y) give the following solution:

Q =(5, 14, 8, 6, 14, 9, 5, 9, 12, 12, 4, 2, 3, 16, 5, 9, 11,

15, 13, 4, 7, 2, 16, 4, 16, 5, 4, 2, 4, 3, 12, 5, 16).

And the corresponding modified bivariate interpolation poly-

nomial;

Q(x, y) =(x + 2)(x + 4)(x + 7)(x + 8)(x + 12)(x + 14)·
(x + 16)(y + 16x3 + 16x2 + 16x + 16)2,

is factorizable as stated in Theorem 2.
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