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Abstract

In this paper we examine an application for phoneme segmentation of DISTBIC, a two-pass, text-
independent method traditionally used for speaker segmentation. The novelty of this paper is its ex-
perimentation with use of the spectral variation function (SVF), a simple non-parametric method for
phone segmentation, as a replacement for the distance measure of the first pass of DISTBIC. In doing so
we aim to produce a computationally efficient method for text-independent phoneme segmentation that
provides good performance. Experiments are carried out on the TIMIT database. We give a performance
comparison between the SVF as previously used for segmentation, our DISTBIC-SVF algorithm, and
another state-of-the-art algorithm.

1. Introduction

Phoneme segmentation generally describes the task of automatically estimating the location of the bound-
aries between phonemes in speech. Given a speech signal, the application of such segmentation should
produce a series of time indices corresponding to the most likely location of the transitions between
phonemes. Such a segmentation is useful for speech coding, training text-to-speech systems, speech in-
dexing or annotating spoken corpora. A well-performing automatic segmentation process is especially
needed in the latter example, where corpora can reach very large sizes and the speed of a manual seg-
mentation by expert phoneticians is over 130 times real-time [1].

Segmentation methods can be divided into two broad classes: text-dependent (TD) and text-independent
(TI.) Text-dependent methods such as Hidden Markov Models (HMMs) perform segmentation based on
both the speech signal and indications of the phonemes present, either through the provision of a phone-
mic transcriptions or the incorporation of a model trained on a corpus of manually segmented data. This
may provide a high-quality segmentation, but is also the source of disadvantages, since the models require
a large amount of training and are linguistically constrained in that they presuppose certain phonemes. TI
methods on the other hand, avoid extensive training at the expense of performance, using only acoustic
information for the detection of transitions. These methods may be useful in multi-lingual applications
or situations where phonetic transcriptions are unavailable or inaccurate. [2]

There exist many varieties of TI methods [2] [3]. One classical and easy-to-implement technique, fig-
uring in several papers as a method of finding sub-word transitions, is the use of the spectral variation
function (SVF.) Methods of employing the SVF found in the literature vary: [4] used the SVF to find
subword transitions with the aid of some heuristic rules using energy and zero-crossing rate. [5] used
three variants of the SVF to segment telephone-quality speech. [6] incorporated the SVF as one of the
features used in an HMM, whereas it was used by [7] as a means to constrain the transition of the HMM
from one phoneme to another. Lastly, [2] and [3] used SVF as a stand-alone method as a reference against
other phoneme segmentation methods.

While SVF has the virtue of being computationally inexpensive, it is, as with many non-parametric meth-
ods, prone to a high rate of so-called false alarms, leading to unsatisfying overall performance. In this
paper we propose to apply the DISTBIC algorithm [8] to the SVF to correct for this deficiency. DISTBIC,
which has been used in the past both for speaker turn detection [8] and for phoneme segmentation [3], is



a two-step process which incorporates heuristics and a penalized statistical likelihood ratio test (LLRT)
to reduce error rates.

We compare the performance of our algorithm to that another state-of-the art TI method, the Microcanon-
ical Multi-scale Formalism (MMF).

2. SVF

The SVF is a measure of magnitude of overall spectral change from frame to frame, providing a way
to quantify the quasi-instantaneous spectral change in a signal with a single value. Traditionally, it is
computed as an angle between two normalized cepstral vectors separated by some frame distance, these
vectors being the difference between the cepstrum and its average over a multi-frame window.

One form of the SVF is found in [9], where it is employed to estimate an upper limit on the number of
phone segments in a speech signal. The expression of this SVF is simply the norm of the delta-cepstral
coefficients for the frame k:

SV F∆cep(k) =
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m=1

[∆Ck(m)]2 (1)

with Ck being the mel-frequency cepstrum (MFCC) for frame k and p being the order of the MFCC.

This tendency of the SVF toward over-segmentation, exploited by [9] to give an upper bound on the
number of segments, seems to suggest it may be well suited for use with DISTBIC. We hypothesized that
applying the heuristic first step of DISTBIC to SVF may provide useful candidate points for the second
step of DISTBIC, which uses BIC to reject spurious segmentation candidates found in the first. We chose
to use the SVF found in [9] rather than that described in [6] since it is computationally less expensive and
has fewer parameters to tune such as the window size or the separation of the left and right contexts.

Applying the SVF to a signal produces a series or curve with the peaks corresponding to areas of rapid,
intense spectral change. Traditional approaches to finding a segmentation with this curve identify the
phoneme transitions as the minima of its second derivative, sometimes after the application of some
smoothing [4]. We followed this approach without smoothing for our implementation of a segmentation
with SVF.

3. DISTBIC with SVF

3.1 Distance Curve

The starting point of the DISTBIC algorithm is the production of a distance curve computed from the
features extracted from the signal. This distance curve is the basis for a set of candidate transitions
selected by heuristics, which are then verified with hypothesis testing. Previous works have proposed
several measures for this curve, such as the generalized likelihood ratio (GLR) generated from two fixed
windows sliding along the signal, or the Kullback-Leibler divergence measure. In our work, we treat the
SVF as the distance curve.

Next, the heuristics examine the maxima of the distance curve and produce a set of candidate transition
points. A series of rules are used to choose maxima which are more likely to correspond to phoneme
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Figure 1: Example of the heuristic measures involved in the heuristics of DISTBIC

transition points. It is recommended in [8] to low-pass filter the distance curve d(t) prior to use of the
heuristics. We do not include this step since the choice of the filter increases the space of parameters to
be tuned, whereas our goal is to maintain simplicity in our system.

First, we ensure a minimum distance between candidate peaks by enforcing a minimum distance h2 be-
tween maxima. If two maxima are separated by less than this distance, they are merged by replacing
them with a point located at their averaged position and possessing their averaged magnitude.

To be chosen as a candidate, the difference between a maximum and the minima to its left and right must
be greater than the standard deviation of the signal multiplied by tuning factor α:

|d(max)− d(minr)| > ασ and |d(max)− d(minl)| > ασ

In the case of a maximum occurring at the left (resp. right) limit of the signal with no left (resp. right)
minimum adjacent, we consider only the difference between the maximum and its right (resp. left) mini-
mum.

3.2 Dynamic Windowing with BIC

The second stage of DISTBIC is a process of dynamic windowing, wherein we verify the candidate
transitions of the previous step using an hypothesis test based on the ∆BIC statistic. This hypothesis
test is posed as follows. We wish to know if frame number j contains a transition point. We form two
subwindows of the feature vectors: X = (xj−NX , . . . , xj) and Y = (xj, . . . , xNY ) with NX and NY being
the length of each window, and their concatenations denoted simply as Z. Further, we assume that the
features within conform to a multi-dimensional Gaussian model. The hypothesis test is then

• H0: Z ∼ N(µZ ,ΣZ) meaning that the two windows contain features from the same phoneme

• H1: X ∼ N(µX ,ΣX) and Y ∼ N(µY , σY ) meaning that the windows contain two different
phonemes

with µ and σ being the mean vectors and covariance matrices of the windows. The test is formulated as
a maximum likelihood ratio:

R(j) =
NZ

2
log |ΣZ |−

NX

2
log |ΣX |−

NY

2
log |ΣY | (2)



The ∆BIC value is the maximum likelihood ratio penalized by model complexity: ∆ = −R(j) + λP
where P , the penalty factor, is given as P = 1

2(p +
1
2p(p + 1)) log(NZ) with p being the dimension of

the feature vectors. λ is is a tuning parameter used to control the rejection sensitivity. If ∆BIC > 0, we
conclude that a transition exists.

The dynamic windowing algorithm uses this ∆BIC hypothesis test as follows. Define Q = {q0, q1, . . . , qN}
as the transitions found from the distance (SVF) and heuristics. To begin, we form three windows, X , Y ,
and Z as before, with the limits of X being [q0, q1], Y being [q1, q2], and Z being [q0, q2]. At this point
in our algorithm, we again extract features (with different parameters than those used in the part of the
algorithm described in section 3.1) We calculate the covariance matrices for these windows and compute
the ∆BIC score. If we verify the candidate, we shift both windows at their default size, with X being
[q1, q2], Y being [q2, q3], and Z being [q1, q3]. On the other hand, if the candidate is rejected by ∆BIC,
we maintain X at [q0, q1] and increment the right-hand limit of Y by one transition, such that its bounds
are [q1, q3], with Z again spanning both X and Y . Then we perform again a ∆BIC test. The process is
repeated until we have covered the entire signal. Finally, the candidates that were verified are considered
the output of the algorithm.

4. Experimental Results

4.1 Experimental Setup

The TIMIT database was used for evaluation of our algorithm. The SA sentences were excluded since
they are the same for each speaker in the database [2] and serve merely to compare accents. We used
a subset of three hundred randomly chosen files (approximately 10% of the ’train’ portion from the
database) for use in selection of the algorithm parameters yielding the best performance. Aiming for the
best F1 score for the SVF algorithm, we tried 156 variations in the value of the parameters MFCC frame
step size and frame length over the three hundred file set.

Choosing the parameters of DISTBIC-SVF for F1 proceeded in two steps. We performed trials of the
first stage of the algorithm (SVF with heuristics), with 160 different configurations of the parameters
α, MFCC frame step, and MFCC frame length. Among those which produced segmentations with HR
> 75%, we selected the four combinations of parameters giving the highest ratio of HR to FAR.

Parameters for the second stage of the algorithm (dynamic windowing with ∆BIC) were found in two
sub-steps, with parameters λ, MFCC frame step, and MFCC frame length being tuned. We used a 20-file
subset of the 300-file set to search for the 25% of parameter configurations giving the best F1 score.
These candidates configurations were tried on the 300-file subset, with the candidate giving the best F1
being selected as the final configuration.

Last, the SVF and DISTBIC-SVF algorithms were evaluated on the full TIMIT database excluding the
300-file subset.

The features used were the first 12 MFCCs computed using the default settings of the Voicebox toolbox
for Matlab, with the MFCC frame size and step that gave the optimal performance for each method given
in section 4.3.

4.2 Performance Measures

We measured the discrepancy between the manual and automatic segmentations through several mea-
sures. Partial performance measures were used: the Hit Rate (HR), which is the ratio of correctly detected



boundaries to the number of reference transcriptions, the Oversegmentation (OS), which is the difference
between the number of detected transitions and the number of reference transcriptions over the number
of reference transcriptions, and the False Alarm Rate (FAR), which is the difference between the number
of detections and hits over the number of detections.

HR = hits
transcriptions OS = detections - transcriptions

transcriptions FAR = detections - hits
detections

We further define the Percent Correct (PCR) as 1− FAR.

The composite performance measure the most often used in the literature is the F1 measure, a harmonic
mean of PCR and HR:

F1 =
2 · PCR ·HR

PCR +HR
(3)

An automatic segmentation point was counted as a hit if it fell within 20 milliseconds of a manual
segmentation point not already associated with another automatic segmentation point. In the case of two
or more automatic segmentations falling within this interval, we count only the earliest one as a hit, the
rest being counted as insertions.

4.3 Results

We compared the performance of our DISTBIC-SVF method to SVF as described in section 2, as well as
another method based on the microcanonical multiscale formalism [10]. This latter method is a sample-
based segmentation which employs computation of local geometrical parameters to yield a function
termed the ACC, from which candidate transition points are derived. Dynamic windowing with an LLRT
is then used to verify these candidate points.

The results of testing each method on the TIMIT database are presented in table 1. An MFCC frame step
of 10 ms and frame length of 20 ms were found to give the best F1 performance for the SVF algorithm.
The parameters giving the best F1 value for DISTBIC-SVF are given in table 2.

Table 1: Comparative table of segmentation results. Scores are percentages.
score MMF-LLRT SVF DISTBIC-SVF
HR 72.59 66.47 75.09
FAR 28.58 38.83 30.99
OS 1.64 8.66 8.81
F1 72 63.71 71.92

The gains from the DISTBIC method over SVF are immediately apparent, with the overall score F1 being
increased significantly compared to SVF, at the expense of a slight increase in oversegmentation. We mo-
tivate our explanation for this increase in performance by noting the 12% higher hit rate of DISTBIC-SVF
compared to the default SVF algorithm. This shows that the strength of DISTBIC-SVF lies in permitting
a configuration of SVF which yields many more segmentations. The 20% lower false alarm rate, on the
other hand shows that the ∆BIC eliminates more bad segmentations than the newly-configured SVF
produces. The result being is an increase in performance as measured by F1 of almost 13%.

A comparison to the MMF-LLRT method shows that DISTBIC-SVF closely approaches its overall per-
formance, with a higher hit hate at the expense of a slightly higher false alarm rate and a higher overseg-
mentation rate.



Table 2: Parameter configuration of DISTBIC-SVF corresponding to the scores shown in Table 1
SVF + Heuristics Dynamic Windowing + BIC

Feature Value Feature Value
MFCC frame step 5 ms MFCC frame step 1 ms
MFCC frame length 7.5 ms MFCC frame length 20 ms
α 0.5 λ 1.5
h2 2

Conclusion
With the introduction of DISTBIC-SVF we sought to improve upon SVF in order to provide a simple,
text-independent phoneme segmentation algorithm having good performance. By evaluating the algo-
rithm on the TIMIT database, we have shown that this technique significantly improves upon the base-
line SVF segmentation. Through comparison of our algorithm’s scores versus those of the baseline, we
demonstrated a synergism of the advantages of SVF and DISTBIC SVF. Namely, whereas SVF may yield
a high hit rate with relatively high error, DISTBIC permits a reduction of these errors, giving an overall
better segmentation. Further, our implementation shows that we can obtain performance comparable to
that of a state-of-the-art method using measures of spectral variation as a basis for phoneme segmentation.

It would be worthwhile for future work to study other feature bases for spectral variation than MFCC, or
different frequency scaling. Also, because our system maintains a relatively high false alarm rate even
after the steps of DISTBIC, further performance gains may be obtained through error analysis of the
predominant causes of insertions.
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