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3Department of Mathematics and Computer Sciences
Faculty of Sciences, University of Dschang

P.O. Box 67 Dschang, Cameroon
and UMI-IRD-209 UMMISCO-Yaoundé, Cameroon.
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Abstract

The conjecture of Arino and van den Driessche (2003) that a SIS type model in a mover-
stayer epidemic model is globally asymptotically stable is confirmed analytically. If the basic
reproduction number R0 ≤ 1, then the disease free equilibrium is globally asymptotically sta-
ble. If R0 > 1, then there exists a unique endemic equilibrium which is globally asymptotically
stable on the nonnegative orthant minus the stable manifold of the disease free equilibrium.
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1 Introduction

Arino and van den Driessche (2003) considered the so-called “mover-stayer” model adapted

from Sattenspiel and Dietz (1995) by adding the age structure of a stationary population.

They studied a metapopulation model with full dynamic in each patch in order to de-

scribe sexually transmitted diseases. They computed the basic reproduction number R0

which is the average number of new infective generated by a single infective living in a

completely susceptible population during his/her entire life span (Diekmann et al., 1990;

Diekmann and Heesterbeek, 1999; van den Driessche and Watmough, 2002; Artzrouni,

2009). They also established bounds on R0. We analyze the global stability of the equi-

libria of this model. We use a theorem of Hirsch (1984) and confirm the conjecture of

Arino and van den Driessche (2003).

Arino et al. (2005) studied a multi-species multi-patch SEIR model, using the concept

of asymptotic autonomous systems (Castillo-Chavez and Thieme (1995)) to prove the

global stability of the disease free equilibrium (DFE). When R0 > 1, they established

the uniqueness and stability of the endemic equilibrium numerically. Arino et al. (2007)

introduced quarantine in a SEIRS compartmental model for a multi-species multi-patch

disease. Wang and Zhao (2004) in a SIS model with “pseudo mass-action”, assuming that

the graph of migration is strongly connected, proved that the DFE is globally attractive

when R0 < 1, and that the disease is uniformly persistent when R0 > 1. Jin and

Wang (2005) showed that if R0 > 1, there exists a unique endemic equilibrium which is

globally asymptotically stable when the dispersal rates of susceptible and infective are

equal. Auger et al. (2008) considered the Ross-Macdonald malaria model on n patches.

They proved that if R0 ≤ 1, the DFE is globally asymptotically stable (GAS), and when

R0 > 1, the unique endemic equilibrium is also GAS. Iggidr et al. (2010) described the

spatial propagation of a disease which confers no immunity. They proved that if R0 ≤ 1,

then the DFE is GAS; if R0 > 1 there exists a unique GAS endemic equilibrium. Norman
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and Bowers (2007) considered a multi-groups model in order to study the effectiveness of

different vaccination strategies.

2 The migration model

Notations and definitions:

Residents of patch i: individuals who were born and reside in patch i;

Travelers : individuals who, at the current time, are not in the patch they reside in;

n: the total number of patches;

Nij : the total number of residents of patch i who are present in patch j at time t;

N r
i =

∑n
j=1 Nij : the total resident population of patch i at time t;

Np
i =

∑n
j=1 Nji : the population of patch i at time t including both residents and

travelers;

gi > 0 : the per head rate at which residents of patch i leave it per time unit;

mij ≥ 0 : the proportion of individuals leaving patch i to patch j;

gimji : the transfer rate from patch i to patch j;

rij ≥ 0 : the rate at which residents of patch i return to patch j;

d : the death rate, equal to the birth rate.

We use the convention that mii = 0 and rii = 0, so that when gi > 0,
∑n

j=1 mji = 1.

Individuals do not give birth out of their resident patch and death occurs everywhere.

The migration model is the same as the one considered by Arino and van den Driessche

(2003):

N ′ii(t) = d (N r
i (t)−Nii(t)) +

n∑
j=1

rij Nij(t)− giNii(t), (1)

and for j 6= i

N ′ij(t) = gimjiNii(t)− rij Nij(t)− dNij(t). (2)
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We assume that some travelers return home. The return matrix R is R(i, j) = rij and

the outgoing matrix M is M(i, j) = gjmji. We assume that these two matrices have the

same zeros and nonzeros pattern, because they represent the return to i from j and the

outgoing travel from j to i respectively. We assume that these matrices are irreducible,

so that the n patches cannot be separated in two isolated groups. It is always possible to

reduce the global study to that of irreducible components, thus our assumption does not

reduce the generality of our results.

N r
i
′(t) = 0 means that the population of residents in each patch is constant. However

the population size in a patch i can vary.

Theorem 1 (Arino and van den Driessche (2003)) The system given by Eq. (1)

and (2), for the initial value Nij(0) > 0, has the global asymptotically stable equilibrium

N ii =
1

1 + giCi
N r
i (3)

N ij = gi
mji

d+ rij

1

1 + giCi
N r
i (4)

where Ci =
n∑
k=1

mki

d+ rik
.

The state of the system is given by n2 components Nij; it is an element of the nonnegative

orthant [0,+∞)n
2
. Define the line-matrix N by:

N = (N11, N12, . . . , N1n, N21, . . . , N2n, . . . . . . , Nn1, . . . , Nnn)T . (5)

The migration model becomes

N ′(t) =MN(t), (6)
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where M = diag(Mii) is a block-diagonal matrix, with the block Mii for all i given by

Mii =



−gi ri2 + d ri3 + d . . . rin + d

gim2i −ri2 − d 0 . . . 0

gim3i 0 −ri3 − d . . . 0

...
...

. . . . . .
...

gimni 0 . . . 0 −rin − d


. (7)

3 The complete model

We assume that the transitions are independent of the disease status, which implies that

infectious and susceptible individuals have the same migration rate. With this assumption

the demographic change is given by Eq. (6). Let Sij(t) and Iij(t) be respectively the total

number of susceptible and infective individuals in patch i who are present in patch j at

time t: Nij(t) = Sij(t)+Iij(t) for all i, j = 1, . . . , n. We denote by βijk > 0, the proportion

of infectious contacts in patch j between a susceptible of patch i and an infective from

patch k, and κj > 0 the average total number of such contacts in patch j per time unit

(de Jong et al., 1995; Hethcote, 2000). Subsequently, the infection rate of individuals in

patch j is:
n∑
k=1

κj βikj Sij(t)
Ikj(t)

Np
j (t)

. (8)

The recovery rate γ is the same for all patches. The complete epidemic model is then:

I ′ii(t) =
n∑
k=1

rik Iik(t)− gi Iii(t) +
n∑
k=1

κi βiki Sii(t)
Iki(t)

Np
i (t)
− (γ + d) Iii(t) (9)

S ′ii(t) =
n∑
k=1

rik Sik(t)− gi Sii(t)−
n∑
k=1

κi βiki Sii(t)
Iki(t)

Np
i (t)

+ d (N r
i − Sii(t)) + γ Iii(t) (10)
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and for j 6= i,

I ′ij(t) = gimji Iii(t)− rij Iij(t) +
n∑
k=1

κj βikj Sij(t)
Ikj(t)

Np
j (t)
− (γ + d) Iij(t) (11)

S ′ij(t) = gimji Sii(t)− rij Sij(t)−
n∑
k=1

κj βikj Sij(t)
Ikj(t)

Np
j (t)
− d Sij(t) + γ Iij(t). (12)

As Sij(t) = Nij(t) − Iij(t), it is sufficient to study Eq. (1), (2), (9), and (11). The

differential equations governing the total number of infective individuals are:

I ′ii(t) =
n∑
k=1

rik Iik(t)− gi Iii(t) +
n∑
k=1

κi βiki Sii(t)
Iki(t)

Np
i (t)
− (γ + d) Iii(t) (13)

and for j 6= i,

I ′ij(t) = gimji Iii(t)− rij Iij(t) +
n∑
k=1

κj βikj Sij(t)
Ikj(t)

Np
j (t)
− (γ + d) Iij(t). (14)

Define Np the vector of Rn2
given by:

Np = (Np
1 , N

p
2 , · · · , Np

n, N
p
1 , · · · , Np

n, · · · · · · , Np
n)T . (15)

Np � 0 means thats all the components of vector Np are positive. Using the same

ordering as that of Nij, we define the vector I. The system given by Eq. (13) and (14) is

written as:

I ′(t) = D I(t)− (γ + d) I(t) + diag(Np(t))−1 diag(N(t)− I(t))B I(t). (16)
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The matrix D representing migration is a diagonal block matrix D = diag(Dii), where

the block diagonal matrices Dii are defined by:

Dii(i, k) = rik, Dii(k, i) = gimik, Dii(k, i) = −gi, Dii(k, k) = −rik. (17)

namely:

Dii =



−gi ri2 r13 · · · rin

gim2i −ri2 0 · · · 0

gimi3 0 −ri3 · · · 0

...
...

. . . . . .
...

gimni 0 · · · 0 −rin


. (18)

Denoting eij the canonical basis of Rn2
, the matrix B is defined by:

B eij =
n∑
k=1

κjβikj ekj. (19)

B has the form

B =


B11 · · · B1n

...
. . .

...

Bn1 · · · Bnn

 . (20)

The matrix B is the block matrix B = (Bjk), where each block Bjk is an (n×n) diagonal

matrix. The (i, i) entry of Bkk for every i is equal to κiβkki; for j 6= k the (i, i) entry of

Bjk for every i is κiβkji. For every k,

Bkk =


κ1 βkk1 · · · 0

...
. . .

...

0 · · · κn βkkn

 , (21)
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and for every (j, k), with j 6= k,

Bjk =


κ1 βkj1 · · · 0

...
. . .

...

0 · · · κn βkjn

 . (22)

The complete SIS system is given by:


N ′(t) = MN(t)

I ′(t) = D I(t)− (γ + d) I(t) + diag(Np(t))−1 diag(N(t)− I(t))B I(t).

(23)

4 Properties

We denote by “≤ ”the point-wise ordering in Rn, which is the ordering generated by the

cone Rn
+. We also define the classical ordering in Rn

+ by:

x < y if for any i xi ≤ yi and x 6= y

x� y if for any i xi < yi.

4.1 Positively Invariant Set

We define the vector:

Nr = (N r
1 , N

r
1 , · · · , N r

1 , N
r
2 , · · · , N r

2 , · · · , · · · , N r
n, N

r
n, · · · , N r

n)T . (24)

Proposition 1 Define the set

K = {(N, I) : 0 ≤ N ≤ Nr; 0 ≤ I ≤ Nr}.

8



Then K is a compact positively invariant set of Eq. (23).

Proof

We show that the vector field points inward from the faces of K.

If Nii = 0, then

N ′ii(t) = dN r
i +

n∑
j=1

rij Nij(t) ≥ 0. (25)

If ∀j 6= i, Nij = 0, then N ′ij(t) = gimjiNii(t) ≥ 0. If Nii = N r
i , then ∀j,Nij(t) = 0

and N ′ii(t) = −dNii(t) − giNii(t) ≤ 0. If ∀j 6= i, Nij = N r
i , then Nii = 0 and N ′ij(t) =

−rij Nij(t)− dNij(t) ≤ 0.

If Iii = 0,∀i, then

I ′ii(t) =
n∑
k=1

rik Iik(t) +
n∑
k=1

κi βikiNii(t)
Iki(t)

Np
i (t)
≥ 0. (26)

If ∀j 6= i, Iij = 0, then

I ′ij(t) = gimji Iii(t) +
n∑
k=1

κj βikj Nij(t)
Ikj(t)

Np
j (t)
≥ 0. (27)

If Iii = N r
i , then Iij(t) = 0 ∀j 6= i, and I ′ii(t) = −gi Iii(t) − (γ + d) Iii(t) ≤ 0, because

rii = 0.

If ∀j 6= i, Iij = N r
i , then Iii(t) = 0, Nij − Iij(t) = Nij(t)−N r ≤ 0, and

I ′ij(t) = −rij Iij(t) +
n∑
k=1

κj βikj (Nij(t)−N r)
Ikj(t)

Np
j (t)
− (γ + d) Iij(t) ≤ 0. (28)

Hence the vector field associated with Eq. (1), (2), (13), and (14) points inward from

the faces of K, so K is positively invariant under the flow of Eq. (23). Moreover, K is a

closed bounded subset of R2n2
.
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4.2 Reduction of Eq. (23)

Eq. (23) is a triangular system. Theorem 2 reduces the stability analysis to that of a

smaller system.

Theorem 2 (Vidyasagar, 1980: Theorem 3.1 and 3.4) Consider the following C1

system  x′(t) = f(x(t)) x ∈ Rn , y ∈ Rm

y′(t) = g(x(t), y(t))
(29)

with an equilibrium point (x∗, y∗): f(x∗) = 0 and g(x∗, y∗) = 0.

If x∗ is globally asymptotically stable (GAS) in Rn for the system x′(t) = f(x(t)), and if

y∗ is GAS in Rm for the system y′(t) = g(x∗, y(t)), then (x∗, y∗) is locally asymptotically

stable for Eq. (29). Moreover, if all trajectories of Eq. (29) are forward bounded, then

(x∗, y∗) is GAS for Eq. (29).

We consider Eq. (23) in the positively invariant compact set K and we know that the

subsystem N ′(t) = MN(t) has a unique globally asymptotically stable equilibrium de-

fined in Theorem 1. We denote this equilibrium by N , and the corresponding vector by

N
p
. From Theorem 2 it is sufficient to study the stability of the reduced system:

I ′(t) = D I(t)− (γ + d) I(t) + diag(N
p
(t))−1 diag(N(t)− I(t))B I(t). (30)

4.3 Basic reproduction ratio R0

The basic reproduction ratio was computed by Arino and van den Driessche (2003). Here,

we express it in terms of the matrices B and D. We use the framework of Diekmann

et al. (1990), Diekmann and Heesterbeek (1999), and van den Driessche and Watmough

(2002). We define

F = diag(N
p
)−1 diag(N − I)B I, (31)
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the function of appearance of new infections in infectious compartments and

V = D I − (γ + d)I, (32)

the transfer in compartments by all other means.

The Jacobian F of F at the disease free equilibrium is:

F = diag(N
p
)−1 diag(N)B (33)

and the Jacobian V of V is:

V = D − (γ + d) In2 (34)

with In2 the identity matrix of Rn2
.

The matrix D is a Metzler matrix (nonnegative off diagonal terms) with a zero column

sum. This implies that 0 is a simple eigenvalue of D, the other eigenvalues having a

negative real part (Jacquez and Simon, 1993).

The eigenvalues of V are the ones of D subtracted of (γ + d), hence V is a stable

Metzler matrix with −(γ + d) as stability modulus. This implies that V is nonsingular.

We then apply the results of van den Driessche and Watmough (2002) to obtain the basic

reproduction ratio:

Proposition 2 The basic reproduction ratio is given by

R0 = ρ
(
−F V −1

)
= ρ

(
− diag(N

p
)−1 diag(N)B(D − (γ + d) In2)−1

)
, (35)

where ρ(A) denotes the spectral radius of the matrix A.
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5 Result

Theorem 3 We consider Eq. (23) on K.

• If R0 ≤ 1 then the system is globally asymptotically stable at the disease free equi-

librium.

• If R0 > 1 then there exists a unique endemic equilibrium (N, Ī) with I � 0 which

is globally asymptotically stable on K \ {(N, 0), N ∈ [0,+∞)n
2}.

Proof

It is sufficient to study the reduced Eq. (30) which is rewritten as:

I ′(t) = (F + V ) I(t)− diag(N
p
(t))−1 diag(I(t))B I(t). (36)

To prove this theorem, we use Hirsch’s (1984) theorem:

Theorem 4 (Hirsch, 1984: Theorem 6.1) Let F be a C1 vector field in Rq, whose

flow φ preserves Rq
+ for t ≥ 0 and is strongly monotone in Rq

+. Assume that the origin

is an equilibrium and that all trajectories in Rq
+ are bounded. If the matrix-valued map

DF : Rq → Rq × Rq is strictly decreasing, in the sense that

if x < y then DF (x) > DF (y) (37)

then either all trajectories in Rq
+ \ {0} tend to the origin, or there is a unique equilibrium

p, (p� 0) in the interior of Rq
+ and all trajectories in Rq

+ \ {0} tend to p.

The conclusion and the proof of this theorem are similar when Rq
+ is replaced by a

positively invariant subset K of Rq
+.

Let

X(I) = (F + V ) I − diag(N
p
)−1 diag(I)B I, (38)
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the C1 vector field in K.

The flow preserves K for t ≥ 0. The derivative DX is:

DX(I) = D − (γ + d) In2 + diag(N
p
)−1 diag(N − I)B

− diag(N
p
)−1 diag(B I).

(39)

DX(I) being an irreducible n2 × n2 Metzler matrix, the flow of X is strongly monotone

in K. Because each row of B is nonnegative and nonzero, and the matrix-valued map

DX is a decreasing function of I, so DX(I) is strictly decreasing: if I1 < I2 then

DX(I1) > DX(I2). Applying the Theorem 6.1 of Hirsch (1984), we deduce that either

all trajectories in K tend to the origin (which is the disease free equilibrium), or there is

a unique equilibrium in the interior of K and all trajectories in K \
(

[0,+∞)n
2 × {0}

)
tend to this equilibrium.

The stability modulus α(M) of a matrix M is the largest real part of the elements of

the spectrum Spec(M) of M .

α(M) = max
λ∈Spec(M)

Re(λ). (40)

The Jacobian J(0) of Eq. (30) at the disease free equilibrium is J(0) = F +V . F ≥ 0 and

V being a nonsingular Metzler matrix, F + V is a regular splitting of J(0). From Varga

(1962), ρ(−FV −1) < 1 is equivalent to α(F +V ) < 0. Hence the disease free equilibrium

is locally asymptotically stable. Thanks to Hirsch’s theorem, the origin is then globally

asymptotically stable if R0 < 1. If R0 > 1, this is equivalent to α(J(0)) > 0. The disease

free equilibrium is then unstable; there exists a unique attracting endemic equilibrium

I � 0. This endemic equilibrium I satisfies:

(D − (γ + d)) I + diag(N
p
)−1 diag(N − I)B I = 0. (41)
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Thanks to the non-negativeness of B and to the fact that I � 0 we get:

DX(I) I = − diag(N
p
)−1 diag(B I) I < 0. (42)

Using the fact that DX(I) is a Metzler matrix, Eq. (42) implies that it is stable (Berman

and Plemmons, 1994: criterion I28 of Theorem 6.2.3).

The stability modulus then satisfies α(DX(I)) < 0. This proves the local asymptotic

stability of I, and using Theorem 4 we deduce that I is globally asymptotically stable if

R0 > 1.

To complete the proof, we consider the case R0 = 1, which is equivalent to

α(F + V ) = 0. As F + V is an irreducible Metzler matrix, there exists a positive vector

v such that (F + V )T v = 0. We consider the following Lyapunov function

V (I) = 〈 I| v〉, (43)

on K. The derivative along the trajectories is:

V ′ = −〈 diag(N
p
)−1 diag(I)BI | v〉 ≤ 0. (44)

This proves the local stability of the disease free equilibrium. By the Theorem 4 of Hirsch

we are necessarily in the case where the disease free equilibrium is attractive, which means

that the disease free equilibrium is globally asymptotically stable.

6 Simulations

We consider two patches with parameters chosen so as to describe gonorrhea (Arino

and van den Driessche, 2003). The time unit is a day; the recovery rate is γ = 0.04;
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the average lifespan is 75 years, and d = 1/(75 × 365). We assume g1, g2 > 0 so that

m12 = m21 = 1. The disease transmission coefficients are equal in each patch for all

contact types: βikj = βk,∀i, j = 1, 2, and

F =
1

N
p

1N
p

2



κ1β1N11N
p

2 0 κ1β1N11N
p

2 0

0 κ2β2N12N
p

1 0 κ2β2N12N
p

1

κ1β1N21N
p

2 0 κ1β1N21N
p

2 0

0 κ2β2N22N
p

1 0 κ2β2N22N
p

1



=
1

N
p

1 N̄
p
2

F̂11 F̂11

F̂22 F̂22

 . (45)

− V =



g1 + γ + d −r12 0 0

−g1 r12 + γ + d 0 0

0 0 r21 + γ + d −g2

0 0 −r21 g2 + γ + d


=

V11 0

0 V22

 . (46)

V −111 =
1

∆1

r12 + γ + d r12

g1 g1 + γ + d

 =
1

∆1

V̂ −111 . (47)

V −122 =
1

∆2

g2 + γ + d g2

r21 r21 + γ + d

 =
1

∆2

V̂ −122 . (48)

− FV −1 =
1

∆1 ∆2 N̄
p
1 N̄

p
2


∆2 F̂11 V̂

−1
11 ∆1 F̂11 V̂

−1
22

∆2 F̂22 V̂
−1
11 ∆1 F̂22 V̂

−1
22

 , (49)

where ∆1 = (γ + d) (γ + d+ g1 + r12) and ∆2 = (γ + d) (γ + d+ g2 + r21).
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The matrix of Eq. (6) is a 4× 4 matrix with rank two. Proposition 3 will help us to

reduce the computation of its spectral radius to that of a 2× 2 non singular matrix.

Proposition 3 Let P =

P11 P12

P21 P22

 be a rank n matrix with P11, P12, P21, P22 n × n

square matrices.

If P12 is invertible, and P12 P21 − P12 P22 P
−1
12 P11 = 0, then

ρ(P ) = ρ
(
P11 + P12 P22 P

−1
12

)
. (50)

Moreover, if P12 commutes with P22,

ρ(P ) = ρ (P11 + P22) . (51)

Proof

We use the Schur complement and the properties of the determinant. Recall that, if A is

an invertible matrix, and M =

A B

C D

 is a bloc matrix, then the Schur complement of

A in M is the matrix D − CA−1B. The Schur complement is usually used to obtain the

following factorization: M =

 In 0

CA−1 In


 A 0

0 D − CA−1B


 In A−1B

0 In

 .

Let λ ∈ Spec(P ), then

det(P − λ I2n) = det

P11 − λ In P12

P21 P22 − λ In



= (−1)n det

 P12 P11 − λ In

P22 − λ In P21

 .

(52)
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P12 is invertible and, using the Schur complement P21 − (P22 − λIn)P−112 (P11 − λIn) of

the last matrix in Eq. (52) yields the factorization

 P12 P11 − λ In

P22 − λ In P21

 =

 In 0

(P22 − λ In)P−112 In


P12 0

0 P21 − (P22 − λIn)P−112 (P11 − λIn)


In P−112 (P11 − λ In)

0 In


(53)

Then

det(P − λ I2n) = (−1)n det(P12) det
(
P21 − (P22 − λIn)P−112 (P11 − λIn)

)
= (−1)n det

(
P12 P21 − P12 P22 P

−1
12 P11 + λ (P11 + P12 P22 P

−1
12 )
)

= (−λ)n det
(
P11 + P12 P22 P

−1
12 − λ In

)
.

The conclusions of Proposition 3 follow.

The application of Proposition 3 to (−F V −1) yields:

R0 =
1

∆1 ∆2 N̄
p
1 N̄

p
2

ρ
(
F̂11

(
∆2 V̂

−1
11 + ∆1 V̂

−1
22 F̂22 F̂

−1
11

))
.

Or

R0 =
1

∆1 ∆2 N̄
p
1 N̄

p
2

ρ(∆2 V̂
−1
11 F̂11 + ∆1 V̂

−1
22 F̂22). (54)

With Eq. (54), the calculation of R0 is straightforward because we deal with a 2× 2 non

singular matrix.

Set

A = ∆2 V̂
−1
11 F̂11 + ∆1 V̂

−1
22 F̂22.
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Then

R0 =
tr(A) + (tr(A)2 − 4 det(A))1/2

2 ∆1 ∆2 N̄
p
1 N̄

p
2

. (55)

We simulate in order to underline the effect of the migration of individuals on the

metapopulation. We compute R0 using Eq. (55). The first parameters are :

κ1 = 1, κ2 = 1, g1 = 0.35, g2 = 0.05, β1 = 0.02, β2 = 0.05, r12 = 0.2, r21 = 0.05, N r
1 =

1500, N r
2 = 1500, γ = 1/25, d = 1/(75× 365).

When the two patches are isolated, the disease will die out in patch 1 with R1
0 = 0.5

while it is endemic in patch 2 with R2
0 = 1.25. When the two patches exchange people

according to the parameter values, R0 = 0.96: the solutions go to zero and the disease

dies out in the metapopulation (Figure 1(a)).

In Figure 1(b), we keep the same parameters as in Figure 1(a) except that r12 is

decreased significantly from 0.2 to 0.02. The reproduction number in the metapopulation

grows toR0 = 1.1, whereasR1
0 andR2

0 remain unchanged because they are not affected by

a modification of the mobility coefficients gi,mij, and rij. The disease becomes endemic

in the metapopulation. Decreasing r12 accounts for lengthening the stay of individuals in

patch 2 where the disease is initially endemic. The people from patch 1 spend most of

their time in the endemic patch 2.

The same explanations hold when in Figure 1(a) g1 increases from 0.35 to 0.85 (R0 =

1.03) because g1 reflects the flow of individuals from patch 1 to patch 2. This is shown

in Figure 2(c).

Figure 3(a) shows that the metapopulation remains disease free when all patches are

initially disease free. In Figure 3(a), we keep the parameters of Figure 1(a) and decrease

β2 from 0.05 to 0.03.

Figure 3(b) shows that the metapopulation remains endemic when all patches are

initially endemic. This is the consequence of our Theorem 3 and of the Theorem 6 of

Arino and van den Driessche (2003). In Figure 3(b), we keep the parameters of Figure 1(a)

18



and increase β1 from 0.02 to 0.08.

7 Conclusion

Arino and van den Driessche (2003) showed local stability and studied global behavior

numerically. They conjectured the global stability of equilibria depending on the basic

reproduction number. We turned this conjecture into Theorem 3.
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Figure 1: (a) The solutions of the SIS system (23) converge to the DFE when the parameters are
(a) g1 = 0.35, g2 = 0.05, β1 = 0.02, β2 = 0.05, r12 = 0.2 : R1

0 < 1, R2
0 > 1, R0 < 1. (b) The solutions

converge to the endemic equilibrium when the parameters are g1 = 0.35, g2 = 0.05, β1 = 0.02, β2 =
0.05, r12 = 0.02 : R1

0 < 1, R2
0 > 1, R0 > 1.
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Figure 2: (c) The solutions of the SIS system (23) converge to the endemic equilibrium when the
parameters are the same as in Figure 1(a) except g1 = 0.85 instead of g1 = 0.35 : R1

0 < 1, R2
0 >

1, R0 > 1.
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Figure 3: (a) The solutions of the SIS system (23) converge to the DFE when all patches are initially
disease free. The parameters are g1 = 0.35, g2 = 0.05, β1 = 0.02, β2 = 0.03, r12 = 0.2 : R1

0 <
1, R2

0 < 1, R0 < 1. (b) The solutions of the SIS system (23) converge to the endemic equilibrium
when all patches are initially endemic. The parameters are g1 = 0.35, g2 = 0.05, β1 = 0.08, β2 =
0.05, r12 = 0.2 : R1

0 > 1, R2
0 > 1, R0 > 1.
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