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Abstract. Outputs of simulation codes making use of the HDF5 file
format are usually and mainly composed of several different attributes
and datasets, storing either lightweight pieces of information or contain-
ing heavy parts of data. These objects, when written or read through the
HDF5 layer, create metadata and data IO operations of different block
sizes, which depend on the precision and dimension of the arrays that are
being manipulated. By making use of simple block redistribution strate-
gies, we present in this paper a case study showing HDF5 IO performance
improvements for “in-memory” files stored in a distributed shared mem-
ory buffer using one-sided communications through the HDF5 API.

Keywords: Data Redistribution, Distributed Shared Memory, HDF5,
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1 Introduction

HDF5 [11], the Hierarchical Data Format, allows users to write data output in
a very flexible manner. One file can be composed of different datasets, usually
containing a large amount of data, and of attributes, storing small pieces of
information. Datasets can be simple scalars or N-dimensional vectors written
in parallel using hyperslab selections – these selections depend entirely on the
code implementation. Parallel writes or reads can be issued in a uniform manner
or can follow a totally random pattern. Concurrent with these data IO opera-
tions, HDF5 metadata is written and can be accessed several times if objects
are opened, created or closed or if the metadata has not been previously cached.
Therefore a complete HDF5 file write or read in parallel may consist of a large
number of accesses in a complex pattern.

The HDF5 architecture allows the creation of customized IO methods called
drivers, one well-known parallel driver is the MPI-IO driver, discussed in section
2. Disk IO being a significant and now commonplace bottleneck in simulations,
we developed a parallel virtual file driver called the DSM driver which allows
one to redirect HDF5 IO operations in parallel to a distributed shared memory
(DSM) buffer (the reader is referred to [9] and [8] for a more complete introduc-
tion to the DSM driver and communicators). Simulation processes may write
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in-memory HDF5 files using various types of communication, the principal in-
tended use of these in-memory files being code-coupling of parallel applications.
The original implementation made use of two-sided communication only; we re-
cently extended it to make use of one-sided communication – we focus in this
paper only on one-sided transfers and consider the case where the nodes host-
ing the DSM are different from the nodes hosting the simulation processes, i.e.
where traffic between them must traverse the network. We present in section 3
the MPI one-sided communicator used for this study, along with an additional
communicator specially designed for the Cray XE6.

In the original implementation, HDF5 files are written using a linear address
space where the file grows in size by extending upwardly the address range used.
The addresses are spread (evenly by default) across a series of DSM host pro-
cesses so that as the file grows in size and data is written into higher addresses
more network links are utilized and the higher the transfer bandwidth should be.
In practice, most data reads/writes for datasets or hyperslabs are significantly
smaller than the entire file and thus use only a small number of memory parti-
tions – and hence network links, at any given time, which limits the bandwidth
reached. We extend this strategy in section 4 by remapping the address space
nonlinearly using varying block sizes among DSM host processes (thereby dis-
tributing traffic more evenly). We present a case study showing the performance
obtained in section 5 and compare it to related studies in section 6.

2 HDF5 File IOs

HDF5 IOs can be produced in very different ways. As mentioned above, drivers

allow users to select a suitable IO mechanism for the system. One frequently
used driver is the MPI-IO driver, best suited for parallel file systems, since it uses
MPI-IO underneath. Whilst MPI-IO and implementations such as ROMIO [10]
have been optimized for various types of accesses depending on the file system
used, HDF5 also provides its own ways of tuning and writing data in parallel.
For instance, the chunking mechanism allows files and particularly datasets to
be stored in a non-contiguous form, i.e. in equally sized chunks, which can be
helpful for parallel file systems, over which datasets can therefore be striped.
Additional optimizations have also been made in the MPI-IO driver and HDF5
library itself for specific file systems such as the Lustre file system [6].

These enhancements are particularly useful in a traditional pipeline model
where data is archived and post-processed from file systems, however bandwidth
offered by file systems is limited. Introducing the DSM driver in the pipeline
allows us to couple two different applications in parallel through the network
by using the HDF5 interface. This offers an additional exchange method before
saving post-processed data to disk for archiving purposes. Parallel optimizations
implemented in the HDF5 library can be re-used by the DSM driver, such as the
chunking mechanism, but other types of accesses specific to file systems need to
be adapted and re-optimized within the driver itself.
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3 DSM Driver and Communicators

As opposed to the MPI-IO driver, where the application is effectively coupled

to the file-system, when using the DSM driver, two applications – parallel simu-
lation and DSM host (integrating post processing code) – are coupled together
through a communication layer, referred to as an inter-communicator. The DSM
architecture being modular, permits different inter-communicator types to be
implemented, which can follow one-sided or two-sided communication patterns.
For this case study, two different one-sided inter-communicators are considered:
one based on MPI RMA and one specific to Cray systems, based on an API
called DMAPP.

MPI RMA Inter-communicator. The MPI RMA communicator makes use
of the passive MPI RMA communication mechanism [5]. When the DSM is
allocated, MPI_Alloc_mem is called and the window is defined as the size of the
requested HDF5 file. MPI_Put can then be issued in a one sided manner using
MPI_Win_lock and MPI_Win_unlock between transactions.

The communicator can be dynamically created (using the dynamic process
management set of functions) but due to the numerous restrictions imposed by
MPI implementations, on large systems (e.g. on Cray systems), the communica-
tor has to be defined using an MPI_Intercomm_create call within an MPMD job
(where the global communicator has been previously split between applications).

DMAPP Inter-communicator. The DMAPP communicator is derived from
the aforementioned MPI RMA communicator. On Cray machines that support
the latest generation of interconnect, Gemini [3], Cray defines the Distributed
Memory Application API, referred as DMAPP [4]. This API is used on these
systems to implement one-sided libraries such as Cray SHMEM and is also used
by PGAS compilers (Co-array Fortran and UPC). We have implemented a com-
municator taking direct advantage of this lower level one-sided communication
library. On the simulation side, to avoid memory overheads created by symmetric
memory usage, we make use of non-symmetric memory, allocated and registered
to the DMAPP API on the DSM hosts only. This registration step provides
memory segment information which is then exchanged with the simulation (only
once at initialization time, assuming that the DSM size is fixed between time
steps). dmapp_put calls can then be issued to transfer data into the DSM.

4 Redistribution Strategies

In our implementation the DSM is distributed among p processes, each process
allocating l bytes of data, which gives a total DSM length of L = l × p. Using
linear addressing, the DSM is contiguously filled from process rank 0 to process
rank (p−1). If a simulation writes a file of size S, the actual number of processes
used to receive data will thus be

⌈

S
l

⌉

with S ≤ L. Whilst this method can provide
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relatively good performance when S ≃ L, if the file written is composed of
several different datasets (i.e. each much smaller than L), which are contiguously
(and sequentially) mapped onto the DSM, individual simulation processes will
waste bandwidth by using only a small partition of the network links available
– particularly so when datasets are divided between simulation processes and
written using hyperslab selections. We therefore sought better strategies which
could be enabled on demand.

4.1 Mask Redistribution

When S ≪ L, a first simple strategy is to automatically re-size the DSM window
to the requested file size without any concrete memory reallocation. This can
effectively improve the overall bandwidth by making S ≃ L but this brings two
main drawbacks: the most evident one is that it wastes memory allocated on
the DSM, the second one is that it does not solve the multiple dataset problem
mentioned above.

4.2 Block Cyclic Redistribution

The second strategy to be considered in this case study is a block cyclic redistri-
bution [13]. It is a simple strategy and it potentially allows a good load balance
between DSM processes. A block size s being fixed, the DSM address mapping
is decomposed into L

s
blocks. For convenience, the DSM length L is adapted so

that it becomes a multiple of s. Blocks are distributed in a round-robin fashion,
the Bth block is sent to the process rank (B mod P ) or (B mod Bc) (if Bc, the
number of blocks in a cycle is not equal to P , the number of processes). Hence
every address a is associated to the following triplet (p, o, i) which can be written
as:

a 7→

(

B mod P,

⌊

B

P

⌋

, a mod s

)

(1)

the first term p being the process index within the DSM, o the local block offset
in a process and i the local address offset within a block.

This method presents two obvious advantages: bandwidth is not wasted even
if S ≪ L; data chunks are load balanced, which is especially beneficial when
multiple datasets are written. However this method can potentially create a
huge number of data transactions, depending on the block size chosen, which
could result in a performance drop.

4.3 Random Block Redistribution

The third strategy tested consists in re-using the algorithm previously described,
scattering the DSM address space into pieces of size s. Another step is then added
to the redistribution pipeline, shuffling the blocks in a randomized but constant
manner (so that blocks can be retrieved).

This method can present another advantage compared to the previous so-
lution (but keeps the same main drawback), it may avoid a possible network
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congestion if two simulation processes were sending data to the same DSM pro-
cess using the block cyclic redistribution algorithm – which may occur with
a periodic frequency introduced by certain communication patterns and data
distributions in the file.

5 Performance Evaluation

For these tests, we use two systems: an InfiniBand QDR 4X cluster with MVA-
PICH2 [2] composed of 15 nodes (180 cores) and a Cray XE6 system composed
of two racks, i.e. 176 compute nodes (4224 cores), with Cray MPT (derived
from MPICH2 [1] [7]). To be able to evaluate the performance obtained using
the previously defined strategies, we first run micro-benchmarks on these two
machines.

5.1 Internode Micro-benchmark

The micro-benchmarks are derived from the OSU test suite [2] and identify the
bandwidth performance on the different systems for different sizes of packets
between two different nodes. Only put operations are tested here. Results are
shown below in figure 1.

A careful examination of these charts shows a performance drop point with
MVAPICH2 for packets of 16KB, though the overall bandwidth reflects Infini-
Band QDR 4X performance. For the XE6, theoretical unidirectional performance
is estimated at 5GB/s. Here the DMAPP interface performs better than the
MPI one-sided interface. Two main drop points can however be noticed, 4KB
for DMAPP and 1KB for MPI – these points correspond to the standard offload
thresholds, making use of the RDMA engine for large messages.

5.2 Single Dataset Benchmark

For the following benchmarks, write bandwidth tests can be seen as basic client-
server tests: a first set of processes (servers) hosts the DSM and waits for in-
coming data, a second set of processes (clients) writes HDF5 data in parallel to
the DSM using the HDF5 DSM driver. The measured bandwidth corresponds to
the average time of a complete file write (HDF5 create, write and close opera-
tions). The first benchmark writes one file composed of one single dataset using
hyperslab selections.

Contiguous/Linear distribution. The DSM is distributed among 8 nodes
(32 processes, 4 per node) on the InfiniBand cluster and among 88 nodes (176
processes, 2 per node) on the XE6. To keep a certain consistency between the
systems, the local buffer size allocated per node is kept to 512MB, which creates
a DSM of 8×512 = 4GB on the InfiniBand cluster and a DSM of 88×512 = 44GB
on the XE6. Given this fixed DSM (file) size, a single dataset of the matching size
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Fig. 1. Internode bandwidth micro-benchmark – (Left) InfiniBand QDR 4X cluster
with MVAPICH2 – (Right) Cray XE6 with Cray MPT and DMAPP.
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Fig. 2. Write transfer rate of an (in-memory) HDF5 file composed of one single dataset
using contiguous distribution – (Left) InfiniBand QDR 4X cluster – (Right) Cray XE6.

is written from the combined send nodes (smaller pieces per process as number
of processes increases).

For writing, on the XE6, the number of processes is 4 per send node until
88 nodes are reached (352 processes) at which point, processes per send node
are increased up to 24 – giving 2112 processes writing data in total. On the
Infiniband cluster, 7 send nodes are available and 4 processes per node are used
initially and then incremented to 12 per send node giving a maximum of 84 send
processes. (Note that 4 processes per send node were selected as the starting
point, because with fewer processes injecting data, we are unable to fully utilize
the individual network links). Therefore, as shown in figure 2: on the InfiniBand
cluster, a peak bandwidth is observed at 12.5GB/s with 32 processes (8 receive
and 7 send links active); on the XE6, at 40.5GB/s with 352 processes (88 send
and receive links active). Note that the XE6 system used for the tests has a 2D
torus (1 × 6 × 16), and the resulting bandwidth is lower than that achievable
using a 3D torus.

Block Cyclic and Random Block Redistributions. For different block
sizes, we run the same benchmark as above, using a single dataset. This test
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allows us to evaluate block redistribution advantages as opposed to a simple
contiguous distribution. Results are presented in figures 3 and 4.
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Fig. 3. Write transfer rate on InfiniBand QDR 4X cluster of an (in-memory) HDF5
file composed of one single dataset using block cyclic redistribution.
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(a) MPI RMA communicator.
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Fig. 4. Write transfer rate on Cray XE6 of an (in-memory) HDF5 file composed of one
single dataset – (Left) Block cyclic redistribution – (Right) Performance comparison
(difference) between block cyclic and contiguous distributions.
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On both systems, the bandwidth drop points of section 5.1 can be observed.
While these drop points had a small effect on the micro-benchmark, they lead
to a significant slow-down in the HDF5 write operations when those block sizes
are used repeatedly. On the XE6 system, a significant improvement compared
to the contiguous write is evident for block sizes belonging to the [16KB; 64KB]
interval with the MPI RMA communicator and for block sizes below 4KB for the
DMAPP communicator. Since metadata operations are usually very small trans-
fers, being able to use this communicator in combination with the MPI RMA
communicator is an advantage for this system. However one can also notice in
figure 3 that there is no improvement at all on the InfiniBand cluster when using
a block cyclic method if only a single dataset is written into the file (compare
the peak transfer rate to that of the left of figure 2). The transfer rates for the
full DSM sized dataset are in general slower using the block/random redistri-
bution on the InfiniBand system and this is because breaking the data writes
into many smaller blocks does not improve performance as can be seen from the
micro-benchmark result of figure 1.

Random block results are not shown here – for brevity – but globally in-
crease the bandwidth as one may see in the next benchmark, and avoid possible
congestion issues in the DSM.

5.3 Multiple Dataset Benchmark

To reflect the behaviour of a common simulation code, the previous benchmark
is reused here, this time creating a file composed of 10 datasets instead of a single
one. The same configuration is used as the previous tests, each of the datasets
has the same fixed size and their sum is the size of the allocated DSM, i.e. 4GB
for the InfiniBand cluster and 44GB for the XE6. Results are shown in figure 5.
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Fig. 5. Write transfer rate using MPI RMA communicator of an (in-memory) HDF5
file composed of 10 datasets – (Left) InfiniBand QDR 4X cluster – (Right) Cray XE6.

It is evident from this figure that writing using block redistribution is much
more efficient than linear mapping. Since each dataset in the linear HDF5 mem-

ory space is contiguous, writing 10 datasets in parallel but sequentially in time,
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causes only one tenth of the links to become active for each individual dataset.
By redistributing blocks for each of the much smaller datasets across all pro-
cesses, we make use of all of the links for all of the transfers. For block cyclic
redistribution, providing each dataset is at least s × P in size, the data will be
well distributed.

It is perhaps surprising that the graph of figure 5 (left) shows a significant
drop in transfer rate as the number of send processes increases. The drop is
smaller for random distribution than for cyclic and this can be explained by
noting that we have used 4 processes per listening node, so in fact the cyclic
redistribution hits the same link 4 times in succession, which will not generally
happen for the random distribution. We therefore see a more gradual fall off in
line with figure 2 (left) for the random mode, the overall drop being caused by
the increase in individual number of transfers as the effect of latency and lower
performance for smaller packets dominates.

6 Related Work and Discussion

The results presented here appear to be typical for the kinds of system tested,
but can however be affected by the network topology and capabilities, system
configuration, number of nodes used, number of processes per node, and so on.
The space of potential combinations of parameters for plots is beyond what can
be presented in a short paper so certain decisions as the number of processes
to use per node were made to try to maximize the data injection and network
saturation to give representative results. Note that the implementation of MPI
RMA for the XE6 is not yet optimized and the measured performance for large
messages (above 1KB) should be improved in the future [7]. Absolute bandwidths
may not therefore be indicative of all installations – though this does not affect
our results.

The improvements in transfer rates found when using redistribution are
broadly in line with expectations. In fact the advantages of data redistribu-
tion are well known and date back to the origins of message passing [13]. Many
projects have made use of block cyclic distribution as a means of improving per-
formance for scattered data, in particular PGAS languages (such as UPC [12])
provide options for shared array allocation using block cyclic layouts, which
can improve algorithmic performance. In fact our flexible communicator design
opens up the possibility that a PGAS based layer could be used directly instead
of MPI or DMAPP as we have presented here and we shall pursue this in future
work.

The observation that certain packet sizes are handled better by different
APIs also allows the possibility of further fine tuning transfers. IO operations
from HDF5 applications typically consist of many small metadata and larger
heavy data requests and these different needs can be served by switching com-
municators on the fly to use DMAPP for metadata and MPI RMA for heavy
data decomposed into blocks.
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7 Conclusion

We presented in this paper a case study where HDF5 files are sent to a DSM
using one-sided transfers and found that implementing redistribution strate-
gies significantly improves the performance of data writes for typical use cases
where multiple datasets are written into a much larger file. By choosing block
sizes that are optimal for the underlying hardware and matching the number of
send/receive nodes, we are able to improve the data bandwidth. Codes coupled
using the DSM driver are now able to communicate at speeds approaching the
maximum possible on the systems tested.
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