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Abstract

This paper is devoted to the minimization of the thickness of an elastic structure under
competitive loadings. We propose to determine an equilibrium thickness using game theory.
We consider two loads exercised separately on two parts of the plate and we aim to optimize
both compliances so we deal with a multiloading optimization problem. Firstly, the design
variable is taken to be the thickness of the plate. In a second step, we assume that the thickness
depends on two independent functions, that we consider as strategies. The multidisciplinary
optimization problem is solved as a non-cooperative game and we determine a Nash equilib-
rium. Finally, some numerical simulations are presented and discuted.

keywords: Multidisciplinary topology optimization, Variable thickness, Game theory, Nash Equi-
librium, finite element method, FreeFem++.

AMS Subject Classification: 35R30, 91A10.

1. Introduction
Structural optimization has important applications in large fields of applied sciences and engineer-
ing, and has taken more attention from many researchers and engineers in the last years. Re-
lated computational optimization methods have been received considerable attention in the recent
decades. By introducing the techniques of topology optimization to the design of continuum struc-
tures (Bendsøe, et al. (1988)), these methods have been applied with success to a variety of types
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of structural design problems. In general, structural optimization problems are of three classes, in-
cluding size, shape and topology optimization, for thorough details see for instance (Allaire, 2007;
Allaire, 2005). In this work, we consider the optimal design of a plate of variable thickness h. The
theme of this work stems from (Allaire 2005), where the optimal design of the plate is considered.
The aim of this paper is to use a game theory approach to determine the optimal thickness of a
plate subjected to two loads exercised separately, on two parts of the plate. Habbal, (2005) solved
a multidisciplinary optimization problem using a non-cooperative game (Nash Game) where the
strategy of the players is naturally defined.
In this paper, we firstly consider the state variable to be the plate’s thickness. Secondly, we as-
sume that the thickness depends on design strategies of the material s and t. Hence, we obtain a
multidisciplinary optimization problem. To determine the optimal thickness as Nash equilibrium,
we will use in both cases two criteria js and jt associated with the two players respectively. We
use, in this case, a concurrent optimization realized by an algorithm which solves the Nash game
between the two players. The two players act following different objectives; in particular, player 1
has to choose his strategies in order to minimize his function js, while player 2 has to minimize the
function jt. To use this optimization technique, we study different strategies for splitting variables
in topology optimization (see section 3).

2. Setting of the problem
Within the framework of linear elasticity, under the plane strain assumptions, we consider a flat
two-dimensional plate section Ω of variable thickness h(x)(see figure 1).

h(x)Ω x

z

Figure 1: Flat plate of variable thickness in the x direction only

The boundary of Ω is made of three disjoint parts ∂Ω = ΓD ∪ΓN ∪Γ, with Dirichlet boundary
conditions on ΓD, and Neumann boundary conditions on ΓN∪Γ. The boundary part ΓD is supposed
to be fixed , while ΓN is submitted to a g surface load and Γ is free of any load(see figure 2).
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Figure 2: Boundary conditions for an elastic plate: single load case
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The displacement u ∈ H1(Ω) is the solution of the linear elasticity system
−divσ = 0 in Ω

σ = 2µhe(u) + λhtr(e(u))I, I = Identity Matrix
u = 0 on ΓD

σ.n = g on ΓN

σ.n = 0 on Γ

(2.1)

where g ∈ (H−1/2(ΓN))2 is a given surface load, n is the outward normal to the boundary, σ is the
associated stress tensor, which is related via Hooke’s law to the linearized strain tensor e(u) via

σ = 2µhe(u) + λhtr(e(u))I

The linearized strain tensor e(u) is given by

e(u) =
1

2
(∇u+ (∇u)T ) =

1

2
(
∂ui

∂xj

+
∂uj

∂xi

)1≤i,j≤2

tr denotes the trace of a matrix, and λ, µ are Lame coefficients related to Young’s modulus E and
to the Poisson ratio ν by:

µ =
E

2(1 + ν)
λ =

Eν

(1− 2ν)(1 + ν)
(2.2)

We aim to optimize the plate by varying its thickness h which is limited by minimal values
hmin and maximal ones hmax, in the admissible set defined by

Uh = {h ∈ L∞(Ω), hmin ≤ h ≤ hmax a.e in Ω

∫
Ω

h(x)dx = h0|Ω|} (2.3)

where, h0 is an imposed mean thickness hmin ≤ h0 ≤ hmax. It is easy to construct a projection
operator for each of these constraints taken separately, so the projection operator is:

(P (h)) = max(hmin,min(hmax, h)). (2.4)
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3. Thickness optimization of an elastic plate
We recall classical results from the literature. Let us consider the compliance minimization prob-
lem :

min
h
j(h) (3.1)

where
j(h) =

∫
ΓN

guds, where u solves: (2.1) (3.2)

For a given h > 0 there exists a unique solution u of (2.1) in the space V , where

V = {v ∈ H1(Ω)2 such that v = 0 on ΓD} (3.3)

Théorème 1. The problem (3.1) admits at least one optimal solution.

Proof. As u is a solution of problem (2.1), then u is the unique solution of the following mini-
mization problem:

J(v) = {1

2

∫
Ω

(2µh|e(v)|2 + λh|divv|2)dx−
∫

ΓN

gvds} (3.4)

i.e.,
min

v
J(v) = 1

2

∫
Ω

(2µh|e(u)|2 + λh|divu|2)dx−
∫

ΓN
guds

= −1
2
(
∫

ΓN
guds)

= −1
2
j(h)

then,

j(h) = 2 max
v
{
∫

ΓN

gvds− 1

2

∫
Ω

(2µh|e(v)|2 + λh|divv|2)dx} (3.5)

It is then a supremum envelop of continuous affine with respect to the variable h, so it is convex
and lower semicontinuous.
As a convex function over Uh, it is also weak-* lower semicontinuous. Since the set Uh is weak-*
compact, there exists a minimum of j(h) over h.

We use the Lagrange multiplier method to derive an optimality system of equations from which
solutions of the optimization problem (3.1) may be determined.
Let u, v ∈ V , we define the Lagrangian

L(u, v, h) =

∫
ΓN

g.uds−
∫

Ω

(2hµe(u).e(v) + hλdivudivv)dx+

∫
ΓN

g.vds. (3.6)

Setting to zero the first variations with respect to the multiplier v yield the constraints

<
∂L
∂v

(u, v, h),Φ >= −
∫

Ω

(2hµe(u).e(Φ) + hλdivudivΦ)dx+

∫
ΓN

g.Φds. (3.7)
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Setting to zero the first variations with respect to u yield the adjoint equations

<
∂L
∂u

(u, v, h),Φ >= −
∫

Ω

(2hµe(Φ).e(v) + hλdivvdivΦ)dx+

∫
ΓN

g.Φds (3.8)

By combining the results we get

<
∂L
∂h

(u, v, h), w >= −
∫

Ω

(2µe(u).e(v) + λdivvdivu).wdx (3.9)

then
∇j(h) = −(2µe(u).e(v) + λdivvdivu) (3.10)

The topology design of a plate is investigated, a surface load is applied to the plate g =
(0,−100). The domain Ω is ] − 1, 1[×]0, 1[. The material response is given by equation (2.2)
with a Young’s modulus E = 100 and Poisson’s ratio ν = 0.3. The upper thickness is hmax = 1
and the lower thickness is hmax = 0.001.

The procedure described above does not require any great programming efforts in order to
solve the compliance topology design problem. In the case of compliance optimization, the state
or displacements u is the solution of the linear elasticity equation (2.1). We use P2×P2 Lagrange
finite elements to compute u, using FreeFem++, the thickness h is approximated by means of
piecewise-constant interpolation. The results are depicted on Figures 3 and 4.

Figure 3: Optimal plate

We remark that we have obtained a composite structure, i.e. the thickness values vary in the
interval [hmin, hmax], to find feasible ones we use a penalty technique to force the thickness to take
only value 0 or 1. For that, we redo some iterations of minimization using the thickness penalized.

hpen =
1− cos(πhopt)

2

where hopt is the thickness values obtained after convergence and hpen is the thickness value pe-
nalized.
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We present, in figure 4, the optimal plate obtained with a penalization techniques. Figure 5 present
the evolution of the cost function.

Figure 4: Optimal plate obtained using the penalization technique

Figure 5: Convergence history of the compliance

The convergence is obtained in less than 40 iterations (see figure 5) for computing hopt and
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from 60th iteration for hpen. The penalization phase took 20 more iterations.
The framework described for minimum compliance for a single load case generalizes easily to the
situation where design for multiple load conditions is formulated as a minimization of a weighted
average of the compliances for each of the load cases as a Nash game.

4. Split of thickness in concurrent optimization
In the following section, we suppose that the plate is subject to two boundary conditions (multiple
loads) gs ∈ (H−1/2(ΓNs))

2 and gt ∈ (H−1/2(ΓNt))
2 at the part ΓNs and ΓNt, such that ΓNs∪ΓNt =

ΓN (see figure 6).

y y �︸ ︷︷ ︸ �
y y︸ ︷︷ ︸

ΓNs ΓNt

//////////////

ΓD

Γ Γ

Γ

ΓD

Γ

Γ

Figure 6: Concurrent load case

4.1. Variable thickness
We split the original design variable (thickness h) into two strategies (Aboulaich et al. (2010a);
Aboulaich et al. (2010b)), formally we denote h = (X, Y ) such that X, Y ∈ Uh. The split of the
variable h is to construct two allocation tables P and Q in {0, 1}n, where Pi + Qi = 1, 1 ≤ i ≤ n
and n is the size of h. Let I12 = {1, ..., n} be a set of indices of cardinality n, I1 a subset of I12 of
cardinality n1, and I2 its complement of cardinality n2, that is to say I12 = I1 ∪ I2.
Suppose that: {

X = (hi), for i ∈ I1,
Y = (hi), for i ∈ I2.

(4.1)

We define in this case the integer allocation table P of size n:

Pi = 1, ∀i ∈ I1, Pi = 0,∀i ∈ I2,

so that
h = P.h+ (I − P ).h = (X, Y ) where I = (1, ..., 1). (4.2)
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Where ”.” denote the Hadamard product (i.e. (P.h)i = Pihi, P.h ∈ Rn), and (X, Y ) is defined in
equation (4.1).
We consider the functionals j1(X, Y ) and j2(X, Y ) defined by:

j1(X, Y ) =

∫
ΓNs

gsu1ds (4.3)

where u1 is the solution of the problem (P1):

(P1)


−divσ1 = 0 in Ω

σ1 = 2µXe(u1) + λXtr(e(u1))I
u1 = 0 on ΓD

σ1.n = gs on ΓNs

σ1.n = 0 on ΓNt ∪ Γ

and
j2(X, Y ) =

∫
ΓNt

gtu2ds (4.4)

where u2 is the solution of the problem (P2):

(P2)


−divσ2 = 0 in Ω

σ2 = 2µY e(u2) + λY tr(e(u2))I
u2 = 0 on ΓD

σ2.n = gt on ΓNt

σ2.n = 0 on ΓNs ∪ Γ

We minimize j1 and j2 by acting on Uh, until the convergence to a Nash equilibrium hNE . In a
competitive game, the two players act following different objectives; in particular, player 1 have
to choose his strategies in order to minimize his function j1, while player 2 has to minimize the
function j2.
We say that the couple (X?, Y ?) is a point of Nash equilibrium, if and only if

(P )

{
j1(X?, Y ?) = min

X
j1(X, Y ?),

j2(X?, Y ?) = min
Y
j2(X?, Y ),

i.e., when a player can not improve its criteria over the other, it means that the system reaches a
state equilibrium called Nash equilibrium.
Solving the Nash equilibrium requires solving the following two problems, namely

min
X

j1(X, Y ) and min
Y
j2(X, Y )

The Nash equilibrium is computed by the following decomposition algorithm.
Set n = 0. Starting from an initial design pair h(0) = (X(0), Y (0)).
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Step 1:
Phase 1: solve the problem

min
X

j1(X, Y (n))→ X(n+1)

Phase 2: solve the problem
min

Y
j2(X(n), Y )→ Y (n+1)

Step 2: set h(n+1) = (X(n+1), Y (n+1)) until convergence, redo the parallel phases 1 and 2.

The phases 1 and 2 are solved by the finite element method software; FreeFem++.
In the case of compliance optimization, the state or displacement u1 and u2 are the solution of the
linear elasticity problems (P1) and (P2). We use the package of G. Allaire written in Freefem++,
for more details see (Allaire, 2005). We propose the Lagrange P2 × P2 Finite element method
to numerically solve the problem (P1) and (P2), thickness h1 and h2 are approximated by means
of piecewise-constant interpolation. We will take in this simulation the indices in I1 are odd while
the indices in I2 are even. The figure 7 presents the obtained optimal shape by using Nash games
between the variables of the odd indices and the ones of the even indices.
For the numerical simulation we use the following parameters

gs = gt = (0,−100)

hNE

Figure 7: Optimal shape of the plate
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The resulting optimal design being composite, it is then ”projected” on the set of classical
shapes by applying again the previous scheme with the following slight modification: the thickness
is updated setting h(n+1) = hpen (see Allaire, 2007), where

hpen =
1− cos(πh(n+1))

2

instead of h(n+1) = hNE .
Figure 8 depicts the optimal plate obtained after penalization with Nash equilibrium approach. The
Nash overall scheme converged after 3 iterations.

hNE

Figure 8: Optimal shape of the plate obtained after penalization

We remark that the obtained optimal forme is not quite similar to that obtained by minimizing
the function j, hence our splitting is ill-chosen. To avoid using this splitting, we propose to use
another technique of thickness splitting. We assume that the thickness depends on two functions s
and t. We determine the Nash equilibrium between the two strategies.

10
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4.2. Variables strategies of the materials
We are interested in this section in the case where we have two objective functions. We suppose
that the plate thickness depends on strategies s(x) and t(x). This problem will be treated as a
concurrent optimization problem, by Nash games between two players using two strategies. The
first player minimizes his objective function using the first strategy s(x), the second player, using
the second one t(x). We shall study the following forms :

h(s, t) = st ,
h(s, t) = 1

2
s+ 1

2
t ,

h(s, t) = s(1− t) + t(1− s) .
(4.5)

These expressions many be summarized as follows : h(s, t) = ast + bs + ct (respectively a =
1, b = 0, c = 0; a = 0, b = 1

2
, c = 1

2
and a = −2, b = 1, c = 1).

For example, the choice of 1) is motivated by the requirement that presence of equilibrium material
needs the conjunction of presence at optimal material for j1 and j2.
Ai : event = presence of optimal material for ji; i = 1, 2
B : event = presence of optimal material at equilibrium.
One could interpret 1− 3 in term of probabilities as :

1. P (B) = P (A1)P (A2) (B = A1 ∩ A2)

2. P (B) = 1
2
P (A1) + 1

2
P (A2)

3. P (B) = P (A1)P (A2) + P (A1)P (A2) (B = (A1 ∩ A2) ∪ (A1 ∩ A2)).

Of course, as generally both the functions depend on the two domains, the strategies of one player
influences the choices of the other one: The two players act simultaneously until an equilibrium
is found: in that case, each player has minimized his own function with a common pair of strate-
gies. We introduce the following spaces, of admissible solutions of the strategies s(x) and t(x)
respectively:

Us = {s ∈ L∞(Ω), 0 ≤ s ≤ 1 a.e. in Ω} (4.6)

and
Ut = {t ∈ L∞(Ω), 0 ≤ t ≤ 1 a.e. in Ω}. (4.7)
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The optimization problem we want to consider are as follows.

min
s∈Us

js(h(s, t)) where us is solution of

(Ps)


−divσs = 0 in Ω

σs = 2µh(s, t)e(us) + λh(s, t)tr(e(us))I
us = 0 on ΓD

σs.n = gs on ΓNs

σs.n = 0 on ΓNt ∪ Γ

min
t∈Ut

jt(h(s, t)) where ut is solution of

(Pt)


−divσt = 0 in Ω

σt = 2µh(s, t)e(ut) + λh(s, t)tr(e(ut))I
ut = 0 on ΓD

σt.n = gt on ΓNt

σt.n = 0 on ΓNs ∪ Γ

(4.8)

where
js(s, t) =

∫
ΓNs

gsusds, and ΓNs = support of gs (4.9)

and
jt(s, t) =

∫
ΓNt

gtutds, and ΓNt = support of gt (4.10)

Theorem 1. There exists a Nash equilibrium (s?, t?) ∈ Us × Ut solution of the problem (4.8).

Proof. The sets Us and Ut are compact convex for the weak topology ?L∞. The functionals js and
jt are convex and lower semicontinuous for the weak topology ?L∞.
In fact, us is the solution of problem (Ps), so us is the unique solution of the following minimiza-
tion problem:

min
v
{1

2

∫
Ω

(2µh(s, t)|e(v)|2 + λh(s, t)|divv|2)dx−
∫

ΓNs

gsvds} (4.11)

whence,

js(s, t) = 2 max
v
{
∫

ΓNs

gsvds−
1

2

∫
Ω

(2µh(s, t)|e(v)|2 + λh(s, t)|divv|2)dx}.

On the other hand, the function s 7→
∫

Ω
(2µh(s, t)|e(v)|2 + λh(s, t)|divv|2)dx is affine with

respect to s, accordingly, one concludes that it is weak? lower semicontinuous (see Aubin, 1979),
likewise for jt. Then we have at least the existence of one Nash equilibrium (s?, t?) (see Aubin,
1979).

For example, a problem considers two objectives to minimize js(s, t) and jt(s, t) where design
variables are s and t. the problem will be solved firstly as a Nash games secondly as a Pareto
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optimum. In the Nash games, the player 1 will minimize js with respect to s where the design
variable t is fixed by player 2. Player 2 will only optimize t to minimize jt using design variable s
fixed by player 1.

Algorithm to compute a Nash equilibrium

Set n = 0. Starting from an initial design pair (s(0), t(0)).

Phase 1: solve the problem
min

s
js(s, t

(n))→ s(n+1)

a. Update the local proportion with a step size ρ(n)
s > 0 by

s(n+1) = min(1,max(0, s̃(n+1))) with s̃(n+1) = s(n) − ρ(n)
s

∂js
∂s

+
∂h(s, t)

∂s
L(n)

s ,

where L(n)
s is the Lagrange multiplier for the volume constraint.

b. Penalization

s(n+1) =
(1.− cos(πs(n+1)))

2
Phase 2: solve the problem

min
t
jt(s

(n), t)→ t(n+1)

a. Update the local proportion with a step size ρ(n)
t > 0 by

t(n+1) = min(1,max(0, t̃(n+1))) with t̃(n+1) = t(n) − ρ(n)
t

∂jt
∂t

+
∂h(s, t)

∂t
L

(n)
t ,

where L(n)
t is the Lagrange multiplier for the volume constraint.

b. Penalization

t(n+1) =
(1.− cos(πt(n+1)))

2
Phase 3:

h(s, t)(x) = as(n+1)t(n+1) + bs(n+1) + ct(n+1)

n = n+ 1. Go to phase 1, until convergence.

The volume constraint
∫

Ω
h(s, t)dx = h0|Ω| is enforced by adjusting the Lagrange multiplier L(n)

s

and L(n)
t by a simple bisection at each iteration.

We set
jw = wjs(s, t) + (1− w)jt(s, t), w ∈ [0, 1]. (4.12)

For each w we compute the optima, the set of which forms the Pareto front (at least in the convex
case). Our algorithm is an iterative method, structured as follows:

13
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1. Starting from an initial design pair (s(n), t(n))

h(n) = as(n)t(n) + bs(n) + ct(n)

2. Phase 1: solve the problem
min

s
jw(s, t(n))→ s(n+1)

a. Update the local proportion with a step size ρ(n)
s > 0 by

s(n+1) = min(1,max(0, s̃(n+1))) with s̃(n+1) = s(n) − ρ(n)
s

∂jw
∂s

+
∂h(s, t)

∂s
L(n)

s

where L(n)
s is the Lagrange multiplier for the volume constraint.

b. Penalization

s(n+1) =
(1.− cos(πs(n+1)))

2

3. Phase 2: solve the problem
min

t
jw(s(n), t)→ t(n+1)

a. Update the local proportion with a step size ρ(n)
t > 0 by

t(n+1) = min(1,max(0, t̃(n+1))) with t̃(n+1) = t(n) − ρ(n)
t

∂jw
∂t

+
∂h(s, t)

∂t
L

(n)
t ,

where L(n)
t is the Lagrange multiplier for the volume constraint.

b. Penalization

t(n+1) =
(1.− cos(πt(n+1)))

2

4. Phase 3:
h(n+1) = as(n+1)t(n+1) + bs(n+1) + ct(n+1)

n = n+ 1. Go to phase 1, until convergence.

The volume constraint
∫

Ω
h(s, t)dx = h0|Ω| is enforced by adjusting the Lagrange multiplier L(n)

s

and L(n)
t by a simple bisection at each iteration.

We have tested this algorithm to solve our problem (4.8) where h depend on s and t (4.5) for
different values of a, b and c , the numerical results give for each case the same optimal shape
obtained by the Nash game compared to the weighting objectives method.
In the numerical test,

Ω =]− 1, 1[×]0, 1[, gs = gt = (0,−100), µ = 0.3, E = 100, volume = h0|Ω| = 0.5.
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The results obtained by the different approach (Nash Equilibrium and Pareto optimum) are listed
in tables 1, 2 and 3.
Figures 10, 13 and 16 present a comparison between the optimal plate obtained with each approach
(Nash Equilibrium and Pareto optimum) in line 1, and optimal strategies s and t obtained with Nash
equilibrium in line 2.
Figures 11, 14 and 17 presents a comparison between the optimal plate obtained after penalization
with each approach (Nash Equilibrium and Pareto optimum) in line 1, and optimal strategies s and
t obtained with Nash equilibrium in line 2.
In figure 9 we reproduce the comparison of the Pareto optimum with Nash Equilibrium. We remark
that the Nash Equilibrium do not necessarily belong to the set of not-dominated points (Pareto).
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4.2.1. Case 1 : h(s,t)=st

Nash Equilibrium Pareto optimum
j1 11.0687 10.80287
j2 11.0699 10.91279

Table 1: Objective function values for Nash equilibrium
and Pareto optimum (ω = 0.5).

7 8 9 10 11 12 13
7

8

9

10

11

12

13

j
s

j t

Nash equilibrium & Pareto optimum

 

 
Nash Equilibrium
Pareto Optimum

Figure 9: Pareto optimum and Nash equilibrium

Figure 10: Optimal plate. The Nash overall loop converged in 90 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t
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Figure 11: Optimal plate. The Nash overall loop converged in 98 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

In this case, we remark that the obtained optimal shapes by Nash and Pareto are similar.
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4.2.2. Case 2 : h(s,t)=0.5s+0.5t

Nash Equilibrium Pareto optimum
j1 11.454 11.1429
j2 11.4542 11.1436

Table 2: Objective function values for Nash equilibrium
and Pareto optimum (ω = 0.5).

7 8 9 10 11 12 13
7

8

9

10

11

12

13

j
s

j t

Nash equilibrium & Pareto optimum

 

 
Nash Equilibrium
Pareto Optimum

Figure 12: Pareto optimum and Nash equilibrium

Figure 13: Optimal plate. The Nash overall loop converged in 79 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t
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From the figure 13, we deduce that each player seeks to improve his criterion in his domain.
The gotten shapes are symmetric.

Figure 14: Optimal plate. The Nash overall loop converged in 113 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

After penalization, see figure 14, the shapes associated to strategies s and t are generally sym-
metric.
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4.2.3. Case 3 : h(s,t)=s(1-t)+t(1-s)

Nash Equilibrium Pareto optimum
j1 10.9297 10.7761
j2 10.9066 10.7758

Table 3: Objective function values for Nash equilibrium
and Pareto optimum (ω = 0.5).
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Figure 15: Pareto optimum and Nash equilibrium

Figure 16: Optimal plate. The Nash overall loop converged in 170 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t
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Figure 17: Optimal plate. The Nash overall loop converged in 191 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

In this case, the obtained shapes are almost negligible because the penalization step of the
function h(s, t) is almost nil after the convergence.

4.3. Numerical example : cantilever
Our second example is the well-known cantilever problem which is fixed on the left wall, and
supports horizontal and vertical distributed units on the middle of the right wall(see figure 18).
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Figure 18: Boundary conditions: multiple loads case

///
///
///
///
////
///
///
///
///
///
///
///
///
//

⇒ gty
gs

We begin with single loads, minimal compliance problems, i.e. we minimize the compliance :

min
h
j(h) (4.13)

where
j(h) =

∫
ΓN

guds, where u solves: (2.1), and g = gs or g = gt. (4.14)

Figure 19: Optimal cantilever. single loads

g = gs = (0,−1) g = gt = (−1, 0)

In what follows, we apply two loads gs and gt and we present results obtained using Nash game
and Pareto optimum for different strategies.
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4.3.1. Case 1 : h(s,t)=st

Figure 20: Optimal cantilever. The Nash overall loop converged in 79 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

In this case, our numerical experiments show that the improvement is not sensitive since the
optimal shapes are the same than those obtained by Pareto.
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4.3.2. Case 2 : h(s,t)=0.5s+0.5t

Figure 21: Optimal cantilever. The Nash overall loop converged in 91 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

The result displayed obtained by nash is very similar to the best one in Pareto, and the objective
function takes the same value.
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4.3.3. Case 3 : h(s,t)=s(1-t)+t(1-s)

Figure 22: Optimal cantilever. The Nash overall loop converged in 127 iterations

hNE hPO

Optimal strategy of s Optimal strategy of t

In this case, the resulting material distribution is not relevant from the mechanical point of
view.

5. Conclusion
In this paper, we have presented and compared two approaches for solving a structural optimiza-
tion problem, where we minimize the thickness of a plate subjected to two loads applied separately,
on two parts of the plate. The aim of this work was the study of different strategies for splitting
thickness of the plate in multidisciplinary topology optimization. We have splitted the thickness of

25



R. Aboulaich et al.

material to two strategies, and we have computed the Nash equilibrium associated to this strategies,
then we have compared this equilibrium with Pareto optimum. In the three cases, we observe that
cases 1 and 2 give the real shapes, on the other side the case 3 give a shape which is different to the
initial one. In the all three cases, for a specified value of w, we have obtained a Nash equilibrium
close to the Pareto optimum for the choice of weights = 0.5.
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