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Dynamic Service Contract Enforcement
in Service-Oriented Networks

Yesid Jarma, Keerthana Boloor, Marcelo Dias de Amorim, Yannis Viniotis, and Robert D. Callaway

Abstract—In recent years, Service Oriented Architectures (SOA) have emerged as the main solution for the integration of legacy

systems with new technologies in the enterprise world. A service is usually governed by a client service contract (CSC) that specifies,

among other requirements, the rate at which a service should be accessed, and limits it to no more than a number of service requests

during an observation period. Several approaches, using both static and dynamic, credit-based strategies, have been developed in order

to enforce the rate specified in the CSC. Existing approaches have problems related to starvation, approximations used in calculations,

and rapid credit consumption under certain conditions. In this paper, we propose and validate DoWSS, a doubly-weighted algorithm

for service traffic shaping. We show via simulation that DoWSS possesses several advantages: it eliminates the approximation issues,

prevents starvation and contains the rapid credit consumption issue in existing credit-based approaches.

Index Terms—Service-oriented networks, Web services, service traffic shaping, contract enforcement, middleware appliances,

appliance cluster, credit-based algorithm

✦

1 INTRODUCTION

DURING the last few years, the rise of the Internet has
changed the way business is conducted worldwide.

To remain competitive, businesses have been imple-
menting information technology support for business
processes over the years. However, budgetary issues,
the continuous growth of the organizations, the hetero-
geneity of existing systems, among others, increase the
complexity of deployment and integration of new tech-
nologies. In this context, Service-Oriented Architectures
(SOA) have become the main solution for the integration
of applications and technologies in the business domain
and for the collaboration among industrial partners. A
way to implement SOA is through the concept of Web
Services (WS) [1]. These are software systems designed
to support machine-to-machine interoperability through
a set of Extensible Markup Language (XML) based open
standards, such as Web Services Description Language
(WSDL) [2], Simple Object Access Protocol (SOAP) [3],
and Universal Description, Discovery and Integration
(UDDI) [4].

Even though the use of XML-based standards allows
easy integration with external data sources, one of the
major issues preventing wider adoption of Web Services
is performance [5]. Indeed, as the time needed to
parse an XML document can take up to a few min-
utes [6], the response time of a Web Service is potentially
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large. To better satisfy business goals, service providers
use specific hardware that provides accelerated XML
processing called Service-Oriented Networking (SON)
appliances [7].1 Besides processing XML documents,
enabling security and integrating with legacy systems,
SON appliances may also be responsible for controlling
the rate at which documents are sent to the service
hosts (i.e., they shape the traffic). A service is typically
governed by a Client Service Contract (CSC) dictated
by a Service Level Agreement (SLA). The CSC specifies,
among others, a Service Access Requirement (SAR),
which is the rate at which the services may be accessed
in order to prevent them from being overwhelmed. The
SAR is usually defined as: “Limit the rate to a service
provider to no more than X requests per second with
an observation/enforcement period of T seconds”. In
other words, the maximum number of requests sent to
the service provider within the period T is C = X × T
(see details in Section 2).

Traffic shaping is a well-known classic problem in
network traffic engineering [8], [9], [10]. Nevertheless,
in Service-Oriented Networking the problem is funda-
mentally different. The main difference is that, unlike
classic networking where traffic shaping is done point-
to-point, in SON service clients usually access services
from multiple access points. Furthermore, in SON, mul-
tiple SON appliances can be used to address issues such
as security, fault tolerance, and performance. Therefore,
the key challenge is how to enforce the CSC by taking
local actions at each appliance.

1. SOA is a software architecture for building applications that
implement business processes or services by using a set of loosely
coupled, black-box components orchestrated to deliver a well-defined
level of service. SON is an emerging architecture that enables network
devices to operate at the application layer with features such as
offloading, protocol integration, and content based routing.



SUBMITTED TO IEEE TRANSACTIONS ON SERVICES COMPUTING, 2011 (REVISED VERSION). 2

...

B1

B2

B3

BB

Yin

x1

x2

x3

y1

y2

y3

xByB

Client
Requests

Balanced
Requests

Parsed
Requests

Service
Host

Gateway

SON Appliances
B
�

i

xi ≤ X

Fig. 1. System Architecture showing the different elements and parameters involved in the service contract

enforcement procedure.

The typical solution consists of using a manual and
static allocation strategy, in which the allowed rate is
equally divided among all the access points. This solu-
tion, although simple, is quite inefficient as it only pro-
vides satisfactory performance when the incoming traffic
rates at the SON appliances are identical. In a companion
work [11], we proposed a better, more dynamic solution
that monitors the traffic on a regular basis and adapts
the rate by reassigning credits to each appliance under
a weighted strategy based on queue sizes.

In order to comply with the CSC, the calculations used
in existing credit-based approaches lead to three main
drawbacks:

1) Flooring effect. Existing credit-based solutions re-
quire the use of a flooring function to approximate
the results to the integer immediately below. In
some cases, when the number of appliances is not a
divisor of the available credits, the use of a flooring
function leads to under-utilization of the system.

2) Fast start. When the system operates under high
input rates, all the available credits are rapidly
consumed early in the enforcement period. This
may result in overwhelming the service host, since
a large number of requests are being sent during a
time period substantially smaller than the specified
enforcement period.

3) Starvation. The weighted strategies used for dy-
namic credit allocation are based on queue sizes.
As a consequence, the appliances with at least one
queued event may be allocated all the credits, thus
depriving the appliances with empty queues from
credits2.

2. Note that the definition of starvation used throughout this paper
differs from that used in scheduling literature, where a process is
perpetually denied necessary resources, and therefore can never finish
its task [12].

The immediate repercussion of these issues is that
they lead to suboptimal performance. Given the costs of
implementing SON and issues inherent to the provision of
Web Services, it is imperative to design efficient algorithms
that optimize the overall utilization of the system.

In order to solve the issues cited above, we propose
DoWSS (Doubly-Weighted algorithm for Service traf-
fic Shaping), an algorithm for service traffic shaping.
Our approach is based on dividing the enforcement
period into several smaller enforcement subperiods and
the calculation of maximum allowed rates avoiding the
use of flooring functions. By using a doubly-weighted
strategy, our approach prevents starvation issues that
may appear under certain conditions. We also introduce
a procedure to contain the rapid consumption of credits
at the beginning of the enforcement period, when there
are high input rates to the system. Through simulation
analysis, we show that our approach not only outper-
forms existing approaches, but it also has a substantial
positive impact on the overall performance of the system
over time.

In summary, the contributions of our work are:

• We identify three issues present in existing credit-
based service traffic shaping approaches: flooring,
starvation and fast start.

• We propose a dynamic, doubly-weighted, credit-
based approach, that avoids the flooring and starva-
tion issues, and uses system resources to their fullest.

• We introduce a contention mechanism to minimize
the fast start phenomenon, which manifests itself
when the input rate to the system is much greater
than the Service Access Requirement rate.

The remainder of this paper is structured as follows.
In Section 2, we introduce the system architecture we
focus on. In Section 3, we describe the context and
system architecture, and perform a detailed analysis
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Fig. 2. Internal Architecture of a SON Appliance showing some of its basic elements and functions.

of existing issues in service traffic shaping in SON. In
Section 4, we introduce our approach, while in Section 5
we evaluate our algorithm via extensive simulations. We
discuss our results and point out some open issues in
Section 6. Related work is presented in Section 7. Finally,
we conclude the paper and give insights about future
work in Section 8.

2 SYSTEM ARCHITECTURE

Service-Oriented Architectures are typically centralized
systems in which one node executes and manages in-
stances of one or more services. However, to address
possible scalability issues, the centralized service may
be replicated and the requests balanced among the
replicas [13]. The general architecture of the considered
system is depicted in Fig. 1. There are four main elements
composing this architecture:

• Clients: The clients are nodes that generate service
requests. They can be located anywhere in the Inter-
net. In Fig. 1, Yin denotes the input rate of requests
into the system.

• Gateways: These are border routers. They are re-
sponsible of forwarding service requests to the SON
Appliances, and distributing the service load among
the appliances without any deep-content inspection.

• SON Appliances: These are middleware responsible
for translating XML requests into the system’s local
language. They are also responsible for controlling
the rate at which the service requests are forwarded
to the service host. In the figure, xi denotes the
number of processed requests appliance Bi sends
to the service host within some time interval (to
be defined in Section 3). As it will become clearer
later on in this paper, we use “numbers of requests”
instead of “rate” to simplify the integration of the
service contract into the algorithm.

• Service host: This node handles processing of the re-
quests. It also specifies the rate at which the services
may be accessed or Service Access Requirement
(SAR). In the figure, the service may not receive
more than C requests during an time interval of
duration T , where C = X × T .

A service is typically accessed from a single SON
Appliance; therefore, the traffic from the gateway to the
service host follows a point-to-point pattern. A single

entry point provides the advantage of simplified service
access management. Furthermore, since point-to-point
traffic shaping is a well-studied problem in the net-
working space, well-known solutions from packet/ATM
networks can be applied.

Nevertheless, in the SON environment, clients may
access services from multiple entry points. The existence
of multiple entry points may be dictated by security
policies (the presence of multiple security zones), ro-
bustness (fault tolerance), or performance requirements
(load is balanced on a cluster of SON appliances). SON
appliances can implement a number of functions, which
include functional offloading, service integration, and
intelligent routing [14]. In addition to providing these
functions, SON appliances are also responsible for con-
trolling the rate at which client requests are sent to the
service hosts. This problem is known as the service traffic
shaping problem.

2.1 Scheduling vs. Shaping

Fig. 2 shows the internal architecture we consider for
a SON appliance. Recall from the previous section that,
besides SON-related processing of XML documents, an
appliance is also responsible for enforcing the SAR re-
quirement, i.e., for limiting the rate at which processed
documents are sent to the service hosts to any desired
rate X , regardless of the input rate. In our assumed model,
requests entering each appliance are placed in an input
queue. A CPU performs all the SON-related tasks. A
CPU scheduler determines the order in which requests
from the input queue get allocated to CPU resources,
by using a (work-conserving) job scheduling algorithm
such as FIFO, WFQ [15] and WRR. Once the requests
have been processed, they are placed in an output queue,
to be transmitted to the service tier via a communi-
cation link. A Link scheduler determines the order in
which processed requests access the outgoing link. In
our problem, we have only one class of requests, so FIFO
ordering will suffice. The SAR requirement is enforced by
the Link scheduler; work-conserving algorithms are not
suitable for such enforcement, since they do not limit
the output rate. Non-work-conserving algorithms must
be used for the control of the outgoing link. Suppose, for
example, that the SAR specified X = 2, the input rate
was 4 and the outgoing link had a capacity higher than
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the input rate. A work-conserving scheduling algorithm
(e.g., WFQ) would not be able to enforce this SAR. For
clarity and in accordance with jargon from networking
environments, we label this function in Fig. 2 as Traffic
Shaping.

In this paper, we specifically consider the service traffic
shaping problem where several access points (i.e., SON
Appliances) access concurrently a single service host
(i.e., multipoint-to-point case). We formalize the problem
in more detail in the following section.

3 PROBLEM DEFINITION

3.1 CSC Enforcement

Services are governed by a Client Service Contract (CSC)
dictated by a Service Level Agreement (SLA). The CSC
specifies, among others, a Service Access Requirement
(SAR), which is the rate at which the services may be
accessed in order to prevent them from being over-
whelmed. It is worth noting that, there are other types
of requirements in typical SLAs, like delay-related re-
quirements, which are addressed via work-conserving
algorithms such as Weighted Fair Queuing [15]. The
SAR SLA is a special case of a traffic shaping problem
that necessitates the use of non-work-conserving algo-
rithms.3 In our architecture, in addition to providing
the functions previously described, SON appliances are
responsible for enforcing the CSC.

Traffic shaping is a well-known classic problem in
network traffic engineering [8], [9], [10]. However, in
Service-Oriented Networking the problem is fundamen-
tally different. In classic networks, the resource protected
by the shaping function is typically link bandwidth and
buffer space, the units of which are precisely defined and
measurable. Service Level Agreements are standardized
by industrial bodies and CSC contracts are very well
defined. In SON, the resource protected by the shap-
ing function is CPU processing power. Moreover, CSC
contracts are not precisely defined and measurable.

We are interested, in particular, in the SAR definition,
which in general follows the following format: “Limit
the rate to a service provider to no more than X requests
per second with an observation/enforcement period of
T seconds”, where an enforcement period is a time
interval during which the aggregate of requests sent
to the service host by all the appliances cannot exceed
C = X × T . In this particular case, since “requests” are
defined in units of XML documents, CPU processing
time is not known exactly. Furthermore, this SAR does
not include additional requirements such as a maximum
burst size. On the other hand, in traditional networks,
the parameters for implementing token buckets, for ex-
ample, include, in addition to an average rate, a peak
rate (which is the maximum rate at which packets can

3. For example, consider the case of a single appliance with very
high processing capacity, a single client that sends traffic at rate 2, and
a desired limit equal to 1. A work-conserving scheduling algorithm
would not be able to limit the rate.

t

T0 + tT0

1 2 3 K − 1 K· · ·
Fig. 3. Division of the enforcement period T into K
smaller subperiods.

be sent in a short time interval), and a burst size (a limit
for the number of packets to be transmitted in a short
time interval). Finding a way to establish other types of
CSCs that are well-defined remains an open issue (cf.
Section 6.3).

Another fundamental difference is that in the classic
networking environment, traffic shaping has local scope,
since traffic is in the form of a single connection. In the
SON environment, service clients access services from
multiple entry points. The existence of multiple entry
points may be dictated by policy (e.g., the presence of
multiple security zones) or performance requirements
(e.g., clusters of SON appliances); the desired effect is
“global” shaping. The challenge is therefore to enforce the
traffic contract by taking local actions at each entry point.

3.2 Enforcement Strategies

We have so far identified in the literature two different
strategies for enforcing the CSC in SON. The simplest
strategy is to use a manual and static allocation (MSA),
in which the allowed rate is equally divided among all
the SON appliances:

xi =

⌊

X × T

B

⌋

, ∀i ∈ [1, . . . , B], (1)

where xi is the number of credits allocated to appliance i,
X is the maximum rate allowed per enforcement period,
T is the duration of the enforcement period, and B is the
number of appliances. This solution, although simple, is
quite inefficient as it only provides satisfactory perfor-
mance when the incoming traffic rates at the appliances
are identical. Therefore, a number of appliances may
hold queued requests while others remain idle.

In a previous work, we introduced CASTS, a solution
that relies on the communication and processing capa-
bilities of the appliances in order to provide a better
response to the requirements specified in the CSC [11].
In summary, CASTS works as follows. We proposed
dividing the CSC enforcing period into K subperiods
(see Fig. 3), during which the traffic is measured and
the rate adapted also by means of assigning credits
to the appliances. During subperiod k, each appliance
estimates the number of credits it will have during the
next interval using queue sizes, measures the number of
requests queued and already sent, and broadcasts these
values to the other appliances. Each appliance updates
its shaping rate for subperiod k + 1 after receiving the
information from all the other appliances as follows:
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xi(k + 1) =

⌊

D ×
Qi(k)

∑B

j=1 Qj(k)

⌋

, (2)

where Qi(k) is the number of queued requests at ap-
pliance i, D is the number of remaining credits of the
enforcement period, and B is the number of appliances.
Note that an approximation function (in this case, a
flooring function) is necessary, as the CSC specifies an
integer number of documents to be sent to the service
tier. This solution guarantees that the SAR is respected
at all times by assigning credits dynamically under a
weighted strategy. This approach uses MSA to adjust the
number of credits during the first subperiod and when
there are no queued requests in any appliance.

3.3 Issues

In this paper, we identify and address three problems
associated with existing service traffic shaping solutions.
We start by defining them in the following.

3.3.1 Flooring Effect

CSCs specify the SAR in terms of requests per time unit
within the observation period. Consequently, in order
to comply with the CSC, the calculations conducted
in both solutions involve the use of a flooring function
to approximate the number of allocated credits to the
integer immediately below. In some cases, when the
number of appliances is not a divisor of the number of
available credits, the use of a flooring function leads to
under-utilization of the system. Fig. 4 depicts a sample of
the typical performance of CASTS and MSA for different
input rates (Yin), with an enforcement period (T ) of 1
second, using ten SON Appliances and a maximum al-
lowed rate (X) of 128 requests per second represented by
a horizontal dotted line. Even though both approaches
process a number of requests near C = X × T = 128,
they never reach the maximum value. Therefore, at each
enforcement period, there are a number of requests
that are left unprocessed and accumulate significantly
over time (see Fig. 8). As a consequence, the system is
unable to exploit its maximum capacity. Given the costs
of implementing SON and issues inherent to the provision of
Web Services, it is imperative to design efficient algorithms
that optimize the overall utilization of the system. Achieving
optimal performance is fundamental in the long term.

Definition 1. Let R(K) be the total number of processed
requests within the observation period T , X × T be
the maximum allowed number of requests to be sent
to a service host during an observation period T , and
Yin × T be the total number of requests generated
within an observation period T . We say that a shaping
algorithm is optimal if R(K) = min[X × T ;Yin × T ].

3.3.2 Starvation

Even though the gateway performs some sort of load
balancing, this does not guarantee that the load will

be equally distributed among all appliances. Indeed,
as requests require different processing times, load bal-
ancing at the gateway is not transferred to the output
rates of the SON appliances. As a consequence, since
both MSA and CASTS are based on the allocation of
credits that the appliances will use to send requests to
the service hosts, a starvation phenomenon appears, in
which some appliances will have available credits, while
others remain idle. This phenomenon is evidenced in
two different ways, depending on the credit allocation
scheme used.

When using MSA, an appliance is allocated a number
of fixed credits, and it can use them to send requests to
the service host as fast as it can. Furthermore, since this
method does not involve any kind of communication
between appliances, an appliance is not able to know
if the other appliances have queued requests. Conse-
quently, when it operates under high (instantaneous)
input rates, an appliance receiving more requests will
rapidly consume all of its credits, while other appliances
receiving a smaller amount of requests will have more
credits available even though they will not use them.

CASTS relies on communication between appliances,
and each appliance informs the others of the number
of credits it has consumed so far and the number of
request that it has still queued. The appliances use this
information to perform a weighted assignment of credits,
in which the appliances with the largest queues will
get the most credits. Nevertheless, this scheme penalizes
the appliances with little or no queued requests. The
weighted allocated scheme used in CASTS attempts to
estimate the sending rate to the service host during
the following interval using queue sizes. However, it
cannot predict how many requests will enter the system
during the next interval, and if these new requests will
be equally balanced among all appliances. Therefore, it is
possible that an appliance with a larger queue and more
credits will continue to accumulate requests without be-
ing able to process them; at the same time, an appliance
with a small queue that was allocated a few credits will
consume these few credits before receiving new requests,
remaining idle during the entire subperiod even though
it is capable of processing additional requests.

3.3.3 Fast Start

An observed phenomenon in both approaches is the
high sending rate of requests to the service host dur-
ing a small period of time at the beginning of each
enforcement period. We refer to this phenomenon as
fast start. MSA and CASTS use different methods for
allocating credits to the appliances. Nevertheless, the
allocation does not specify how fast the credits should
be used. Therefore, when there are high input rates,
the appliances will rapidly consume all their credits
during the first moments of the enforcement period by
processing and sending requests to the service hosts as
fast as possible. Even though the idea behind the CSC
is to prevent the service hosts from being overwhelmed,
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sending a large number of requests during a time period
substantially smaller than the specified enforcement pe-
riod could result in effectively overwhelming the service
host.

This type of behavior is also associated with the ill-
defined nature of the CSCs in SON. In the ATM network
environment, for example, the CSCs include the SAR
definitions for the Maximum Burst Size (MBS) and a
Cell Delay Variation Tolerance (CDVT). In this way, the
number of cells per time period arriving at a host is
easily limited. Since in a SON environment the CSCs
do not incorporate equivalent definitions of burst sizes
and maximum delays, undesirable effects such as the
fast start appear, resulting in a substantial impact on the
overall efficiency of the system.

It is worth noting that, even though fast start is an
undesired phenomenon, it is nonetheless inherent to the
way these algorithms work. Indeed, since both allocation
methods are based on distributing all available credits
among all SON appliances, the fast start will depend
directly on the maximum allowed rate to enforce and the
number of SON appliances used. For instance, suppose
that we have B = 32 SON appliances and that the
SAR rate specified is X = 128 reqs/sec. When the
instantaneous input rate is much larger than the SAR
rate (Yin ≫ X , e.g., Yin = 3000 reqs/sec), even if
each SON appliance is limited to forward only one
request per enforcement subperiod, the entire system
will nevertheless send 32 requests to the service host
during the first enforcement subperiod. Therefore, the
service host will receive 25% of the maximum allowed
rate during the first subperiod alone.

3.4 Discussion

The immediate consequence of these issues is that
they lead to “suboptimal performance”. The main issue
present in existing credit-based approaches is the use
of flooring functions to approximate the number of
allocated credits to the integer immediately below. In

order to avoid this issue, another kind of approximation
function should be used. The starvation issue is mainly
due to the use of a weighted strategy based only on the
number of queued requests. This issue could be avoided
by taking a more thorough look on the characteristics
of the queued requests. Since the fast start issue is
inherent to the way credit-based algorithms work, it
is not possible to completely avoid it. Nevertheless, a
mechanism that partially contains the effects induced by
the fast start could be designed and incorporated into the
overall management system.

4 DOWSS (DOUBLY-WEIGHTED ALGORITHM

FOR SERVICE TRAFFIC SHAPING)

To address the existing issues in CSC enforcement
in Service-Oriented Networks, we propose DoWSS, a
doubly-weighted algorithm for service traffic shaping
in service-oriented networks. Our approach is espe-
cially designed for Web Server farms implementing the
multipoint-to-point access strategy. In this section, we
first specify the preliminaries of our approach. The de-
tails of DoWSS come thereafter.

4.1 Preliminaries

DoWSS is based on the notion of enforcement subperiod
introduced in CASTS [11]. The enforcement period is
divided into K subperiods (see Fig. 3). During each
subperiod, the algorithm will measure the number of re-
quests that were processed and forwarded to the service
host and queue sizes, and adapt its sending rate for the
next subperiod by assigning credits to each appliance. A
credit allows an appliance to send a processed request to
the service host.

CSCs specify the SAR in requests per second within
the enforcement period. Consequently, credit-based ap-
proaches must approximate the number of allocated
credits by an integer value. The main difference be-
tween DoWSS and existing credit-based approaches is
the type of function used to approximate the number
of allocated credits to the integer. Instead of using a
flooring function, like other approaches, DoWSS uses
a ceiling function. Even though the use of a ceiling
function may lead to a non-compliance of the maximum
request rate, the CSC can still be enforced by using
the communication capacities of the appliances. Since
the SAR is a fixed value, all SON Appliances have this
information beforehand. Therefore, when calculating the
rate allocated to each appliance at each subperiod, the
non-compliance of the CSC can be detected. If the credits
that are to be allocated to each appliance exceed the
number of remaining credits, one or several appliances
will be penalized by having credits reduced, so that the
CSC is respected. This penalization is done randomly,
and the procedure varies depending on whether or not
there are queued requests in any appliance.
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4.2 Case I: Empty Queues

First, the number of credits/requests available for allo-
cation is calculated:

D = X × T −R(k − 1), (3)

where R(k − 1) is the number of requests processed up
until the latest subinterval. By definition, R(0) = 0. At
the beginning of the first enforcement subperiod, and in
subperiods where there are no queued requests in any
appliance, MSA is used for credit allocation:

xi(1) =

⌈

D

B

⌉

, i = 1, . . . , B. (4)

Once each appliance has calculated the number of
credits allocated to it, we compute P , which is the
number of credits exceeding the CSC:

P = (xi(k)×B)−D. (5)

If P > 0, appliance Bi will generate then a random
number Ni. This number is broadcast to the rest of
the appliances. When all the appliances finish this in-
formation exchange, each appliance i will find the P
lowest numbers among the numbers generated by all
the appliances. If its own randomly generated number
Ni is among the P lowest, the appliance has one of its
credits removed. Otherwise, the appliance keeps all of
its assigned credits. Note that this exchange of random
values can be done both in a centralized or distributed
manner. By design choice, in this paper we opt for the
distributed way.

To reduce the possibility of conflicts between appli-
ances (i.e., two or more appliances generating the same
number), N should be chosen in a range much larger
than the number of appliances. Nevertheless, it is still
possible for two appliances to generate the same random
number (see details in Section 4.4).

4.3 Case II: Non-empty Queues

When there is at least one queued request in the entire
system, the use of the weighted strategy proposed in [11]
may lead to starvation in appliances with empty queues
(cf., Section 3.3.2). To avoid this, a doubly-weighted
strategy is proposed. First, the n-th request in the queue
is assigned a weight wn, calculated as

wn = log10

(

T × V

K × sn

)

, n = 1, · · · , Q, sn 6= 0, (6)

where V is the processing speed of the appliance in bits
per second and sn the size of the n-th request, measured
in bits. For simplicity, we make the assumption that, on
average, the processing time of a request is proportional
to the length (size) of the request4. The weight of a

4. In reality, the average processing time is proportional to length of
the requests (e.g., due to parsing the entire XML document for checking
well-formedness) as well as other factors, like the actual content of the
XML document.

xj(k)rj(k) Qj(k) Wj(k) Nj

{

{From Appliance Bj �=i

To Appliance Bj �=i

Uncontrolled
Traffic

Shaped
Traffic

SON Appliance Bi

ri(k) Qi(k) Wi(k) xi(k) Ni

Fig. 5. DoWSS information exchange during the k-th

enforcement subperiod.

request is therefore inversely proportional to its size
and depends directly on the number of measurement
subperiods used. Therefore, large requests, which take
longer to process, will have smaller weights. When the
request processing time is larger than T/K, the weight
of the request is negative. In this case, the weight of
the request is set to zero. If an appliance has an empty
queue, the weight is calculated using a virtual file size
of 1 bit. We use a logarithmic scale in our calculations
in order to work with numbers in a smaller range. The
weight of appliance Bi is the sum of the weights of all
the requests in the queue:

WBi
=

Qi
∑

n=1

wn. (7)

Once each appliance calculates its own weight, it
calculates the number of credits it is allocated during
the next subperiod under a weighted strategy:

xi(k) =

⌈

D ×
WBi

(k)
∑B

n=1 Wn(k)

⌉

· (8)

Since the number of allocated credits is calculated
locally, each appliance broadcasts this value to the other
appliances. Upon reception of the information coming
from other appliances, each appliance calculates the
number of exceeding credits P :

P =

(

B
∑

n=1

xn(k)

)

−D· (9)

Then, in order to specify which appliances are to be
penalized, the same procedure used with empty queues
is used. Each appliance will generate a random number
N . This number is broadcast to the other appliances.
Once an appliance receives all the information coming
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Algorithm 1 DoWSS algorithm.
Input: k, Nj , ∀j ∈ [1, . . . , B], j 6= i.
Input: (When 1 < k ≤ K) rj(k − 1), Qj(k − 1), Wj(k − 1), and xn(k),
∀j ∈ [1, . . . , B], j 6= i.
Output: new count xi(k).

if k = 1 then
xi ←

l

X×T
B

m

P = (xi × B)− (X × T )
N = {N1, . . . , NB}
if P 6= 0 then

Find P lowest of the set N

if Ni is among P lowest then
xi(k)← xi(k)− 1

end if
else

xi(k)← xi(k)
end if

else
r(k − 1) =

PB
j=1 rj(k − 1)

R(k − 1) =
Pk−1

n=1 r(n)
W (k − 1) = {W1, . . . , WB}
N = {N1, . . . , NB}
if Rj(k) < Xj then

D ← X × T − R(k − 1)
if

PB
n=1 Qn(k) = 0 then

xi(k)←
˚

D
B

ˇ

P = (xi(k)× B)−D

if P 6= 0 then
Find P lowest of the set N

if Ni is among lowest then
xi(k)← xi(k)− 1

end if
else

xi(k)← xi(k)
end if

else

xi(k)←

‰

D ×
Wi(k)

PB
n=1 Wn(k)

ı

P =
“

PB
n=1 xn

”

−D

if P 6= 0 then
Find P lowest of the set N

if Ni is among P lowest then
xi(k)← xi(k)− 1

end if
else

xi(k)← xi(k)
end if

end if
else

xi(k)← 0
end if

end if

from other appliances, it is penalized if its own randomly
generated number Ni is among the lowest P . Fig. 5
depicts the information exchange during enforcement
subperiod k. The entire procedure is summarized in
Algorithm 1.

4.4 Conflict Resolution

To reduce the possibility of conflicts between appliances
at credit removal, as explained before, random numbers
are selected in a range that is much larger than the
number of appliances. Nevertheless, it is still possible
that two or more appliances generate the same random
number. To avoid conflicts in this situation, the following
procedure is followed. If all the “conflicting” numbers
generated are among the P lowest random generated
numbers, all involved appliances have their exceeding
credits removed.

However, the conflicting generated numbers might be
the greatest of the P lowest random generated numbers.

For example, suppose that B = 3 is the number of
appliances, P = 1 is the number of exceeding credits
and N = [100, 264, 264] is the set of random numbers
generated by appliances 0, 1 and 2 respectively. In this
particular case, the number of randomly generated num-
bers to penalize will exceed P , since appliances 1 and 2
generated the same number and it is greater than the
number generated by appliance 0.

When this kind of situation occurs, a concurrency
mechanism is used. When an appliance detects a value
received from the other appliances equal to the value it
has generated, it will notify the conflicting appliances of
the equality and tell them to keep its assigned credit.
To avoid the possibility of two appliances transmitting
this notification at the same time and therefore causing
further conflicts, this transmission is delayed by using a
random timer. The first appliance whose timer expires,
notifies the conflicting appliances, and will thus be ef-
fectively penalized.

4.5 Addressing the fast start issue

We introduce in our approach an optional method for
avoiding the fast start issue (cf., Section 3.3.3). The idea is
to further limit the number of requests sent to the service
host during the beginning of each enforcement period,
and distribute them over the entire observation period.
Nevertheless, since this phenomenon only appears when
the instantaneous entry rate exceeds X by a great value,
the system will only activate the contention mechanism
under these conditions.

At the beginning of each subperiod, the system can
estimate the global input rate Yin by measuring the
number of received requests during the last subperiod.
When a high input rate is detected, each appliance
can calculate F , the “limited” sending rate towards the
service hosts:

F =

⌈

T ×X

K ×B

⌉

· (10)

Each appliance will then adjust its number of allocated
credits to F for the subperiod, therefore xi(k)← F . Note
that, with this optional method, by performing another
manual rate assignment, the desired weighted effect is
almost lost. If during the enforcement period the traffic
abruptly changes from subperiod to subperiod (e.g., in
the presence of bursty traffic), the contention method is
turned off during the periods where the input rate is not
greater than the SAR.

5 EVALUATION

To study the performance of DoWSS, we undertook
a series of simulations. To this end, the OMNeT++
Discrete Event Simulation System [16] was used. The
OMNeT++ library controls the simulated time and the
concurrent execution of the code running on each one of
the simulated SON Appliances. All appliances run the
same code. The algorithms are written in C++ and are
event driven.
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Fig. 6. Number of processed requests per enforcement period (T ) for Yin = X and Yin >> X under uniform traffic

 110

 115

 120

 125

 130

 0  200  400  600  800  1000  1200

P
ro

ce
ss

ed
 R

eq
ue

st
s

Yin(reqs/s)

DoWSS
CASTS

MSA

Fig. 7. Total number of processed requests over one

enforcement period for different input rates.

5.1 Experimental Setup

The simulation-based evaluation of DoWSS is centered
around answering three questions:

1) Is the performance of DoWSS optimal?
2) Are the techniques used in DoWSS able to solve

the Flooring, Fast Start and Starvation issues?
3) If input rates vary, will DoWSS be able to adapt

to these variations while continuing to provide an
optimal performance?

The first set of simulations aims to answer questions
1) and 2). For this set, the client service requests are
modeled as Poisson processes. The average input rate to
the system, noted as Yin, is chosen as a fixed value (un-
known, of course, to the SON Appliances) and is varied
to verify CSC compliance for all input rates. The second
set of simulations answers the 3rd question. To this
end, we simulate bursty traffic using a Poisson Pareto
Burst Process (PPBP) model [17]. Bursts are modeled
as Poisson processes with a duration sampled from a
Pareto distribution. In both sets, the processing rate of
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Fig. 8. Total number of unprocessed requests over a

period 6 hours for Yin = 300 reqs/sec.

each document at each appliance varies and depends
directly on document sizes. In a previous work [11], we
explored the responsiveness of credit-based algorithms.
We observed that for T = 1 and K = 40, the algorithm
achieves a reasonable responsive behavior5. Therefore,
for all the presented simulations, we have set T = 1
second, K = 40 and X = 128 requests per second, unless
otherwise specified. All data points shown on the curves
represent an average over 100 runs. We have calculated
confidence intervals for each data point, however we do
not show them on the curves for simplicity.

5.2 Performance Metrics

In order to properly measure the performance of DoWSS

and compare it with other existing approaches, we use
the following performance metrics:

5. In a real deployment scenario, the choice of the length of an
enforcement period rests at the discretion of an IT administrator. The
number of subintervals should then be chosen accordingly.
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1) Processed Requests (used in Fig. 6, 7, 10, 11, 12, and
13): Number of requests that were processed by the
appliances and sent to the service host.

2) Allocated Credits and Queued Requests (used in
Fig. 9): Respectively, the number of credits that
were allocated to a particular appliance and the
number of queued requests.

3) Accumulated Unprocessed Requests (used in Fig. 8):
Number of unprocessed requests per enforcement
period among all the appliances accumulated over
time. Note that, as stated in Definition 1, the opti-
mal algorithm should lead to min[X × T ;Yin × T ]
and therefore have zero unprocessed requests.

5.3 Performance under Uniform Traffic

In Fig. 6 the performance of DoWSS over one observa-
tion period is depicted, under the assumption of uni-
form traffic. This figure shows the number of processed
requests during three enforcement periods. In Fig. 6(a),
Yin is set to 128 requests/s. At the end of the observation
period, using DoWSS and CASTS the system has pro-
cessed more requests than MSA. Nevertheless, the value
of processed requests never reaches X × T , represented
by a horizontal dotted line. This is due to the actual
number of requests sent to the appliances. Since the
data points represent averages over all the conducted
simulations, in some cases Yin might be less than X×T .
In Fig. 6(b), Yin is set to 1,000 requests/s. In this case
the contract limit X , represented by a horizontal dotted
line, is achieved very early in the observation period.
When using DoWSS the system performs optimally by
processing exactly X × T credits.

In Fig. 7 we explore the performance of DoWSS dur-
ing an enforcement period under uniform traffic. This
figure shows the number of processed requests during
one enforcement period, as a function of the input rate.
The horizontal dotted line shows the value of X × T .
For sending rates much lower than X , both DoWSS

and CASTS perform equally, as expected, while MSA
shows a lower performance. However, for sending rates

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.5  1  1.5  2  2.5  3

P
ro

ce
ss

ed
 R

eq
ue

st
s

Time (s)

Normal Mode
Fast Start Contention

Fig. 10. Performance of the fast start contention mecha-

nism under uniform traffic.

that are close to and above X , DoWSS outperforms both
CASTS and MSA. Indeed, while CASTS obtains a good
performance by processing a number of requests close
to X , DoWSS performs optimally by processing and
sending exactly X requests per observation period to the
service host.

As mentioned before, the flooring function used in
CASTS and MSA will limit in most cases the number
of allocated credits to be less than X × T , depending on
the number of appliances used. Therefore, a number of
requests are left unprocessed at the end of each enforce-
ment period. These requests accumulate over time, having
a negative impact on the overall performance of the system.
Fig. 8 shows the impact of the flooring effect over time.
After six hours running the three algorithms, DoWSS

has processed up to 170,000 more requests than MSA,
and around 120,000 more than CASTS. Clearly, by using
DoWSS, the system exploits its maximum capacity.

To illustrate the starvation problem, Fig. 9 shows the
number of allocated credits and queued requests for only
two of the 10 used appliances. When using CASTS, dur-
ing the first observation period, as there are no queued
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Fig. 11. Number of processed requests per enforcement period (T ) for Yin = X and Yin >> X under bursty traffic.
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requests, the credits are uniformly distributed among
all the appliances. During the subsequent observation
periods, when there are queued requests, the appliance
with the largest number of requests in queue will obtain
most of the assigned credits. However, when there is
only one appliance with queued requests, as is the case
of appliance 1 around 1.25 seconds, it will claim all
the credits during the subperiod. The other appliances
are then left creditless, even with empty queues, and
are therefore unable to process requests during the
subperiod. DoWSS corrects this issue. After 1 second,
appliance 1 has queued requests, while appliance 0 has
an empty queue. Even with an empty queue, appliance
0 is allocated credits, and thus it is able to process any
requests that arrive during the subperiod.

In Fig. 10, we illustrate the performance of the fast
start contention mechanism under uniform traffic. Since
the fast start depends directly on the number of SON
Appliances used (cf. Section 3.3.3), for this set of simula-
tions we set B = 4 and Yin = 1, 000 reqs/sec. If the fast
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nism under bursty traffic.

start contention method is not used, the available credits
are rapidly consumed during the first few enforcement
subperiods, therefore sending the entire number of re-
quests allowed by the SAR during a short period of time.
This situation could result in effectively overwhelming
the service host. When the contention method is used,
the credits are consumed during the entire duration of
the enforcement period. In this way, DoWSS further
prevents the service host from being overwhelmed.

5.4 Performance Under Bursty Traffic

In Fig. 11, the typical performance of DoWSS under
bursty traffic is observed. This figure shows the number
of processed requests during three observation periods.
In Fig. 11(a), Yin is set to 128 requests/s. Unlike previous
performed simulations with uniform entry traffic, under
bursty traffic the value of allocated credits reaches X×T ,
represented by a horizontal dotted line, rather early in
the enforcement period. This is due to the actual entry
rate to the system. Since the requests are sent in bursts,
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the number of requests sent to the SON appliances may
reach the maximum specified value at any point in the
enforcement period. At the end of the first observation
period, DoWSS and CASTS have allocated more credits
than MSA. In Fig. 11(b), Yin is set to 1,000 requests/s.
In this case, the performance of DoWSS is similar to the
performance under uniform traffic. For both entry rates,
the performance of CASTS and MSA deteriorates over
time.

In Fig. 12, we explore the performance of DoWSS

as a function of the input (bursty) traffic. This figure
shows the number of processed requests during one
enforcement period. The horizontal dotted line shows
the value of X×T . Even with bursty traffic, for sending
rates much lower than X , both DoWSS and CASTS
perform equally and as expected, while MSA shows a
lower performance. However, for sending rates that are
close to and above X , DoWSS outperforms both CASTS
and MSA. Indeed, CASTS obtains a good performance
by processing a number of requests close to X , for
input values close to X . However, the performance of
CASTS decreases as Yin increases. On the other hand,
DoWSS performs optimally by processing X requests
per observation period.

In Fig. 13, we illustrate the performance of the fast
start contention mechanism under bursty traffic. For this
set of simulations, we set B = 4 and Yin = 1, 000
reqs/sec. If the fast start contention method is not
used, after a short period of time without any received
requests, the available credits are rapidly consumed
during the few subsequent enforcement subperiods and
therefore a substantial number of requests is sent to
the service host during a small period of time. When
the contention method is used, credit consumption is
distributed almost homogeneously over the duration
of the enforcement period, thus further preventing the
service host from being overwhelmed.

6 DISCUSSION

6.1 Optimality of Results

The obtained results show that the performance of both
CASTS and MSA, although satisfactory, is below the
performance of DoWSS. The difference is significant
as it leads to increasing cumulative underperformance
in the former cases. Indeed, since DoWSS complies
with R(K) = min[X × T ;Yin × T ], it has an optimal
performance. The flooring function used in both existing
credit-based approaches will limit in most cases the
number of allocated credits to be less than X×T , which
is the maximum allowed by the CSC, depending on
the number of appliances used. DoWSS will achieve
this maximum while respecting the CSC. It is worth
noting again that, even though the numerical difference
between the results obtained using DoWSS and those
obtained using CASTS is not large, the optimal perfor-
mance of DoWSS has a substantial positive impact on
the performance of the system over time.

A direct consequence of the suboptimal performance
of existing credit-based approaches, is the great amount
of unprocessed requests which accumulates over time.
Given the costs of implementing SON and issues in-
herent to the provision of Web Services, it is imper-
ative to design efficient algorithms that optimize the
overall utilization of the system. As DoWSS provides
“optimal” performance, the system is able to exploit
its maximum capacity. Therefore, the implementation of
DoWSS maximizes the benefits of implementing a two-
tiered architecture as the one considered in this paper.

By avoiding the starvation issue, the algorithm pre-
vents appliances from going idle in instances where their
resources should be exploited. In other words, even with
an empty queue, an appliance is allocated credits, and
thus it is able to process any requests that arrive just
after credit allocation has been performed. This further
allows to use the system’s resources to their maximum
capacity.

The fast start contention method included in DoWSS

service further enhances protection of the service host.
Nevertheless, by using this optional method, another
manual rate assignment is being performed, and there-
fore the desired weighted effect is almost lost. However,
it is worth noting that, even though fast start is an
undesired phenomenon, it is nonetheless inherent to the
way credit-based algorithms work.

6.2 Communication Overhead

The proposed algorithm depends crucially on the in-
formation exchange between SON appliances in order
to take decisions locally at each SON appliance. The
amount of information exchanged during each enforce-
ment period will depend directly on the number of
enforcement subperiods defined. The goal of dividing
the enforcement period into subperiods is to give the
algorithm more chances to react to changes in the be-
havior of the input conditions. Nevertheless, the number
of enforcement subperiods has a great impact on the
behavior of the algorithm, since the higher the number
of subintervals, the higher the control overhead.

The number of control messages exchanged is linearly
proportional to both the number of appliances and the
number of subintervals. Moreover, the duration of the
enforcement period determines the optimum value of
the number of enforcement subperiods. Indeed, a larger
enforcement period could support a large number of
subperiods. Consequently, depending on the length of
the observation period and on the size of the requests,
the control overhead might compromise the efficiency of
the system.

6.3 Open Issues

Scalability. This is a fundamental issue in the design
and operation of an enterprise network. The scalability
of DoWSS depends on a number of factors such as
the SAR, the length of the enforcement period, and
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the number of enforcement subperiods. To this end,
enterprise networks will need to implement metrics for
the scalability of DoWSS. In this work we deliberately
did not conduct a study on the scalability of DoWSS.
Instead we focused on the core functionalities of our
algorithm.

Network Latency. In this body of work, we focused on
studying the performance of our approach in single-
site data centers, where the network that connects the
appliance and server tiers has very small latency. Further
study is therefore required for geographically distributed
data centers, as the network may now introduce a higher
latency.

Distributed Shaping. In this paper we have considered
a decentralized deployment architecture in which there
are several SON appliances accessing a single service
host. In this scenario, each appliance runs the proposed
algorithm while having a global knowledge of the state
of the rest of the appliances. To this end, the appliances
exchange information with each other. Each appliance
calculates locally the sending rate. Nevertheless, there
is another deployment scenario where the algorithm is
completely distributed, and each appliance will calculate
locally the sending rate towards the service host while
having a partial knowledge of the state of the rest of
the appliances. In this paper we did not consider this
scenario, and focused on the decentralized case.

CSC Definitions. One of the major issues of imple-
menting Service Traffic Shaping algorithms in Service-
Oriented Networks, is the fact that the Client Service
Contracts are ill-defined. Indeed, CSCs are defined in
terms of requests per second as opposed to data units per
second as it is done in classic networking. Moreover, they
do not include parameters such as a maximum burst
size. Consequently, CSCs in SON are not precisely mea-
surable, making the resource (CPU processing time in
this case) difficult to protect. The challenge is therefore,
finding a way to establish other types of CSCs that are
well-defined.

Real Testbed. The simulation results obtained by this
work show the strengths and usefulness of the approach,
as well as some of its limitations and possible drawbacks.
The next step of the work is to design and implement
a practical version on a real world testbed in order to
properly measure the impact of the algorithm in an
actual production environment.

7 RELATED WORK

Many research efforts in the literature are oriented
specifically towards QoS control in Web server farms.
Nevertheless, these efforts center around enforcing SLAs
defined in terms of maximum response times of a ser-
vice. To this end, most of the methods are based on
either service differentiation and prioritization [18], [19],
or admission control of new service requests [20], [21],
or both [22], [23].

In particular, the work that is the closest to ours is
the one of Garcia et al. [24]. The authors analyze the
deficiencies in existing methods, define a number of
requirements that any QoS control mechanism working
in an enterprise environment should address, and es-
tablish their basic design principles. Along these lines,
the authors propose a QoS control mechanism which
determines the maximum number of concurrent sessions
that a service host can process, and calculates the maxi-
mum admissible sessions in order to maintain the values
specified by the SLA.

It is worth noting that, most of these research works
involve the use of a centralized server and measure-
ment/processing at the service hosts. Since the idea
behind using a multi-tier architecture is to offload some
tasks to be done from the servers, these methods are
not applicable in our particular context. In contrast, our
work aims at a decentralized method for enforcing the
CSC. Furthermore, we do not center our work on service
response times or client differentiation and scheduling.
Instead, our objective is to prevent service hosts from
being overwhelmed.

8 CONCLUSIONS

Service-Oriented Architectures (SOA) have emerged as
the main solution for the integration of legacy systems
with new technologies in the enterprise world. Services
are governed by client service contracts (CSCs) that
specify, among other requirements, the rate at which
a service should be accessed in terms of “X requests”
per observation period T , in order to prevent a ser-
vice host from being unduly overwhelmed. Several ap-
proaches, using both static and dynamic, credit-based
strategies, have been developed in order to enforce the
access rate specified in such a contract. Nevertheless,
because client service contracts are ill-defined (e.g., due
to lack of parameters such as a maximum burst size),
existing approaches have problems related to starvation,
approximations used in calculations, and rapid credit
consumption under certain conditions.

In this paper we presented DoWSS, a doubly-
weighted algorithm for service traffic shaping in service-
oriented networks. Contrary to existing credit-based ap-
proaches, our approach guarantees the allocation of at
least one credit per measurement subperiod, thus effec-
tively solving the numerical approximation issues, by ex-
ploring the communication capabilities of the SON Ap-
pliances. DoWSS involves the use of a doubly-weighted
strategy for credit allocation, using weights based on
request sizes. Therefore, DoWSS effectively penalizes the
appliance queues that would take the longest to process,
by assigning more credits to appliances with smaller
queues, thus preventing starvation. The algorithm also
introduces a procedure to contain the rapid consumption
of credits at the beginning of enforcement period, or
fast start, further preventing the service host from being
overwhelmed.
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We evaluated the performance of DoWSS by conduct-
ing a series of simulations. The obtained results show
that DoWSS performs optimally by processing exactly
X × T requests per observation period, which is the
maximum possible number of requests allowed by the
client service contract. We also show that our approach
has a substantial positive impact over time on the overall
performance of the system, by using it to its maximum
capacity.
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