
HAL Id: hal-00650529
https://hal.inria.fr/hal-00650529

Submitted on 10 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measuring the Compatibility of Service Interaction
Protocols

Meriem Ouederni, Gwen Salaün, Ernesto Pimentel

To cite this version:
Meriem Ouederni, Gwen Salaün, Ernesto Pimentel. Measuring the Compatibility of Service Interaction
Protocols. 26th ACM Symposium on Applied Computing, ASME, Mar 2011, Taichung, Taiwan. �hal-
00650529�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49937943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00650529
https://hal.archives-ouvertes.fr


Measuring the Compatibility of Service Interaction
Protocols

Meriem Ouederni
University of Málaga, Spain
meriem@lcc.uma.es

Gwen Salaün
Gr. INP–INRIA–LIG, France
Gwen.Salaun@inria.fr

Ernesto Pimentel
University of Málaga, Spain
ernesto@lcc.uma.es

ABSTRACT
Checking the compatibility of service interfaces allows one
to avoid erroneous executions when composing the services
together. This task is especially difficult when considering
interaction protocols, that is messages and their application
order, in service interfaces. Although service compatibil-
ity has been intensively studied, in particular for discovery
purposes, most of existing works return a Boolean result.
However, if two services are incompatible, these approaches
do not indicate whether the services are almost compati-
ble or totally incompatible. This information is crucial if
one wants to apply adaptation techniques, for instance, to
successfully compose these services in spite of existing mis-
matches. In this paper, we propose a generic flooding-based
techniques for measuring the compatibility degree of service
protocols. We illustrate our approach with two compatibil-
ity notions, namely unspecified receptions and unidirectional
complementarity. Our solution is fully automated by a pro-
totype tool we have implemented.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.12 [Software Engineering]: Interoperability—
Interface definition languages

General Terms
Verification, Measurement

Keywords
Service Interfaces, Interaction Protocols, Formal Verifica-
tion, Compatibility Flooding

1. INTRODUCTION
In today’s Service Oriented Computing (SOC), organiza-

tions increasingly tend to fulfill complex requirements by
composing existing services. These services have been in-
dependently developed in heterogeneous platforms without

.

any knowledge of how to interact with each other. They are
accessed through their interfaces which distinguish several
interoperability levels (i.e., signature, interaction protocol,
quality of service, and semantics). A key issue in this setting
is to check whether the service interfaces are compatible or
not. This check guarantees the safe reuse and the successful
interoperation of services. In this paper, we focus on the
interaction protocol level of service interfaces. Checking the
compatibility of interaction protocols is a tedious and diffi-
cult task even though this is of utmost importance to avoid
run-time errors, e.g., deadlock situations or unmatched mes-
sages. Most of the existing approaches (see for instance [8,
23, 3, 10, 4]) detect whether services are compatible or not
by returning a “True” or “False” result. Unfortunately, a
Boolean answer is not very helpful for many reasons. First,
in real world case studies, there will seldom be a perfect
match, and when service protocols are not compatible, it
is useful to differentiate between services that are slightly
incompatible and those that are totally incompatible. Fur-
thermore, a Boolean result does not give a detailed measure
of which parts of service protocols are compatible or not.

To overcome the aforementioned limits, a new solution
aims at measuring the compatibility degree of service inter-
faces. This issue has been addressed by a few recent works,
see for instance [22, 17, 12, 2]. However, the limitations of
existing works are as follows:

• Most of them are based upon description models of
service interfaces, e.g., business process models [17],
which do not consider value-passing with exchanged
messages, and internal behaviours (τ transitions). In-
ternal behaviours in interface models are very impor-
tant while checking compatibility because some ser-
vices can be compatible from an observable point of
view, but their execution will behave erroneously due
to these internal behaviours.

• Existing approaches such as [22] measure the interface
compatibility using a simple (i.e., not iterative) traver-
sal of protocols and the results lack the preciseness
which is essential for detecting subtle protocol mis-
matches.

• A unique compatibility notion is always considered
to check the services, and this makes the approaches
useful only for specific application areas, e.g., service
choreography [12] or adaptation [17].

In this paper, we propose a generic framework where the
compatibility degree of service interfaces can be automati-
cally measured according to different compatibility notions.



We illustrate our approach using both a bidirectional and
an unidirectional compatibility notion, namely unspecified
receptions and unidirectional complementarity. Additional
notions can easily be added to our framework. The generic-
ity of our framework makes it applicable to different appli-
cation scenarios. We consider a formal model for describing
service interfaces with interaction protocols (messages and
their application order, but also value-passing and internal
actions). In our approach, the compatibility is measured in
two steps. The first step computes a set of static compati-
bility degrees where the execution order of messages is not
taken into account. Then a flooding algorithm computes
the detailed compatibility degrees of all state matches in
the interaction protocols using the static compatibility re-
sults. To make the measurement more precise, our flooding
algorithm combines a forward and backward compatibility
propagation. This comparison process also returns a global
compatibility degree and a list of mismatches indicating the
interoperability issues. The proposed framework is fully au-
tomated by a prototype tool (called Comparator) which we
have implemented and validated on many examples, which
showed the high precision of our results.

Measuring the compatibility degree brings more advan-
tages than the Boolean approaches and this opens a wide
range of applications, in particular automatic service adap-
tation [14]. If a set of services is incompatible, the detailed
measures and the mismatch list help to understand what
parts of these services do not match. Thus, the mismatches
can be worked out using adaptation techniques, and service
composition can be achieved in spite of existing mismatches.
Also, the computation of a global and unique compatibility
degree from the detailed measures helps in ranking and se-
lecting some services from many possible candidates.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our model of services. Section 3 introduces
the compatibility notions we use in this paper for illustra-
tion purposes. In Section 4, we present our solution for
measuring the service compatibility. Section 5 introduces
our prototype tool and some experimental results. Section 6
states a brief comparison with related approaches. Finally,
Section 7 draws some conclusions. All the formal definitions
are given in a companion technical report [18].

2. SERVICE MODEL
We assume service interfaces are described using their in-

teraction protocols represented by Symbolic Transition Sys-
tems (STSs) which are Labelled Transition Systems extended
with value-passing (parameters coming with messages). Our
STS is a variant of STG (Symbolic Transition Graph) pre-
sented in [11], where guards are abstracted here as transi-
tions labelled with τ actions. A STS is a tuple (A, S, I, F, T )
where: A is an alphabet which corresponds to the set of la-
bels associated to transitions, S is a set of states, I ∈ S is
the initial state, F ⊆ S is a nonempty set of final states, and
T ⊆ S\F × A × S is the transition relation. In our model,
a label is either the (internal) τ action or a tuple (m,d, pl)
where m is the message name, d stands for the communica-
tion direction (either an emission ! or a reception ?), and pl

is either a list of typed data terms if the label corresponds
to an emission (output action), or a list of typed variables
if the label is a reception (input action).1 Communication

1The message names and parameter types respect the ser-

between services relies on a synchronous and binary commu-
nication model. The operational semantics of this model is
given in [10]. STSs can also be easily derived from higher-
level description languages such as Abstract BPEL; see for
instance [20, 5] where such abstractions were used for veri-
fication, composition or adaptation of Web services.

3. PROTOCOL COMPATIBILITY
Compatibility checking verifies the successful interaction

between services w.r.t. a criterion set on their observable ac-
tions. This criterion is referred to as a compatibility notion.
In this paper, we distinguish two classes of notions depend-
ing on the direction of the compatibility checking. We refer
to these classes as bidirectional and unidirectional checking.
We particularly illustrate our approach with a bidirectional
compatibility notion, namely unspecified receptions (UR for
short), and with an unidirectional notion, namely unidirec-
tional complementarity (UC for short).

3.1 Preliminaries
This section introduces some basic concepts needed to de-

fine the UR and UC compatibility notions. We describe a
transition using a tuple (s, l, s′) such that s and s′ denote
the source and target states, respectively, and l stands for
its label. We suppose that for all transitions (s, τ, s′), s 6=
s′. Given two services described using STSs STSi∈{1,2} =
(Ai, Si, Ii, Fi, Ti), we define a global state as a pair of states
(s1, s2) ∈ S1 × S2. For the sake of comprehension, we have
chosen to present several simple examples instead of a single
running example. However, we have applied our approach to
many real-world case studies. Some of them are mentioned
in Section 5 and others are available online [1].

Parameter Compatibility. The usual meaning of param-
eter compatibility requires that the parameter list expected
to be received perfectly matches (same types in the same
order) the parameter list coming with the sent message.

Label Compatibility. Two labels are considered compat-
ible if they have opposite directions, same names, and com-
patible parameters.

Reachable States. These are the global states that the
interacting protocols can access, in zero or more steps, from
a current global state. Protocols can move into reachable
states through synchronisations on compatible labels or in-
dependent evolutions, i.e., τ transitions.

Example 1. Figure 1 shows an example of two service
protocols, which enable a database to be updated once a user
account is created. As we can observe, the protocols can ini-
tially transit from (s1, c1) to state (s2, c2) through the com-
patible labels register?id:int and register!id:int. However, both
protocols cannot synchronise on the update message because
update? is not compatible with any label in c1. Applying the
same reasoning on (s2, c2), the set of global states reachable
from the initial one is {(s2, c2), (s1, c3), (s3, c4)}.

Deadlock-freedom. An important property required for
checking the successful termination of the system is deadlock-
freedom. Two protocols are considered deadlock-free at a
given global state (s1, s2) if and only if either this state is
final, i.e., (s1, s2) ∈ F1×F2, or these protocols are deadlock-
free in each global state reachable from the current one.

vice signature.



Figure 1: Database Handling System (I).

State Compatibility. Given a global state (s1, s2), state
compatibility consists in checking whether the message l1
sent (received, respectively) by protocol 1 at state s1 will
be eventually received (sent, respectively) by protocol 2 at
state s2, such that both protocols evolve into a compatible
global state, and vice-versa. If protocol 2 is not able to
interact with protocol 1’s action, then both protocols must
be able to reach a global state (s1, s

′
2) in which this action

will be satisfied, i.e., ∃(s′2, l2, s
′′
2 ) ∈ T2 such that l1 and l2

are compatible, and vice-versa. The protocols must also be
compatible in (s1, s

′
2) and (s′1, s

′′
2 ). Since services can evolve

independently through some τ transitions, the behavioural
compatibility requires that each internal evolution must lead
both services into compatible states [6, 8]. Hence, every time
a τ transition is traversed in one protocol, the compatibility
has to be checked again on the target state.

Example 2. To illustrate the concept of state compati-
bility, we show how the compatibility can be verified at the
global state (s1, c1) of protocols Database and Engineer in
Figure 1. Although the label register?id:int at state s1 can
match the label register!id:int at state c1, this is not the case
of the label update? at state s1 because it does not match
any label at state c1. However, both STSs are able to reach
the global state (s1, c3) in which the label update? can be
matched. Moreover, Database and Engineer are compatible
in (s1, c3) and also in (s3, c4). As we can observe, every syn-
chronisation leads both STSs into compatible global states,
and the state compatibility is therefore satisfied in (s1, c1).

3.2 Notions of Protocol Compatibility
Unspecified Receptions. This notion is inspired from [23]
and requires that two services are compatible (i) if they are
deadlock-free at their initial global state, and (ii) if one ser-
vice sends a message at a reachable state, then its part-
ner eventually receives that emission such that both services
evolve into a compatible global state. The second condition
is checked using the verification of state compatibility over
the emission transitions. In real-life cases, one service must
receive all requests from its partner, but can also be ready
to accept other receptions, since the service could interop-
erate with other partners. Hence, there might be additional
unmatched receptions in reachable states, possibly followed
by unmatched emissions. These emissions do not give rise
to an incompatibility issue as long as their source states are
unreachable when protocols interact with each other.

Example 3. Let us illustrate the verification of the UR
compatibility on the Engineer and Database protocols in Fig-
ure 2. At the initial global state (s0, c0), there is a unique
emission, register!id:int, which perfectly matches with the re-
ceptions register?id:int. There is also an unmatched reception

Figure 2: Database Handling System (II).

update? at state s0 but this does not raise an incompati-
bility issue according to the above definition. At the global
state (s1, c1), the unique emission ack! perfectly matches
with ack?, and here again there is an additional reception
reject?. Moreover, these protocols do not deadlock. As a
result, they are compatible w.r.t. the UR notion.

Unidirectional Complementarity. Two services are com-
patible w.r.t. the UC notion if there is one service (comple-
menter) which must eventually receive (send, respectively)
all messages that its partner (complemented) expects to send
(receive, respectively) at all global reachable states. In ad-
dition, both services must be deadlock-free in all reachable
global states. Hence, the complementer service may send
and receive more messages than the complemented service.2

This asymmetric notion is useful for checking the success-
ful communication in the client/server model where a server
can interact with clients having different behaviours. In this
setting, each client behaviour must be satisfied by the server.

Example 4. Figure 3 consists of two protocols: the Sub-

scriber (complemented) first asks for a conference registra-
tion and waits for an acknowledgment. The conference server
ConfServer (complementer) can receive a request for either
a registration or an update. Then, the server sends back
to the subscriber an acknowledgement followed by a confir-
mation email, or terminates if this confirmation has not to
be sent (described with a τ transition). We notice that the
ConfServer complements the Subscriber because every time
the Subscriber wants to transit into another state the Conf-

Server enables that transition. Moreover, both protocols are
free of deadlocks. Although there is an unmatched emission
email! in the reachable global state (s2, c3), the protocols
remain compatible w.r.t. the UC notion, because this emis-
sion is in the complementer protocol. However, they are not
compatible w.r.t. the UR notion because of this reachable but
unmatched emission.

4. MEASURING COMPATIBILITY
This section presents our techniques for measuring the

compatibility of two service protocols. All the compatibility
measures we present below belong to [0..1] where 1 means a
perfect compatibility. The approach illustrated in Figure 4
consists first in computing a set of static compatibility mea-
sures (Section 4.1). In a second step, these static measures
are used for computing the behavioural compatibility degree

2Our definition is different to simulation or preorder rela-
tions [7] since we compare protocols with opposite direc-
tions.



Figure 3: Conference Registration System.

for all global states in S1 × S2 (Section 4.2). Lastly, the re-
sult is analysed and a global compatibility degree is returned
(Section 4.3).

Figure 4: Compatibility Measuring Process.

4.1 Static Compatibility
We use three auxiliary static compatibility measures, namely

state nature, labels, and exchanged parameters.

State Nature. The comparison of state nature assigns 1
to each pair of states which have the same nature, i.e., both
states are initial, final or none of them. Otherwise, the mea-
sure is 0.

Parameters. The compatibility degree of two parame-
ter lists pl1 and pl2 depends on three auxiliary measures,
namely: (i) the compatibility of parameter number compar-
ing the list sizes; (ii) the compatibility of parameter order
measuring the number of types which do not appear in the
same order, and (iii) the compatibility of parameter type
using the set of unshared types in both lists. These mea-
sures must be set to 1 if these lists are empty. Otherwise,
each measure is obtained as follows: First, we compute the
score of the respective mismatch, i.e., different lengths of
parameter lists, unordered and/or unshared types in both
parameter lists. Then, we normalise the score by the max-
imal value that can be achieved. Finally, we decrease the
mismatch score from the perfect compatibility degree (1) to
obtain the auxiliary measure. The parameter compatibility
degree is computed as the average of the auxiliary measures.

Example 5. Let us consider two parameter lists pl1 =
(usr:str, pwd:int) and pl2 = (log:str, sig:float, pwd:int). We
show below the computation of the aforementioned measures:

• The number compatibility is equal to 1 − 3−2
3

= 0.66.
In the worst case, a non-empty parameter list can be
compared with an empty one. Therefore, the denomi-
nator must be set as the maximal size among those of
pl1 and pl2.

• The order compatibility is equal to 1 − 1
2

= 0.5 since
pl1 and pl2 have one unordered type among two types
existing in both lists.

• The type compatibility is equal to 1 − 1
5

= 0.8 because
pl2 does not share the type float with pl1. The number
of unshared types is normalised with the sum of pl1 and
pl2 sizes because in the worst case both lists could have
types totally different.

• As a consequence, the parameter compatibility is equal
to 0.66+0.5+0.8

3
= 0.65.

Labels. Protocol synchronisation requires that compatible
labels must have opposite directions. Therefore, given a pair
(l1, l2) ∈ A1 × A2, the label compatibility is measured as 0
if these labels have same directions. Otherwise, the compu-
tation of this measure uses the semantic distance between
message names and the parameter compatibility degree pre-
sented above. Here, message names are compared using the
Wordnet similarity package. Note that message names and
parameters can be compared using other techniques such as
the N-gram algorithm [13]. It is also possible to compare
the semantics of parameter names and/or types using the
Wordnet similarity package.

4.2 Behavioural Compatibility
We consider a flooding algorithm which performs an itera-

tive measuring of behavioural compatibility for every global
state in S1 × S2. This algorithm incrementally propagates
the compatibility between neighbouring states using back-
ward and forward processing. The compatibility propaga-
tion is based on the intuition that two states are compatible
if their backward and forward neighbouring states are com-
patible. Note that the backward and forward neighbours
of the global state (s′1, s

′
2) in the transition relations T1 =

{(s1, l1, s
′
1), (s

′
1, l

′
1, s

′′
1 )} and T2 = {(s2, l2, s

′
2), (s

′
2, l

′
2, s

′′
2 )} are

the states (s1, s2) and (s′′1 , s′′2 ), respectively. The flooding al-
gorithm returns a matrix denoted COMPk

CN ,D where each

entry COMPk
CN ,D [s1, s2] stands for the compatibility mea-

sure of global state (s1, s2) at the kth iteration. The pa-
rameter CN refers to the considered compatibility notion
which must be checked according to D that is either an
unidirectional (→) or a bidirectional (↔) protocol analy-
sis. COMP0

CN ,D represents the initial compatibility matrix
where all states are supposed to be perfectly compatible,
i.e., ∀(s1, s2) ∈ S1 × S2, COMP0

CN ,D [s1, s2] = 1. Then, in

order to compute COMPk
CN ,D [s1, s2], we need two functions,

namely obs-compk
CN,D and state-compk

CN,D that we detail
in the following. The first function computes the compati-
bility of outgoing (incoming, respectively) observable tran-
sitions being given a compatibility notion CN . We refer
to this measure as observational compatibility. The second
function propagates the compatibility from the forward and
backward (denoted fw and bw for short, and illustrated in
Figure 4 with red dashed arrows) neighbouring states to
(s1, s2) taking into account τ transitions. Thus, the compu-
tation of state-compk

CN,D combines two auxiliary functions,



Figure 5: Online Store (I).

namely fw-propagk
CN,D and bw-propagk

CN,D. In this paper,
we only present the forward compatibility for lack of space,
the backward compatibility can be computed in a similar
way based upon incoming rather than outgoing transitions.
In the following, we start by introducing the computation
of observational compatibility w.r.t. to UR and UC notions
presented in Section 3.2.

Unspecified Receptions. For all global states (s1, s2):
(i) obs-compk

UR,↔ returns 1 if and only if every outgoing
emission at state s1 (and s2) perfectly matches an outgoing
reception at state s2 (and s1) and all synchronisations on
those emissions lead to compatible states; (ii) obs-compk

UR,↔

returns 0 if there is a deadlock; (iii) otherwise, obs-compk
UR,↔

measures the best compatibility of every outgoing emission
at s1 with the outgoing receptions at s2, leading to the neigh-
bouring states which have the highest compatibility degree,
and vice-versa.

Example 6. Let us consider the global state (s0, c0) in
Figure 5. Here, there is a unique emission update! at c0

which perfectly matches with the reception update? at s0,
lab-comp(update!, update?) = 1. The synchronisation on
these compatible labels leads to the target global state (s2, c1)
where COMP0

UR,↔[s2, c1] = 1. Thus, at the first iteration:

obs-comp1
UR,↔((s0, c0))

= lab-comp(update!, update?) ∗ COMP0
UR,↔[s2, c1] = 1.

Unidirectional Complementarity. We assume that one
state ser (in the complementer protocol) perfectly comple-
ments the state sed (in the complemented protocol), i.e.,
obs-compk

UC ,→((ser, sed)) = 1, if there is a subset of outgo-
ing observable transitions at ser such that their respective
labels are perfectly compatible with those of transitions at
sed. In addition, these transitions must lead to compatible
states. If there is a deadlock, this function returns 0. Other-
wise, obs-compk

UC,→((ser, sed)) measures the best compati-
bility of every transition label going out from sed with those
of transitions going out from ser, leading to the neighbouring
states which have the highest compatibility degree.

Example 7. Let us consider the global state (s0, c0) in
Figure 6. We want to check whether the O-Store protocol
complements the Customer protocol. Initially, there is only
one observable message seek! in the Customer protocol which
perfectly matches with message search? in the O-Store pro-
tocol (message names are synonyms in the Wordnet simi-
larity package), lab-comp(seek!, search?) = 1. In addition,
the protocols can reach (s1, c1) through the synchronisation
on these compatible labels such that COMP0

UC ,→[s1, c1] = 1.

Therefore, at the first iteration, obs-comp1
UC,→((s0, c0)) =

lab-comp(seek!, search?) ∗ COMP0
UC ,→[s1, c1] = 1.

Figure 6: Online Store (II).

As far as τ transitions are concerned, we define the func-
tion fw -propagk

CN ,D , D ∈ {↔,→}, which handles these in-
ternal behaviours based upon either a bidirectional or uni-
directional compatibility propagation:
Bidirectional Propagation. The protocol compatibility
is analysed from the point of view of both services. The
function fw -propagk

CN ,↔((s1, s2)) propagates to (s1, s2) the
compatibility degrees obtained for the forward neighbours
of state s1 with those of state s2, and vice-versa. For each τ

transition, fw -propagk
CN ,↔ must be checked on the target

state. Observable transitions going out from (s1, s2) are
compared using obs-compk

CN,↔((s1, s2)).

Example 8. Let us consider again the global state (s0, c0)
in Figure 5 and the UR notion. We show below the compu-
tation of fw-propag1

UR,↔ at the initial global state, and which
results in the average of the auxiliary values computed from
each protocol point of view:
fw-propag1

UR,↔((s0, c0)) = 1
2
∗

(
fw-propag1

UR,↔
((s1,c0))+obs-comp1

UR,↔
((s0,c0))

2
+

fw-propag1
UR,↔

((s0,c3))+obs-comp1
UR,↔

((s0,c0))

2
)

where:

• fw-propag1
UR,↔((s1, c0)) = obs-comp1

UR,↔((s1, c0)) =
0 due to the deadlock that can occur at the global state
(s1, c0).

• fw-propag1
UR,↔((s0, c3)) = obs-comp1

UR,↔((s0, c3)) =
0 because both protocols can also deadlock at the global
state (s0, c3).

• obs-comp1
UR,↔((s0, c0)) = lab-comp(update?, update!)∗

COMP0
UR,↔[s2, c1] = 1.

As a consequence, fw-propag1
UR,↔((s0, c0)) = 1

2
.

Unidirectional Propagation. We assume that the func-
tion fw -propagk

CN ,→((s1, s2)) is computed from STS2’s point
of view such that the service compatibility is governed by
STS2’s requirements. First, if no τ transition exists at
(s1, s2), fw -propagk

CN ,→((s1, s2)) = obs-compk
CN ,D ((s1, s2)).

If there exist τ transitions at s1, this state is considered
compatible with s2 if fw -propagk

CN ,→((s′1, s2)) = 1 for every
(s1, τ, s′1). This check ensures that each time STS1 traverses
an internal transition, this protocol must be able to fulfill
STS2’s requirements at the target state. If the last condition
does not hold, we need to compute fw -propagk

CN ,→((s′1, s2))
for every (s1, τ, s′1), and also the compatibility of observable
transitions going out from the global state (s1, s2) obtained
using obs-compk

CN ,D ((s1, s2)). Otherwise, if no (s1, τ, s′1) ex-

ists, we compute fw -propagk
CN ,→((s1, s

′
2)) for every (s2, τ, s′2),

and also obs-compk
CN ,D ((s1, s2)).



s0 s1 s2 s3 s4
c0 0.78 0.01 0.01 0.01 0.01
c1 0.01 0.68 0.01 0.35 0.01
c2 0.01 0.01 0.90 0.01 0.67
c3 0.01 0.45 0.76 0.35 0.76

Table 1: The Compatibility Matrix COMP7
UC ,→.

Example 9. Let us show the computation of the function
fw-propag1

UC ,→ at states (s0, c0) and (s1, c1) in Figure 6.

First, fw-propag1
UC ,→((s0, c0)) = obs-comp1

UC,→((s0, c0)) =
1 because no τ transition exists. Since there is one τ tran-
sition at c1:
fw-propag1

UC ,→((s1, c1)) =

fw-propag1
UC ,→((s1, c3)) + obs-comp1

UC ,→((s1, c1))

2

where:

• fw-propag1
UC ,→((s1, c3)) = obs-comp1

UC ,→((s1, c3)) =
0 due to the deadlock at state (s1, c3).

• obs-comp1
UC ,→((s1, c1)) = lab-comp(reply!, reply?) ∗

COMP0
UC ,↔[s2, c2] = 1.

Hence, fw-propag1
UC ,→((s1, c1)) = 1

2
.

State Compatibility. The function state-compk
CN,D((s1, s2))

computes the weighted average of three measures: the for-
ward and backward compatibilities, and the value returned
by the function comparing state natures.

Compatibility Flooding. Finally, COMPk
CN ,D [s1 , s2 ] is

computed as the average of its previous value at the k − 1th

iteration and the current state compatibility degree. Our
iterative process terminates when the Euclidean difference
‖COMPk

CN ,D − COMP
k−1
CN ,D‖ converges.

Example 10. Table 1 shows the matrix computed for the
example depicted in Figure 6 according to the UC notion.
This matrix was obtained after 7 iterations. Let us comment
on the compatibility of states c0 and s0. The measure is quite
high because both states are initial and the emission seek! at
c0 perfectly matches the reception search? at s0. However,
the compatibility degree is less than 1 due to the backward
propagation of the deadlock from the global state (s1, c3) to
(s1, c1), and then from (s1, c1) to (s0, c0).

Mismatch List. Our compatibility measure comes with a
list of mismatches which identifies the incompatibility sources,
e.g., unmatched message names or unshared parameter types.
For instance, the states s0 and c1 in Figure 6 present several
mismatches, e.g., the first state is initial while the second
is not, and their outgoing transition labels have the same
directions.

Extensibility. Our approach is generic and can be easily
extended to integrate other compatibility notions. Adding
a compatibility notion CN only requires definition of a new
function obs-compk

CN ,D .

4.3 Analysis of Compatibility Measures
In this section, we propose some techniques for automati-

cally analysing the measures obtained from the compatibil-
ity matrix. We first present how the Boolean compatibility

can be computed from the matrix. In the case of incompat-
ible services, we propose some techniques for computing a
global compatibility measure.

Compatible Protocols. Our flooding algorithm ensures
that every time a mismatch is detected in a reachable global
state, its effect will be propagated to the initial states. Hence,
the forward and backward compatibility propagation be-
tween neighbouring states implies that protocols are com-
patible if and only if their initial states are also compati-
ble. Such information is useful for automatically discovering
available services that can be composed without using any
adaptor service for compensating mismatches.

Global Protocol Compatibility. The global compatibil-
ity measure helps to differentiate between services that are
slightly incompatible and those which are totally incompat-
ible. This is useful to perform a first service ranking and
selection step to find some candidates among a large num-
ber of services. Seeking services with high global compati-
bility degree enables simplification of further processing to
compensate existing mismatches, e.g., using service adapta-
tion [14].

The global compatibility can be computed differently de-
pending on the user’s preferences. One solution consists
in computing the average of the maximal compatibility de-
grees obtained for all states. An alternative is to compute
the global compatibility degree as the weighted average of
all behavioural compatibility degrees that are higher than a
threshold t. The weight is the rate of states having a com-
patibility degree higher than t, among all states compared
in one service, with the states in the partner service. So far,
our approach supports the second solution. The computa-
tion algorithm is given in [18].

5. PROTOTYPE TOOL
Our approach for measuring the compatibility degree of

service protocols has been fully implemented in a prototype
tool called Comparator [1]. The framework’s architecture
is given in Figure 7. The Comparator prototype tool has
been implemented in Python 2.6 using Eclipse 3.5.1 as the
programming IDE. The tool accepts as input two XML files
corresponding to the service interfaces and an initial configu-
ration, i.e., the compatibility notion, the checking direction,
and a threshold t. As a result, Comparator returns the com-
patibility matrix, the mismatch list, and the global compat-
ibility degree which indicates how compatible both services
are. The implementation of our proposal is highly modular
(as shown in Figure 7) which facilitates its extension with
new compatibility notions, as well as other strategies for
comparing message names and parameters.

Figure 7: Comparator Architecture.



Experimental Results. So far, we have validated our
prototype tool on more than 110 real-world examples, e.g., a
car rental, a travel booking system, a hard disk manager, a
medical management system, an on-line email service. It is
worth noticing that Comparator computes the compatibility
degree of quite large systems (e.g., services with hundreds
of states and transitions) in a reasonable time (a few min-
utes) on a Mac OS machine running on a 2.53 GHz Intel
dual core processor with 4 GB of RAM. Several case studies
illustrating the computation of our compatibility measure
are presented in [18, 1].

Evaluation. As regards accuracy, we reuse the well-
known precision and recall metrics to estimate how much
the measure automatically computed meets the expected
result. Precision measures the matching quality (number
of false positive matching) and is defined as the ratio of
the number of correct state matching found to the total of
state matching found. Recall is the coverage of the state
matching results and is defined as the ratio of the number of
correct state matching found to the total of all correct state
matching in the two protocols. An effective measure must
produce high precision and recall values. We have studied
the precision and recall for the examples of our database.
We assume (si, sj) is a correct match if the state si ∈ Si has
the highest compatibility degree with sj ∈ Sj among those
in Sj . Our measuring process yields a precision and recall of
100% for compatible protocols. Our empirical analysis has
also shown the good quality of our approach for comparing
incompatible protocols. For instance, the study of the car
rental system [1] – which provides a service for car rental
and an example of user requirements – produces a precision
and recall equal to 85% and 95%, respectively. We applied
the same evaluation to a flight advice system [1] which helps
travelers to find flight information. This yields a precision
and a recall equal to 91% and 100%, respectively. All the
other examples of our database returned high values (more
than 90%) for these two metrics.

6. RELATED WORK
Existing quantitative techniques devoted to behavioural

analysis focus on two closely-related research problems. The
first one is called substitutability checking and aims at find-
ing correspondences between similar services. The second
one is referred to as compatibility checking and verifies whether
interacting services fulfill each other’s requirements. Let us
focus on three kinds of approaches existing for these issues.
Simple Protocol Traversal. [21] measures the similarity
of Labelled Transition Systems (LTSs) w.r.t. a simulation
and a bisimulation notion inspired from the equivalence re-
lations. The measuring techniques use weighted quantita-
tive functions which consist in a simple (not iterative), for-
ward, and parallel traversal of two LTSs. This work does
not return the global similarity degree and the differences
which distinguish one service from another. In [22], two ser-
vices described using π-calculus are considered compatible
if there is always at least one transition sequence between
them until reaching final states, but this does not guaran-
tee the deadlock-freedom. A simple and parallel traversal of
protocols computes the compatibility degree as the average
of the number of successful transition sequences. This work
does not measure the detailed compatibility of different pro-
tocol states, and there is no mismatch detection.
Edit Distance. In [12, 2], the authors calculate the mini-

mal edit distance between two versions of one service inter-
face. [12] extends the simulation algorithm given in [21] in
order to correct deadlocking choreographies. In particular,
it detects the modifications needed to achieve service simu-
lation and make the choreography free of deadlocks. In con-
trast, [2] measures the state simulation based on the analysis
of outgoing transition labels without any semantic compari-
son of these label names. This measuring technique does not
consider the similarity of neighbouring states, therefore the
main advantage of a propagation-based approach is missing.
This approach computes a global similarity measure.
Similarity Flooding. In [15, 16], the authors rely on a
similarity flooding algorithm for computing the matrix of
correspondences between models. [15] considers a forward
and backward similarity propagation to compare data struc-
tures described with directed labelled graphs. However,
the tool does not enable a fully automated matching be-
cause the user should manually adjust some matches. The
match operator introduced in [16] measures the similarity
between different versions of software units described us-
ing Statecharts. The similarity measuring combines a set of
static and behavioural matchings. The behavioural match-
ing is computed using a flooding algorithm and relies on
the bisimulation notion presented in [21]. In this work, the
behavioural similarity is computed as the maximum of for-
ward and backward behavioural matching. By doing so, it
is not possible to detect the Boolean similarity from the
initial states. More recently, [17] propose a semi-automated
approach for checking the matching of messages in two busi-
ness process models such that the computed values can be
updated depending on the user feedback. The authors com-
bine a depth and flooding-based interface matching for mea-
suring the behavioural compatibility of two interacting pro-
tocols. This work aims at detecting the message merge/s-
plit mismatch in order to help the automatic specification
of adaptation contacts. A detailed discussion on the com-
parison of business process models is presented in [19]. Our
approach is different since we focus on measuring the com-
patibility of process-oriented models which are understood
as refinements of business process models [9]. We compare
in Table 23 our proposal with the most related works.

7. CONCLUSION
To the best of our knowledge, we are the first to suggest

a generic framework supporting different notions for mea-
suring the compatibility degree of service interfaces. Our
measuring method takes into account value-passing and in-
ternal behaviours. Considering both the forward and back-
ward compatibility propagation makes our flooding algo-
rithm more precise, and also enables us to detect Boolean
compatibility. In addition to the matrix computation and
the global measure of compatibility, a list of mismatches is
returned. Our proposal is fully supported by the Compara-

tor tool which has been validated on many examples. Our
compatibility degree results have some straightforward ap-
plications for service selection and adaptation [14, 23]. Our
tool has already been integrated into an environment for the
interactive specification of adaptation contracts [5]. Our

3BIS, SIM, OP, DF, UR, UC, WK, and ST are used as ab-
breviations of bisimulation, simulation, one path, deadlock-
freedom, unspecified receptions, unidirectional complemen-
tarity, weak, and strong, respectively.



[16] [21] [12] [2] [22] [17] Our approach

Model

Messages and protocols
√ √ √ √ √ √ √

Value-passing × × × × × × √
Internal actions × × × × √ × √

Description language Statechart LTS Finite Automaton FSM π-calculus FSM STS

Analysis
Issue Similarity Similarity Similarity Similarity Compatibility Compatibility Compatibility

Notion(s) BIS (WK/ST) SIM/BIS WK SIM SIM OP DF UR/UC/. . .

Computation

Message semantics
√ × × × × √ √

Processing Iterative Simple Simple Simple Simple Iterative Iterative
Technique Flooding Parallel traversal Edit distance Edit distance Parallel traversal Flooding Flooding

Detailed measures
√ √ √ √ × √ √

Mismatch detection × × √ √ × √ √
Global measure × × × √ √ × √

Tool support
√ √ √ √ √ √ √

Table 2: A summary of Approaches Based on Quantitative Behavioural Analysis.

main perspective is to apply our compatibility measuring
approach for the automatic generation of adaptor protocols.

Acknowledgements. This work has been partially sup-
ported by the project TIN2008-05932 funded by the Span-
ish Ministry of Innovation and Science and FEDER, and by
the project P07-TIC03131, funded by the Andalusian gov-
ernment. We are also grateful to Christine McKinty, who
proofread the final version of this paper.

8. REFERENCES

[1] Comparator: A Tool for Measuring the Compatibility
Degree of Service Protocols. Available on Meriem
Ouederni’s Web Page.

[2] A. Aı̈t-Bachir. Measuring Similarity of Service
Interfaces. In Proc. of the PhD Symposium at
ICSOC’08, volume 421 of CEUR Workshop
Proceedings, 2008.

[3] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella.
When are Two Web Services Compatible? In Proc. of
TES’04, volume 3324 of LNCS, pages 15–28. Springer,
2004.

[4] M. Bravetti and G. Zavattaro. Contract-Based
Discovery and Composition of Web Services. In
SFM’09, volume 5569 of LNCS, pages 261–295.
Springer, 2009.

[5] J. Cámara, G. Salaün, C. Canal, and M. Ouederni.
Interactive Specification and Verification of
Behavioural Adaptation Contracts. In Proc. of
QSIC’09, pages 65–75. IEEE Computer Society, 2009.

[6] C. Canal, E. Pimentel, and J. M. Troya. Compatibility
and Inheritance in Software Architectures. Sci.
Comput. Program., 41(2):105–138, 2001.

[7] R. Cleaveland and O. Sokolsky. Equivalence and
Preorder Checking for Finite-State Systems. Handbook
of Process Algebra, pages 391–424, 2001.

[8] L. de Alfaro and T. Henzinger. Interface Automata. In
Proc. of ESEC/FSE’01, pages 109–120. ACM Press,
2001.

[9] R. M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos.
Graph Matching Algorithms for Business Process
Model Similarity Search. In Proc. of BPM’09, volume
5701 of LNCS, pages 48–63. Springer, 2009.

[10] F. Durán, M. Ouederni, and G. Salaün. Checking
Protocol Compatibility using Maude. In Proc. of
FOCLASA’09, volume 255, pages 65–81. ENTCS,
2009.

[11] M. Hennessy and H. Lin. Symbolic Bisimulations.
TCS, 138(2):353–389, 1995.

[12] N. Lohmann. Correcting Deadlocking Service
Choreographies Using a Simulation-Based Graph Edit
Distance. In Proc. of BPM’08, volume 5240 of LNCS,
pages 132–147. Springer, 2008.

[13] C.D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
1999.

[14] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of
Service Protocols Using Process Algebra and
On-the-Fly Reduction Techniques. In Proc. of
ICSOC’08, volume 5364 of LNCS, pages 84–99.
Springer, 2008.

[15] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and
Its Application to Schema Matching. In Proc. of
ICDE’02, pages 117–128. IEEE Computer Society,
2002.

[16] S. Nejati, M. Sabetzadeh, M. Chechik, S. M.
Easterbrook, and P. Zave. Matching and Merging of
Statecharts Specifications. In Proc. of ICSE’07, pages
54–64. ACM Press, 2007.

[17] H. R. M. Nezhad, G. Y. Xu, and B. Benatallah.
Protocol-aware Matching of Web Service Interfaces for
Adapter Development. In Proc. of WWW’10, pages
731–740. ACM, 2010.

[18] M. Ouederni, G. Salaün, and E. Pimentel. Measuring
the Compatibility of Service Interaction Protocols.
Technical Report ITI 4-10, Dept. of LCC, University
of Málaga, 2010.

[19] C. Ouyang, M. Dumas, W. M. P. van der Aalst,
A. H. M. ter Hofstede, and J. Mendling. From
Business Process Models to Process-Oriented Software
systems. ACM Trans. Softw. Eng. Methodol., 19(1),
2009.

[20] G. Salaün, L. Bordeaux, and M. Schaerf. Describing
and Reasoning on Web Services using Process
Algebra. IJBPIM, 1(2):116–128, 2006.

[21] O. Sokolsky, S. Kannan, and I. Lee. Simulation-Based
Graph Similarity. In Proc. of TACAS’06, volume 3920
of LNCS, pages 426–440. Springer, 2006.

[22] Z. Wu, S. Deng, Y. Li, and J. Wu. Computing
Compatibility in Dynamic Service Composition.
Knowledge and Information Systems, 19(1):107–129,
2009.

[23] D. M. Yellin and R. E. Strom. Protocol Specifications
and Component Adaptors. ACM Trans. Program.
Lang. Syst., 19(2):292–333, 1997.


