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Abstract. We consider the problem of estimating some parameters (like
ionic models or parameters involved in the initial stimulation) of a model
of electrocardiograms (ECG) from the data of the Einthoven leads. This
problem can be viewed as a first attempt to identify or to locate a patho-
logy. The direct model is based on the bidomain equations in the heart
and a Poisson equation in the torso and. To keep the computational
time reasonable, the evaluation of the direct problem is approximated
with a reduced order model based on Proper Orthogonal Decomposition
(POD). The optimization problem is solved using a genetic algorithm.
Numerical tests show that, with noisy synthetic data, the proposed pro-
cedure allows to recover ionic parameters and initial activation regions
with a fair accuracy.

1 Introduction

The inverse problem of electrocardiology is usually addressed by reconstructing
the epicardial potential from the body surface potential by solving the Cauchy
problem for the Poisson equation in the torso with a suitable regularization (see
[9] e.g.). The present study follows another route: assuming that a source model
is available in the heart, we endeavor to estimate some parameters of this model
from the body surface potential. The source model considered in this study is the
one proposed in [2]. The inverse procedure is based on a genetic algorithm which
evaluates a reduced order approximation of the direct problem. The reduced
order approximation is built on the POD of the bidomain equations. We show
that POD can successfully approximate the problem when some coefficients are
perturbed, but fails for others. We propose a simple strategy to also handle those
cases. The global strategy is illustrated through various numerical tests based
on synthetic data.

2 Methods

2.1 Resolution of the direct problem

The electrical activity in the heart is modeled by the bidomain equations (see
[8, 9] e.g.). We denote by ΩH the heart domain, by ue and Vm the extracellular



potential and the transmembrane potential and by σi and σe the intra- and
extracellular conductivity tensors. Thus we have in ΩH

Am
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∂Vm

∂t
+ Iion(Vm, w)

)

− div(σi∇Vm) − div(σi∇ue) = AmIapp
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(1)

where Am is the rate of membrane area per volume unit and Cm the membrane
capacitance per area unit. The term Iion(Vm, w) represents the ionic current
across the membrane which depends on Vm and w, and Iapp is a given source
function. The dynamics of the ionic variable w and the ionic current Iion are
described by the phenomenological two-variable model [5]. It is given by
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where τin, τout, τopen, τclose, Vgate, Vmin, Vmax are given parameters.
In the domain outside the heart region, denoted ΩT, the electrical potential

uT is solution of the equation:

div(σT∇uT) = 0, in ΩT, σT∇uT · n = 0, on Γext, (3)

where Γext is the external boundary of the torso. The two problems are weakly
coupled, following the procedure explained in [2]. Differences of potentials on
standard points of Γext define the ECG (Figure 1, left). For the sake of simplicity,
another domain ΩH, consisting of a parallelepiped, will also be considered in the
following (Figure 1, right). The model is discretized in space with a finite element
method and in time by combining a second order BDF implicit scheme with an
explicit treatment of the ionic current.

2.2 Optimization method

Our objective is to identify the values of some parameters, like ionic parameters
or parameters linked to the initial stimulation. To do so, we minimize a cost
function corresponding to the norm of the difference between a reference ECG
and the ECG obtained for a given value of the parameters. In this preliminary
study, the reference ECGs are all “synthetic” which means that they are gener-
ated by the model itself. Let n ∈ N

∗ be the number of parameters and θ ∈ R
n

the vector of parameters we are looking for in a subset I of R
n. The subset I is

given by I1 × · · · × In where Ij is an interval where the value θj is assumed to
be. The following cost function is minimized

J(θ) = δt

NT
∑

i=1

|VI(ti)− VI,ref(ti)|
2 + |VII(ti)− VII,ref(ti)|

2 + |VIII(ti)− VIII,ref(ti)|
2



Fig. 1. Two representative pictures of the simulations run in this study. Left: heart-
torso coupling and Einthoven I lead ECG. Right: schematic configuration used for the
identification of the initial activation point

with respect to θ ∈ I, where VI, VII and VIII are the three Einthoven leads given
by the simulation for the value θ of the parameters and VI,ref , VII,ref and VIII,ref

are the Einthoven leads of the reference ECG. An alternative in the definition of
J is to consider the twelve standard leads instead of the three Einthoven leads.
Numerical tests give similar results for these two choices of cost function.

The optimization problem is solved using a genetic algorithm (we refer for
example to [3]). This algorithm is a global optimization method which consists
of following the evolution of a population of Np elements (θ1, . . . , θNp

) ∈ INp

corresponding to a set of values of the parameters. The population is regener-
ated Ng times, where Ng corresponds to the number of generations. At each
generation, J is evaluated for each element of the population and the popula-
tion evolves from a generation to another following three stochastic principles:
selection (promote the elements of the population whose value by J is small),
crossover (create from two elements of the population two new elements by do-
ing a random barycentric combination of them), mutation (replace an element
of the population by a new one randomly chosen in its neighborhood). To speed
up this algorithm, many evaluations of J are performed using a surrogate model.
This model consists of approximating the value of J by a Radial Basis Functions
interpolation based on previously computed exact evaluations. The total number
Nex of exact evaluations is fixed and the number of exact evaluations decreases
at each generation.

2.3 POD Reduced-Order Modelling

The genetic algorithm presented in the previous section offers many advantages:
it can easily be run in parallel and it does not need the gradient of the cost
function. Its main flaw is to require a large number of evaluations of the direct
problem, even if many evaluations are avoided with the surrogate model strategy.
To keep the computational time reasonable, we propose to use a reduced order
model based on POD in the optimization loop.



Notions about the POD method. POD is a method to derive reduced mod-
els by projecting the system onto subspaces spanned by a basis of elements
that contains the main features of the expected solution. We briefly recall this
method here and refer the reader interested by more details to [4, 7] for exam-
ple. To generate the POD basis associated with a precomputed solution u of an
approximated Galerkin problem, we make a first numerical simulation (or set of
simulations) and keep some snapshots u(tk), 1 ≤ k ≤ p. Then a singular value
decomposition (SVD) of the matrix B = (u(t1), . . . , u(tp)) ∈ R

N,p is performed:
B = USV ′, where U ∈ R

N,N and V ∈ R
p,p are orthogonal matrices, S ∈ R

N,p

is the matrix of the singular values ordered by decreasing order, and N ≥ p is
the dimension of the Galerkin basis of the finite element method.

The Nmodes first POD basis functions {Ψi}1≤i≤Nmodes
are then given by the

Nmodes first columns of U and the POD Galerkin problem is solved by looking

for a solution of the type u =

Nmodes
∑

i=1

αi(t)Ψi.

The N ×N sparse system of the finite element method is thus replaced by a full
system of size Nmodes × Nmodes with the POD method. To give a rough idea,
it is generally possible to get a good accuracy for the problems at hand with
Nmodes ≈ 100. With the time scheme used in this work, the matrix is constant
over the time, since all the nonlinearities are treated explicitly. The matrix is
therefore projected on the POD basis and factorized only once at the beginning of
the computation. As a consequence, for the simulations presented in this paper,
the reduced order model resolution is about one order of magnitude faster than
the full order one.

Strategies to handle parameter perturbations To apply the POD method
in parameter identification problems, a critical difficulty has to be faced: a POD
basis generated from a solution obtained with a given set of parameters may be
inaccurate to approximate a solution obtained from another set of parameters.
The issue of the stability of a POD basis with respect to parameters perturbation
is still the topic of active researches. The approaches proposed below are simple,
but quite efficient for the considered problems. More sophisticated strategies,
like interpolation of POD bases [1], could be considered in the future.

Assume that the parameters θ lie in I ⊂ R
n. The simplest method is the

following:

– M1 : Only one POD basis is generated for a value θ0 ∈ I. This POD basis
is then used for any θ ∈ I.

As will be illustrated in section 3.1, approach M1 proves to be satisfactory
for some parameters (τclose for example) but may be extremely inaccurate in
other cases. To make the POD basis more robust with respect to parameter
perturbation, two other methods are considered:

– M2 : Many POD bases are computed “off-line” for different values of θ taken
in a finite subset A of I. Next, for an arbitrary value θ ∈ I, the POD basis
corresponding to the closest value of θ ∈ A is used.



– M3 : POD bases are computed from the combination of several simulations.
More precisely, let us introduce A = {A1, . . . , Am} where Al, 1 ≤ l ≤ m is a
finite subset of I of cardinal kl. For each l, for each value θi ∈ Al, 1 ≤ i ≤ kl,
numerical simulations are run “off-line” and the snapshots ul,i(tk), 1 ≤
k ≤ p are stored. Then, these snapshots are gathered into the matrix Bl =
(ul,1(t1), . . . , ul,1(tp), ul,2(t1), . . . , ul,2(tp), . . . , ul,kl

(t1), . . . , ul,kl
(tp)) which is

used to generate the POD basis as before. Then, for each θ ∈ I, the POD
basis obtained for the closest set of parameters is used.

Method M1 is of course the cheapest, but the choice of θ0 is somehow ar-
bitrary and this approach is too crude in some configurations. In the two other
methods M2 and M3, the role of the finite set A is to reasonably sample the
whole set I = I1×· · ·×In in order to capture different behaviors of the solutions.
In practice, a grid can be defined on the parameters space. Then, for M2, the
POD bases are precomputed on the vertices of the grid, whereas for M3, the
POD bases are precomputed by element using the snapshots corresponding the
vertices of the elements of the parameter grid.

3 Results

3.1 Two illustrative examples of POD simulations

The accuracy of the POD approximation of the bidomain equations will only
be evaluated on the ECG corresponding to the solution, since this is the only
information used in the optimization loop.

Let us first consider the perturbation of parameter τclose which corresponds
to the characteristic closing time of ionic channels. In our model, the heart is
divided in four regions where this parameter takes four different constant val-
ues. We focus on the value in the epicardium of the left ventricle τ

epi
close, and in

the right ventricle τRV
close. A POD basis of 80 vectors is first constructed with

(τ epi
close, τ

RV
close) = (80, 80). This basis is sufficient to get an excellent accuracy if

the same experiment is run with the reduced order model. More interestingly,
it still gives quite good results when (τ epi

close, τ
RV
close) are significantly modified. For

example, Figure 2 (left) shows a comparison of the ECG get with the full and

the reduced models corresponding to (τ epi
close, τ

RV
close) = (90, 120). The QRS is in

excellent agreement, the T-wave is slightly underestimated, which is not surpris-
ing since τclose mainly affects the repolarization phase. It is interesting to note
that for the values (τ epi

close, τ
RV
close) = (80, 80), the T-wave of the ECG is nega-

tive whereas it is positive with (90,120). It is therefore particularly satisfactory
to obtain the correct T-wave orientation with the reduced order model after
perturbing these coefficients.

Unfortunately, the accuracy obtained with a POD basis may get worse when
other parameters are modified. This is the case for example with the parameter
governing the initial activation: if we use a POD basis obtained from a reference
simulation with an initial activation in the septum to run a reduced order sim-
ulation with an initial activation at the apex, the results are totally wrong, as
shown in Figure 2 (right).
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Fig. 2. Left: First leads of the ECGs with (τ epi

close, τ
RV
close) = (90, 120). Comparison

of the ECGs obtained with the full model and with a POD basis generated with
(τ epi

close, τ
RV
close) = (80, 80). Right: First leads of ECGs obtained for an initial stimula-

tion in the apex. Comparison of the ECGs with the full model and with the POD basis
obtained from a simulation with an initial activation on the septum.

3.2 Identification of two ionic parameters

Based on the first three leads of the ECG, we wish to estimate τ
epi
close and τRV

close. In
[2, Figure 24], it is shown that the ECG is quite sensitive to τclose. The reference
ECG used in the cost function is obtained from a first numerical simulation
with (τ epi

close, τ
RV
close) = (90, 120) without using POD. Our goal is to test whether

our identification algorithm based on POD and genetic algorithm is able to find
these values out.

The parameters θ = (τ epi
close, τ

RV
close) are searched for in the set [50, 150] ×

[50, 150]. The “exact” evaluations required by the optimization algorithm are
based on the reduced order model using the 80 first POD modes. The results
are summarized in Table 1 where the genetic algorithm is run with Np = 25,
Ng = 15 and Nex = 150 (“Population 1”, top), and with Np = 90, Ng = 15 and
Nex = 600 (“Population 2”, bottom).

For M2, we use A1 = {50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150} and A2 =
{50; 70; 90; 110; 130; 150}. Since the outcome of the genetic algorithm depends
on the initial random population, the results presented correspond to a mean

value of several runs. The relative error is defined by max
(

|τepi

close
−90|

90
,
|τRV

close−120|
120

)

.

Table 2 shows the results obtained with Population 1 when the synthetic ECG
used as reference is perturbed by a 1% or 4% noise.

3.3 Identification of the initial stimulation

In this test, the computational domain is a parallelepiped of size [−2.5, 2.5] ×
[−2.5, 2.5] × [0, 0.2] (Figure 1, right). The initial activation is applied on
[c1 − 0.2, c1 + 0.2] × [c2 − 0.2, c2 + 0.2] × [0, 0.2]. Our goal is to identify the lo-
cation (c1, c2) in [−2.5, 2.5] × [−2.5, 2.5]. The standard ECG leads are replaced
by the differences of potential ue evaluated in three points of the boundary. The
reference pseudo-ECG has been obtained with (c1, c2) = (1.8,−0.6). The error



Population 1 (τ epi

close, τ
RV
close) Relative error Value of the

(in %) cost function

M1 with θ0 = (100, 100) (88.4, 122) 1.8 0.23

M1 with θ0 = (150, 50) (89.6, 127.1) 5.9 6.4

M2 with A = A1 ×A1 (90.5, 120.5) 0.6 0.08

M2 with A = A2 ×A2 (86.9, 117.5) 3.4 0.9

Population 2 (τ epi

close, τ
RV
close) Relative error Value of the

(in %) cost function

M1 with θ0 = (100, 100) (87.7, 121.6) 2.6 0.22

M1 with θ0 = (150, 50) (85.7, 124.2) 4.8 5.78

M2 with A = A1 ×A1 (90.2, 120.2) 0.2 0.07

M2 with A = A2 ×A2 (89.8, 119.7) 0.2 0.36

Table 1. Identification of (τ epi

close, τ
RV
close) (Reference value (90, 120)).

(τ epi

close, τ
RV
close) Value of the cost function

Noise of intensity 1% (89.6, 119.7) 0.12

Noise of intensity 4% (90.2, 119.9) 0.8

Table 2. Identification of (τ epi

close, τ
RV
close) using M2 with A1 (Reference value (90, 120)).

is defined by
√

(c1 − 1.8)2 + (c2 + 0.6)2. In Table 3 columns 2 and 3, the param-
eters of the genetic algorithm are Np = 25, Ng = 12 and Nex = 150. In Table 3
columns 4 and 5, the same test is done with a larger population: Np = 100, Ng =
15 and Nex = 1000. For M2, A3 = {−2.5;−2;−1.5;−1;−0.5; 0; 0.5; 1; 1.5; 2; 2.5}
and A4 = {−2;−1; 0; 1; 2}. For M3, A = {Ãl, 1 ≤ l ≤ 36} where Ãl contains the
four vertices of the element l of the cartesian grid {−2.5;−2;−1; 0; 1; 2; 2.5} ×
{−2.5;−2;−1; 0; 1; 2; 2.5}. For this simple geometry (about 5000 nodes), the di-
rect simulation is not very time-consuming. It is therefore possible to solve the
inverse problem with the full order model rather than with the POD.

(c1, c2) Error (c1, c2) Error

M1 with x0 = (0, 0) (−1.6,−1.6) 3.5 (−1.5,−1.7) 3.5

M2 with A = A3 ×A3 (1.71,−0.54) 0.11 (1.81,−0.66) 0.06

M2 with A = A4 ×A4 (1.92,−0.59) 0.12 (2.07,−0.54) 0.28

M3 (1.96,−0.61) 0.16 (1.97,−0.62) 0.17

without POD (1.57,−0.56) 0.23 (1.74,−0.51) 0.11

Table 3. Identification of (c1, c2) (Reference value (1.8,−0.6)). Columns 4 & 5 corre-
spond to a larger population in the genetic algorithm than columns 2 & 3.



4 Discussion and conclusion

In paragraph 3.2, we saw that the simplest method M1 allows to obtain satisfac-
tory results, but the results depend on the arbitrary value θ0 and the error does
not seem to quickly decrease when the population goes up. Results seem more
robust with M2. In paragraph 3.3, when the initial activation parameters vary,
method M1 is inadequate. This obviously comes from the fact that, as noticed
in paragraph 3.1, POD is unable to approximate the direct problem in this case.
The strategies proposed in M2 or M3 allow to control the strong dependence
of the solution with respect to the initial stimulation. It is interesting to notice
that the results with M2 or M3 are quite comparable to the ones obtained with-
out the POD method. Thus, the accuracy of the POD seems to be reasonably
consistent with the accuracy that can be expected from the genetic algorithm.

In conclusion, these preliminary results are promising. Nevertheless, the me-
thod still has to be tested on real data. Moreover, difficulties can be expected
when increasing the number of parameters. In that case, an efficient strategy to
sample the parameters space will be critical to keep using the proposed strategy
of approximation by POD.

Acknowledgment: The authors wish to thank Laurent Dumas who pro-
vided them with his optimization algorithm and Charbel Farhat and David Am-
sallem for valuable discussions about model reduction.
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