
HAL Id: hal-00652987
https://hal.archives-ouvertes.fr/hal-00652987

Submitted on 16 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transforming CCSL partially-ordered Traces into UML
Interaction Diagrams

Kelly Garcés, Julien Deantoni, Frédéric Mallet

To cite this version:
Kelly Garcés, Julien Deantoni, Frédéric Mallet. Transforming CCSL partially-ordered Traces into
UML Interaction Diagrams. [Research Report] RR-7842, INRIA. 2011. �hal-00652987�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49935713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00652987
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

42
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Transforming CCSL partially-ordered Traces into
UML Interaction Diagrams

Kelly Garcés — Julien DeAntoni — Frédéric Mallet

N° 7842

Décembre 2011

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Transforming CCSL partially-ordered Traces into UML

Interaction Diagrams

Kelly Garcés , Julien DeAntoni , Frédéric Mallet

Thème COM � Systèmes communicants
Projet AOSTE

Rapport de recherche n° 7842 � Décembre 2011 � 28 pages

Abstract: The need for veri�cation and debugging of critical temporal constraints in em-
bedded systems comes out at di�erent stages of development. In the speci�cation step, static
and dynamic views of the system are established and simulations are performed. In the im-
plementation step, code may be instrumented with the purpose of collecting traces as the
system executes in a target platform. In the same fashion as system executions, simulations
produce traces that are later on analyzed by means of textual scripts. Instead of intricate
scripts, we believe that the use of visual artifacts such as uml interaction diagrams (i.e., se-
quence and timing diagrams) can ease the comprehension of system behavior. In this report,
we propose partial orderings (which order the events reported in traces in a temporal and
causal way) as a pivot to go toward interaction diagrams straightforwardly. Mappings be-
tween partial orderings and uml interaction diagrams are implemented as transformations.
We illustrate our approach with a prototype and an example.

Key-words: uml, Traces, Logical time, Debugging, Veri�cation, Model-Driven Engineer-
ing

Une approche de transformation de modèles pour dériver

des diagrammes d'interaction UML à partir des traces

CCSL partiellement ordonnées

Résumé : Le besoin de véri�cation et débogage des constraintes de temps réel d'un
système embarqué apparaissent à de di�érents stades d'un développement. Dans l'étape de
spéci�cation, des vues statiques et dynamiques du système sont établies et des simulations
sont e�ectuées. Dans l'étape de mise en oeuvre, le code peut être instrumenté dans le but
de recueillir des traces du système lors de son exécution dans une plate-forme cible. De la
même façon que les exécutions du système, les simulations produisent des traces qui sont
ensuite analysées en utilisant des scripts textuelles. Au lieu des scripts complexes, nous
croyons que l'utilisation d'artefacts visuels tels que les diagrammes d'interaction uml (i.e.,
diagrammes de séquence et de temps) peuvent faciliter la compréhension du comportement
du système. Dans ce rapport, nous proposons l'ordre partiel (lequel ordonne les événements
consignés dans les traces d'une manière temporelle et causale) comme un pivot pour aller
vers des diagrammes d'interaction. Les alignements entre l'ordre partiel et les diagrammes
d'interaction uml sont implémentés comme des transformations. Nous illustrons notre
approche avec un prototype et un exemple.

Mots-clés : uml, Traces, Temps logique, Débogage, Véri�cation, Ingénierie Dirigée par
les Modèles

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 3

1 Introduction

uml marte is one of the common used approaches to implement MDE for real-time and
embedded systems. Functional and extra-functional aspects are expressed in models which
undergo a set of transformations that �nally results in executable code.

Since the code may be deployed over heterogeneous, communicating computational units,
the order of incoming events and their frequency are often unpredictable. Academia and in-
dustry are aware of that, while they are interested on using MDE to obtain a high-abstraction
of a system, they also investigate how to verify/debug, at model level, its behavior and func-
tioning as simulations or executions of such a system happen. A low-impact veri�cation
technique consists of collecting traces (i.e., logs) of program segments as the software runs
on target, and then analyzing o�ine such traces by means of scripts. Scripts are time
consuming to produce and result in di�cult-to-read speci�cations [1].

Instead of intricate speci�cations, we focus on the use of uml interaction diagrams (in
particular sequence and timing diagrams) to leverage the comprehension of system simu-
lations or executions. Sequence and timing diagrams have di�erent purposes: whereas the
former concentrates upon the interchange of messages between lifelines, the latter allows
reasoning about time and the conditions that change lifelines.

We propose mappings that allow us to go toward these two kinds of diagrams from
static and dynamic speci�cations and partial orderings1. uml class and composite structure
diagrams act as a static speci�cation and ccsl (Clock Constraint Speci�cation Language) [2]
as a dynamic speci�cation. Partial orderings are traces plus the temporal and causal relations
between them. It worth mentioning that the output of our process are interaction diagrams
that describe one of the possible scenarios (either valid or invalid) of simulation or execution
of a system. Therefore, this output varies from classical interaction diagrams de�ned at
design level which are intended to cover the set of valid scenarios.

We implement the mappings between partial orderings and uml interaction diagrams as
transformations and we illustrate their applicability by means of an example. Our proof of
concept demonstrates that: 1) partial orderings (along with static and dynamic speci�ca-
tions) are expressive enough to derive most of interaction diagram semantics and 2) resulting
diagrams can be visualized in open-source tool editors.

Because the proposed transformations can take as input traces coming from simulations
or executions, our approach supports veri�cation and debugging, at model level, in early
(i.e., speci�cation) or advanced (i.e., implementation, deployment) stages of software de-
velopment. In addition, the use of partial orderings give us a global vision of the system
execution independently of whether the traces are isolated or not2. Finally, when the se-
lection of only one kind of interaction diagram is essential, we use clock trees as visual
artifacts that suggest the most appropriate diagram with regarding to the system nature,
i.e., synchronous or asynchronous.

1Partial ordering and partial order are used as interchangeable terms in this report.
2There is a need for isolation in o�ine debugging where trace storage produces overhead on the com-

munications and then faulty executions. For these cases, we have proposed a reconciliation approach whose
output is a global trace in the form of a partial order [3].

RR n° 7842

4 Garcés & DeAntoni & Mallet

The report is structured as follows: Section 2 and Section 4 recall the basic semantics
of uml sequence and timing diagrams and the ccsl language. Section 3 compares our
approach to related work. Section 5 presents an example that is used to illustrate our
approach described in Section 6. Section 7 concludes the report.

2 Background

In this section, we brie�y describe the semantics for those aspects of uml interaction dia-
grams that we use in this report. We will assume that the reader is broadly familiar with
uml sequence and timing diagrams.

Let us introduce the graphical notation of sequence diagrams by using Figure 1. Each
vertical line describes a lifeline for an individual participant where time increases down the
page. Messages de�ne one speci�c kind of communication between lifelines. A communica-
tion can be, invoking an operation, creating or destroying a participant. Besides the kind
of communication, messages specify the sender and the receiver. Messages are depicted by
arrows whose style re�ects particular properties, for example, open-head arrows represent
asynchronous messages, �lled-head arrows symbolize synchronous messages, dashed arrows
describe reply messages. When a message invokes an operation, the execution of such an
operation is represented as a thin white rectangle (referred to as execution speci�cation in
[4]). An execution speci�cation has a starting point and a �nishing point.

Events on the same lifeline are ordered linearly down the page (i.e., they are totally
ordered), except within a coregion or a parallel combined fragment where the order of event
occurrences is insigni�cant. Whereas a coregion can only occur in a single lifeline, a parallel
combined fragment merges the behavior of at least two lifelines. A coregion is depicted by
short horizontal lines and a parallel combined fragment is delineated by a box labeled with
the keyword PAR. Besides PAR, the OMG has de�ned other operators which enable the
combination of fragments, for instance, ALT represents two possible choices or alternatives
of behavior. Finally, destruction events, depicted by a cross in the form of an X, indicate
that no other occurrence may appear below of it on a given lifeline.

Now we elaborate on the graphical notation of timing diagrams (see Figure 2). In a
timing diagram, lifelines are shown in separated compartments arranged vertically. The
horizontal axis indicates that time increases in ticks from left to right. The vertical axis can
be labeled with a list of states or values. The state lifeline shows the change of state of an
participant over time, whereas a value lifeline shows the change of value of an element over
time [5]. Timing diagrams come with messages (raising signals) and destruction events.

From this description one concludes that sequence and timing diagrams mostly share
concepts however they have slightly di�erent capabilities that make them more appropriate
for certain situations. Sequence diagrams focus on message exchange and timing diagrams
are useful when the primary purpose of the diagram is to reason about time.

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 5

Figure 1: An example of uml sequence diagram

Lifeline1

State1

State2

Figure 2: An example of uml timing diagram

RR n° 7842

6 Garcés & DeAntoni & Mallet

3 Related work

From our bibliographical study, we have identi�ed two directions in the matter of veri-
�cation/debugging based on uml interaction diagrams. Former work [6][7][8] goes from
interaction diagrams to more formal notations (such as timed automata or timed graphs)
where one can take advantage of model-checking techniques to perform veri�cation. A sec-
ond direction, recently presented by Iyenghar et al. [9][10] and Apvrille et al. [11], is to go
from traces to interaction diagrams which may be animated. The animation allows embed-
ded software engineers to debug the system behavior as it is deployed in a target platform.
Whereas Iyenghar et al. work with execution traces, Apvrille et al. use simulation traces.

This report is aligned with the second direction, let us compare our approach with
Iyenghar and Apvrille works, which are the closest related works:

� In Iyenghar's work, each event happening in the target platform is immediately com-
municated to the host side which animates a sequence or timing diagram, it is referred
to as animation at runtime. In our case, the diagrams are produced only after the
whole trace data has been collected, that is, o�ine rendering.

� A consequence of animation at runtime is overhead. Although the delay introduced
by Iyenghar's monitor routine is pointed out as negligible for the MIDI (Musical In-
strumental Digital Interface) system case study, it might not be the case for other
real-time systems where even small overhead can lead to faulty executions because of
the tight synchronization constraints. Our approach, in turn, allows debugging while
still minimizing the overhead.

� In Apvrille et al., software components are �rst modeled and formally veri�ed using,
respectively, a uml pro�le and UPPAAL [12]. Then code is generated from the result-
ing models and its execution on a target platform is simulated. The simulation output
is a set of traces which can be displayed in the form of sequence diagrams during code
execution or after.

� A disadvantage in Apvrille's work is the use of an ad-hoc uml pro�le so-called AVATAR.
We, in turn, use uml marte which is widely supported by most commercial and open-
source tool editors.

� Unlike Apvrille, which animates resulting sequence diagrams, we provide just a visu-
alization of them. As a part of future work, we plan to animate sequence diagrams as
we do with timing diagrams.

� Whilst Iyenghar et al. and Apvrille et al. assume that trace data is totally ordered, we
use a partial order which gives us a global vision of the system behavior independently
of whether traces come from isolated parts of the system. Therefore, our approach
covers a more general case where the system may be built up from a number of het-
erogeneous and distributed pieces which are likely to be unsynchronized, or based on
di�erent forms of time references.

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 7

� Finally, our approach moves a step further than Iyenghar and Apvrille work since it
derives interaction diagrams from both simulation and execution traces.

4 ccsl in a nutshell

The Clock Constraint Speci�cation Language (ccsl) was initially de�ned as a companion
language for the Time Model of the uml Pro�le for Modeling and Analysis of Real-Time
and Embedded systems (marte) [13]. The central concept on marte Time model is the
notion of clock, which represents a (possibly in�nite) totally ordered set of instants [14]. In
this model, clocks extend the Uni�ed Modeling Language (uml) [15] events and instants
stand for the event occurrences. These clocks can be logical or physical, dense or discrete.
In the remainder of this paper we only consider discrete clocks, whether logical or physical.

The marte time model also provides Clock Constraints that refer to at least two clocks
and constrain the respective evolution of their instants.

ccsl has a formal semantics [2] that can be exploited to detect invalid speci�cations
(e.g., deadlocks) or compute a correct execution (by simulation), if any, in the timesquare
tool [16]. Foundational ccsl constraints are de�ned in a kernel library. ccsl allows building
new libraries and the de�nition of user-de�ned constraints by composing existing relations
(from the kernel library or from other libraries) in order to build speci�c constraints adequate
for a given domain.

ccsl is a means for specifying constraints on the evolution of clocks. A constraint can be
either a relation or an expression. A ccsl expression de�nes a new clock based on existing
ones. In this paper, we do not give all the details about the semantics of ccsl but a full
description is available as a research report [2]. However, we informally describe the relations
and expressions used in this document.

We consider all the instants for a given system, I, and we build a time structure 〈I,≺,≡〉
on it. ≺ is an irre�exive and transitive partial relation called precedence. ≡ is a partial
equivalence relation, i.e., re�exive, transitive and symmetric, called coincidence. From these
two relations, we build two more: causality (denoted 4) and exclusion (denoted (#). Let
a and b be logical clocks, when a causes b, then either a ≺ b or a ≡ b. When a and b are
exclusive, then either a ≺ b or b ≺ a.

A clock c = 〈Ic,≺c〉 is such that Ic ⊂ I and ≺c is a projection of ≺ over Ic and is a total
order relation. If Ic is discrete (c is called a discrete clock), we denote c[k] the kth instant
of c where k ∈ N \ {0}.

Clock relations are a practical way to create in�nitely many instant relations at once. For
instance, the clock relation Precedes (denoted ≺) de�nes in�nitely many instant relations of

the kind precedence. a ≺ bmeans that for all natural numbers k, the kth instant of a occurs

before the kth instant of b: ∀k ∈ N \ {0}, a[k] ≺ b[k]. Another example is the coincidence
relation (denoted =) imposes a strong synchronous dependency: a = b means that the
kth instant of a must be coincident with the kth instant of b: ∀k ∈ N \ {0}, a[k] ≡ b[k]. The

same mechanism applies for all relations. Informally, the exclusion relation (denoted #)

RR n° 7842

8 Garcés & DeAntoni & Mallet

between two clocks a and b speci�es that no instants of the clock a coincide with one of the
clock b. The alternatesWith relation (denoted ∼) between two clocks a and b speci�es that
instants of the clock b are interleaving instants of the clock a.

Expressions are directly de�ned on clocks. The clock expression FilteredBy (denoted H)
builds a subclock, i.e., a clock such that all its instants coincide with exactly one instant
of the super clock. We use in�nite binary words to select those instants of the super clock
with which the subclock is coincident. For instance, a H 00(01)ω builds a subclock b of
a, such that ∀k ∈ N \ {0}, b[k] ≡ a[2 ∗ k + 2]. In this simple example, there is only one
1 in the periodic part of the �lter (i.e., (01)), therefore we have a periodic pattern: b is
periodic on a with a period of 2 and an o�set of 3. When the periodic part only contains 1,
then it becomes equivalent to the operator delayedFor (denoted $a). a $a 2 is equivalent to
a H 00(1)ω.

A ccsl speci�cation is the conjunction of constraints. This language is central to our ap-
proach and is used in Section 6.2, which describes how to express uml interaction semantics
with ccsl.

5 Motivating example

This example has been taken from [17] and slightly adapted to our work. We have removed
probabilities since they cannot be expressed with ccsl. The example describes a factory
with three machines that assemble widgets, and a robot that moves the widgets on demand.
Widgets are assembled from two parts, an A part and a B part. Machine 1 processes A parts
while machine 2 processes B parts. Machine 3, in turn, assemblies one A part and one B part
to make one widget. The robot transports parts from a conveyor belt to the appropriate
machine. It is also in charge of moving completed A parts from machine 1 to machine 3, and
completed B parts from machine 2 to machine 3. There are always A and B parts available
from the conveyor belt. Loading of A parts or B parts can be executed in any order. There
are always A and B parts available from the conveyor belt. Loading parts from the conveyor
belt, or moving them to machine 3 takes negligible time. The Worst-Case Execution Time
(WCET) of processing A parts at machine 1 is 125 seconds, while the WCET of processing
B parts at machine 2 is 200 seconds.

6 Going from ccsl partially-ordered traces to uml inter-

action diagrams

As indicated in Figure 3 the scope of our work is to derive uml sequence and timing diagrams
from static and dynamic speci�cations and partial orderings by means of mappings. Below
we describe the elements of our approach being illustrated with the widget factory example.

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 9

Static

specification

Dynamic

specification

Lifeline1

State1

State2

MAPPINGS

Event

occurrence

relation model

Trace models

+
Partial order

Figure 3: Overview of approach that derives uml interaction diagrams from ccsl partially-
ordered traces

6.1 Class and composite structure diagrams as a static speci�cation

In particular, for this report, we use uml class and composite structure diagrams as the
static speci�cation. Whereas the class diagram depicts classes, attributes and operations,
the composite structure diagram depicts the major components of the system and the rela-
tionships between them (e.g., communication relationships). Figure 4 and Figure 5 show,
respectively, the class and composite structure diagram for the widget factory. The class di-
agram basically contains a class for each participant of our system. In the same fashion, the
composite structure diagram has four components: the tree machines and the robot. Ports
have been annotated with the �ClientServerPort� stereotype which supports a request/reply
communication paradigm. To build up the composite diagram, we mainly use the constructs
de�ned in two chapters of the marte speci�cation [13]. The Hardware Resource Modeling
(HRM) chapter to describe the resources (i.e., processing units) and their properties, and
the Time chapter to identify the clocks and apply the constraints.

6.2 CCSL as a dynamic speci�cation

To build the ccsl speci�cation that describes the dynamic behavior of a system, the �rst
step is to declare a clock for each event involved in a system, that is, MessageSend,
MessageReceive, InternalEventStart, InternalEventF inish, ReplySend, ReplyReceive.
The second step is to de�ne relationships between the clocks following the patterns summa-
rized in Table. 1. Below we illustrate the two steps using the motivating example.

Because our example is provided with class and composite structure diagrams, declared
clocks should be associated to class operations and ports. In addition, depending on the

RR n° 7842

10 Garcés & DeAntoni & Mallet

Figure 4: Class diagram for the widget factory

Figure 5: Composite diagram for the widget factory

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 11

Kind of time relation Kind of involved events

Precedence
MessageSend ≺ MessageReceive

ReplySend ≺ ReplyReceive

InternalEventStart ≺ InternalEventF inish

Coincidence

InternalEventStart = MessageSend
InternalEventStart = ReplySend

InternalEventF inish = MessageSend
InternalEventF inish = ReplySend

MessageReceive = InternalEventStart
ReplyReceive = InternalEventStart

MessageReceive = InternalEventF inish
ReplyReceive = InternalEventF inish

Alternance
MessageSend ∼ ReplyReceive
MessageReceive ∼ ReplySend

Table 1: Time relations needed for representation of uml interaction diagram semantics

kind of event, the clocks are tagged with one of the following ccsl keywords: send, receive,
start or �nish.

For instance, clock recvRqLoadA is associated with port rLoad of the robot component
and tagged with the keyword receive. The ticks of this clock indicate that the request of load-
ing an A part from the conveyor belt has been received by the robot. Clock sendRpLoadA
is also associated with port rLoad but tagged with the keyword send. The ticks of this clock
suggest that a reply signal has been sent to Machine 1 to inform it about the loading of an A
part. Composite structure diagrams mainly specify how components are interconnected to
each other to achieve some common objectives [4]. Information about what happens inside
a particular component is out of the scope of this kind of diagram. To overcome this limita-
tion, we associate internal clocks (such as startProcPartA, finProcPartA) with operation
procPartA.

Once declared, clocks are related each other by means of time constraints. Some con-
straints relevant for the motivating example follow 3:

1. sendRqLoadA ≺ recvRqLoadA

2. sendRpLoadA ≺ recvRpLoadA

3. startProcPartA ≺ finProcPartA

4. recvRqGoA = startGoA

5. startGoA = sendRqLoadA

3So far our example illustrates most of kinds of relations except by the coincidence relationships in lines
2 and 7 of Table. 1.

RR n° 7842

12 Garcés & DeAntoni & Mallet

6. recvRpLoadA = startProcPartA

7. finPartAReady ∗ finPartBReady = sendRqProcPartAB

8. finPartAReady = sendRpPartAReady

9. recvRpPartAReady = finGoA

10. sendRqLoadA ∼ recvRpLoadA

11. recvRqLoadA ∼ sendRpLoadA

12. recvRqLoadA # recvRqLoadB

13. ResponseT ime (startProcPartA, finProcPartA, basetime, 0, 125)

Eq. 1 and Eq. 2 are the classical precedence relations induced by a request/reply com-
munication. The reception (recvRqLoadA) always occurs if an emission (sendRqLoadA)
has occurred.

Eq. 3 is a precedence relation established between the starting and ending point of the
internal event procPartA.

Next six equations are coincidence relations. Each of them indicates that every time
a clock operates, this signal is transferred to its correlated clock and this is done instanta-
neously. The duration of the sensing action is neglected. Below we explain their functionality
with regarding to the example:

� As soon as a message invoking the go operation is received by Machine 1, the operation
go starts, Eq. 4.

� As soon as the internal event go starts up in Machine 1, a message is sent to the Robot
in order to load an A part, Eq. 5.

� When Machine 1 is noti�ed about the end of the loading, it starts the process of the
available A part, Eq. 6.

� At the moment that Machine 3 stops the execution of both behaviors, partAReady
and partBReady, it sends a request to itself in order to assemble A and B parts, Eq. 7.

� In addition, when Machine 3 stops the behavior partAReady, a reply message is sent
to Machine 1, Eq. 8.

� At the moment that Machine 1 receives the reply of partAReady, the execution of go
is over, Eq. 9.

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 13

Eq. 10 and Eq. 11 are alternance relations that help us to control the dispatch of requests
or replays. For instance, Eq. 10 makes it possible: a message i+1 invoking the load operation
can be sent only if the reply corresponding to the message i of the load operation has been
already received.

Eq. 12 declares an exclusion relation between sendRqLoadA and sendRqLoadB, i.e.,
none of their ticks are coincident. The constraint avoids sending, to the robot, two simulta-
neous orders of loading parts from the conveyor belt.

As a �nal point, Eq. 13 models the WCET of processing A parts: the time to produce
an A part is higher than 0 and lower than 125 ticks.

6.3 Partial order

In our approach, a partial order is represented by (at least) a trace model along with an
event occurrence relation model. While a trace model reports the occurrence of clocks
(i.e., events), an event occurrence relation model de�nes temporal and causal relationships
between the occurrences of trace models. The relationships indicate that, for some event
occurrences, there exist other occurrences that precede (happen before) or coincide with (are
simultaneous) the former occurrences.

In our approach, trace models come from timesquare [18] simulations or have been
extracted from OTF execution traces which, in turn, are obtained by instrumenting the
code of a system. We have built bridges that allows the derivation of uml interaction
diagrams from such simulation or execution traces. Thus, one can perform veri�cation
and debugging at model level in early (i.e., speci�cation) or advanced (i.e., implementation,
deployment) stages of software development. Below, we present the models of what a partial
order consists of.

6.3.1 Trace metamodel

A trace model conforms to the metamodel depicted in Figure 6. The principal concepts are
as follows. A Trace is a sequence of LogicalSteps. Each step contains several (simultaneous)
EventOccurrences. An event occurrence has an attribute that indicates its state. Among
the possible values of this attribute one �nds tick and noTick. Event occurrences can be
also marked with the boolean isClockDead. A Reference associates an event occurrence with
a clock or clock expression/relation established in the uml model. When all logical steps
refer to a unique PhysicalBase of time (e.g., milliseconds), the trace is totally ordered.

6.3.2 Event occurrence relation model

This model de�nes temporal and causal relationships between occurrences of trace models.
The relationships indicate that, for some event occurrences in a speci�c trace model, there
exist other occurrences (in another trace model), that precede (happen before) or coincide
with (are simultaneous) the former occurrences. Unlike a reconciliation speci�cation, that

RR n° 7842

14 Garcés & DeAntoni & Mallet

Figure 6: Simpli�ed trace metamodel

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 15

Figure 7: The occurrence relation metamodel

de�nes relationships between events (i.e., clocks), an occurrence relation model de�nes re-
lationships between event occurrences (i.e., instants). An occurrence relation model along
with a set of trace models represents a partial order. Occurrence relation models conform to
a metamodel whose main concepts are displayed in Figure 7. The next paragraph explains
the meaning of such concepts.

The root of the metamodel presented in Figure 7 is the entity OccurrenceRelationModel.
It contains a set of CCSLConstraintRef. This kind of elements references the clock con-
straints of a ccsl speci�cation. It is just a way of sorting the OccurrenceRelations with
respect to the clock constraints that enforce them. An OccurrenceRelation is an abstract
concept that represents the possible relationships between occurrences. It is materialized by
two kinds of relations, the Precedence occurrence relation, which loosely synchronizes two
event occurrences and the Coincidence event occurrence relation, which forces two event oc-
currences to be simultaneous. Note that when a Precedence is said to be non strict (isStrict
boolean to false), it covers the union of the Precedence and Coincidence.

When software components are allocated in di�erent computational units (with their
own clock domains which are likely to be unsynchronized), the isolation of execution traces
could be desirable to reduce overhead. As a consequence, it is necessary to perform a
reconciliation process [3] whose output is a partial order that give us a global vision of the
system execution independently of the number of traces. This case is illustrated in Figure 8
where it is assumed that Machine 1 and Robot produce separated traces. As indicated by the
legend, the di�erent shapes represent event occurrences of traces of Machine 1 and Robot. In
particular, the triangles and squares represent occurrences of the emission and reception of

RR n° 7842

16 Garcés & DeAntoni & Mallet

Trace2 (Robot)Trace1 (Machine1)

sendRqLoadA recvRqLoadA<

CCSL time constraint

recvRqLoadAPrecedes

Computed From

Event occurrence relation

model

sendRqLoadA

Non meaningful event occurrences

Legend

Figure 8: Partial order for the widget factory when traces are isolated

the load operation (there referred to as sendRqLoadA and recvRqLoadA, correspondingly).
The dotted arrows, in turn, describe precedence relations between the event occurrences.
The two traces plus the occurrences relations constitute the partial order.

Remark on our proof of concept uses only one trace obtained from a simulation. The
previous paragraph evokes two execution traces since it worth mentioning that our approach
covers di�erent cases.

6.4 Mappings between concepts

This section describes what semantics of uml interaction diagrams can be inferred from
our three inputs, that is, static and dynamic speci�cations and partial order. Table. 2
and Table. 3 show mappings between sequence/timing diagram concepts and concepts of

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 17

Sequence diagram concept Partial order concept

Lifeline
Class owner of the Operation or Port pointed
by a set of EventOccurrences

Message
Precedence relationships with the form:
MessageSend ≺ MessageReceive

ReplySend ≺ ReplyReceive

Execution speci�cation
Precedence relationships with the form:

InternalEventStart ≺ InternalEventF inish

Destruction
EventOccurrence with the �ag isClockDead
equals true

Parallel combined fragment EventOccurrence scheduling
Coregion X

Other combined fragments (ALT, LOOP, etc.) X

Table 2: Mappings between partial orderings (along with static and dynamic speci�cations)
and sequence diagrams

Timing diagram concept Partial order concept

Lifeline
Class owner of the Operation or Port pointed
by a set of EventOccurrences

Message
Precedence relationships with the form:
MessageSend ≺ MessageReceive

ReplySend ≺ ReplyReceive

InternalEventStart ≺ InternalEventF inish

timesquare timing diagrams also require the
coincidence relationships

Destruction
EventOccurrences with the �ag isClockDead
equals true

State or value lifeline
states (i.e., noTick, tick) or values (i.e., 0, 1)
indicated by EventOccurrences

Table 3: Mappings between partial orderings (along with static and dynamic speci�cations)
and timing diagrams

trace and event occurrence relation models. Mappings for messages and parallel combined
fragments work under certain conditions (as explained below).

6.4.1 Message

Messages can be classi�ed in two groups complete and incomplete. The semantics of a
complete message is that both sender and receiver are known. Synchronous, asynchronous

RR n° 7842

18 Garcés & DeAntoni & Mallet

and reply messages have such complete semantics. The semantics of an incomplete message
is that either sender or receiver is known. This is the case for lost and found messages.
In this work, we focus on complete messages which can be straightforwardly derived from
precedence relationships. To distinguish reply messages from the other kinds of complete
messages, we use the following conditions:

� A precedence relationship, MessageSend ≺ MessageReceive, represents a reply if
MessageReceive appears as the �rst parameter of a coincidence relationship that, in
addition, has as a second parameter an event InternalEventF inish.

� A precedence relationship, MessageSend ≺ MessageReceive, represents either a
synchronous or asynchronous message if MessageReceive appears as the �rst param-
eter of a coincidence relationship that, in addition, has as a second parameter an event
InternalEventStart.

� Now a message invoking the operation o2 is classi�ed as synchronous ifReplyReceive(o2)
= MessageSend(o2) $ 1 InternalEventF inish(o1) where o1 is the last operation ex-
ecuted in l1. The lifeline l1 is the one invoking the operation o2 provided by other
participant. If the message does not satisfy this constraint is categorized as asyn-
chronous.

6.4.2 Parallel combined fragment

Parallel combined fragment is used when creating a sequence diagram that shows concurrent
threads. Fig. 9 gives an example, the bounding box tagged with the keyword PAR delineates
the scope of the parallel combined fragment. Horizontal dotted lines delineate the di�erent
threads, in this case, two threads. Events within a particular thread are ordered in the usual
way. For example, the order of events of lifeline l1 with respect to the �rst thread should
be MessageSend(o1), ReplyReceive(o1), MessageReceive(o2), InternalEventStart(o2),
InternalEventF inish(o2), ReplaySend(o2). Note that these events follow a pre-established
order:

� A message send (e.g., MessageSend(o1)) is ordered immediately before a reply receive
(e.g., ReplyReceive(o1)).

� An event start (e.g., InternalEventStart(o2)) is ordered immediately before an event
�nish (e.g., InternalEventF inish(o2)).

� The events InternalEventStart(o2), InternalEventF inish(o2) are in between Me-
ssageReceive(o2), ReplaySend(o2).

Since the �rst and second threads are working in parallel, events from the �rst thread
are not causally ordered with respect to events from the second thread. As a result, the
order of events of lifeline l1 varies from the above mentioned order, that is, the events
MessageSend(o3) and ReplayReceive(o3) would appear in between.

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 19

Figure 9: An example of parallel combined fragment

RR n° 7842

20 Garcés & DeAntoni & Mallet

We have designed an algorithm (see Algorithm 1) that detects variations in the order
of event occurrences reported in a trace. The assumption is that variations in the pre-
established order describe a parallel combined fragment. The algorithm traverses the trace
of a given lifeline. It evaluates the type of each event logged in the trace. An event whose
type isMessageSend, InternalEventStart orMessageReceive is further evaluated in order
to see if the event being immediately (or three steps) after it has the proper type. If
it is not the case, the event is appended to a list which is, later on, used to graphically
represent parallel combined fragments in a sequence diagram. This algorithm targets parallel
combined fragments whose messages are synchronous since this kind of message implies
events ordered in a deterministic way. Further investigation is needed for covering the
inclusion of asynchronous messages in parallel combined fragments.

Algorithm 1 Parallel combined fragment detection

1: DetectParallelCombinedFragment(lifelineTrace)
2: fragment← ∅
3: for all event ∈ lifelineTrace do
4: if event.type ≡MessageSend then
5: event′ ← lifelineTrace.at(lifelineTrace.indexOf(event) + 1)
6: if event′.type ≡ ReplyReceive then
7: Continue
8: end if
9: else
10: if event.type ≡ InternalEventStart then
11: event′ ← lifelineTrace.at(lifelineTrace.indexOf(event) + 1)
12: if event′.type ≡ InternalEventStop then
13: Continue
14: end if
15: else
16: if event.type ≡MessageReceive then
17: event′ ← lifelineTrace.at(lifelineTrace.indexOf(event) + 3)
18: if event′.type ≡ ReplySend then
19: Continue
20: end if
21: else
22: Continue
23: end if
24: end if
25: end if
26: fragment← fragment.append(event)
27: end for

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 21

6.4.3 Di�erences between timesquare and uml timing diagram notation

Whereas there are several commercial and open-source tools that allows working with uml

sequence diagrams, we only �nd a few commercial tools supporting uml timing diagrams
[19][20]. We have chosen the open-source tools Papyrus [21] and timesquare [18] to visual-
ize, respectively, the sequence and timing diagrams resulting from our mappings. Whereas
Papyrus graphical representation is mostly aligned with the uml sequence diagram speci�-
cation, timesquare slightly di�ers from the original uml timing diagram notation. We �nd
the following di�erences between notations: the compartments of timesquare timing dia-
grams are devoted to events (i.e., clocks) but not to lifelines as it is done in uml. Clocks are
represented by pulse trains. Labels for the di�erent states of an event are missing, however
one can easily infer them from the graphical representation: when the pulse train has an
amplitude equal to one the described state is tick, in turn, the state is noTick when the
amplitude is zero. The arrow styles for messages vary in timesquare, dashed arrows repre-
sent precedences and �lled vertical arrows coincidences. Precedence arrows may represent
the semantics of synchronous and replay messages. Although there are variants between
the notations, timesquare remains nonetheless useful to provide a proof of concept for our
approach (see Section 6.6).

6.5 Clock trees

Selection of a kind-of interaction diagram highly depends on the purpose that an embed-
ded software engineer has within. In some cases, both sequence and timing diagrams are
required. However, if there is a matter of choosing one of them, we believe that sequence
diagrams appear to be a more straightforward representation than timing diagrams when
the system has a synchronous nature. It is the other way around for a system whose nature
is asynchronous.

Whereas some people would choose the more suitable interaction diagram by reading
the system requirements, we use clock trees as an automatic means for that. A clock tree is
derived from a ccsl speci�cation. Nodes and links of a clock tree correspond, respectively,
to clocks and relations declared in such a ccsl speci�cation. By clock, we mean a terminal
clock, an expression, or a list of coincident clocks. In turn, a link labeled with sub, 4 ,

≺ , # describes relations of sub-clocking, precedence, causality, or exclusion. A ccsl

speci�cation including several bases of time corresponds to a forest, i.e., a disjoint union
of clock trees where the root of each tree is a particular base of time. Now to know what
is the system nature, we look at the clock tree: if the tree mostly contains precedence or
causality links, then the system has a synchronous nature. Otherwise, if the tree consists of
sub-clocking links, then the system is asynchronous.

Figure 10 illustrates an excerpt of the clock tree derived from the ccsl speci�cation of
our motivating example. Except by IC113 and IC112, which represents a time response
expression, all the nodes are terminal clocks. In addition, the number of precedence links
shows that the system has a synchronous nature, therefore, a sequence diagram appears to
be the most suitable to understand the system behavior at runtime.

RR n° 7842

22 Garcés & DeAntoni & Mallet

Figure 10: Excerpt of the clock tree derived from the ccsl speci�cation of the widget factory

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 23

6.6 Proof of concept

Our proof of concept uses a partial order (one trace and its corresponding event occurrence
relation model) obtained from the simulation of the ccsl widget factory speci�cation on the
timesquare environment. Below we describe in practice how to go from such a partial order
toward sequence and timing diagrams.

6.6.1 Derivation of sequence diagrams

It has been implemented in two steps: �rstly, the execution of an ATL transformation that
takes as input three elements (i.e., a uml model, a ccsl speci�cation and a partial ordering)
and gives as output a uml model. This uml model is a copy of the initial uml model plus a
new sequence diagram that represents the system at runtime. Secondly, the use of Papyrus
tool [21] in order to obtain a graphical visualization for the new sequence diagram. So far,
it has been done in a manual fashion, one has to drag and drop the new sequence diagram
elements from the Papyrus model explorer view to the editor view. This is a tedious and
error-prone task which could be replaced by an automatic process in the future, as it has
been already done by Papyrus contributors for class and composite structure diagrams.

Figure 11 shows an excerpt of the sequence diagram derived from a partial ordering
which is produced by timesquare at executing the widget factory ccsl speci�cation. The
screenshot depicts that message exchange happens as expected: machine 1 instructs the
robot to give it an A part from the conveyor belt using the load operation. Next machine
1 informs machine 3 the fact that an A part is ready. A reaction to this is to request the
robot to move the completed part to machine 3. Remark that the diagram lacks a message
indicating the execution of procPartA on Machine 1. The reason behind that is a technical
problem when the procPartA message is dragged from the Papyrus model explorer.

6.6.2 Derivation of timing diagrams

We take bene�ts from the VCD editor available in timesquare to display the timing dia-
gram resulting from the simulation (see Figure 12). One �nds the time ruler at the top
and the clocks at the left side. The dashed arrows are occurrences of the precedence
relation sendRqLoadA ≺ recvRqLoadA and the alternance relation recvRqLoadA ∼
sendRpLoadA. The red small arrows, in turn, are occurrences of the coincidence relation
recvRqLoadA = startLoadA. Looking at the whole timing diagram shows that the fre-
quency of dispatching load messages from Machine 1 is higher that the frequency of Machine
2. This impacts performance of the system. A way of improvement is to add a bu�er between
Machine 1 and Machine 3.

6.6.3 Results

Hereby a non exhaustive list of results obtained from our proof of concept:

RR n° 7842

24 Garcés & DeAntoni & Mallet

Figure 11: Sequence diagram for the widget factory derived from traces

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 25

Figure 12: Timing diagram for the widget factory derived from traces

� As indicated in Section 6.4, most of sequence and timing diagram semantics can be
inferred from partial orderings and the static and dynamic speci�cations we have
chosen. Only two out of seven sequence diagram semantics cannot be inferred since
ccsl semantics (mainly devoted to time modeling) are not expressive enough.

� timesquare timing diagrams derivation requires more event occurrence relations than
uml sequence diagrams one. That is, timesquare timing diagram needs for precedences
and coincidences and sequence diagram only requires precedences.

� We have spelled out technical problems at obtaining sequence diagram visualization
in Papyrus editor. Although such a technical limitation exists, we demonstrates the
feasibility of our approach which opens new perspectives for engineering work. One
can imagine the improvement of the prototype and its integration to timesquare as a
feature that allows animation of uml interaction diagrams derived from traces.

� Although our proof of concept only uses one trace obtained from a simulation, our
approach does support the case of multi-traces obtained from executions on a target
platform as it is illustrated in [3]. As explained there, the key is the use of a partial
order as a pivot and a reconciliation process.

RR n° 7842

26 Garcés & DeAntoni & Mallet

7 Conclusion

The adoption of MDE practices in embedded software community has opened new challenges,
among them, the option of verifying and debugging systems at model level. This report is a
contribution to this purpose: it proposes partial order as a pivot from which one goes toward
uml interaction diagrams (i.e., sequence and/or timing diagrams) in a straightforward way.
A partial order consists of (at least one) traces that report the occurrences of events of a
system plus the temporal and causal relations between such occurrences. A partial order
unfolds the relations de�ned in ccsl which acts as a dynamic speci�cation of the system
behavior. Clocks de�ned in the ccsl speci�cation point to elements of class and composite
structure diagrams (which act as a static speci�cation). Traces come from simulations or
executions of the system in a target platform and its number can vary (from 1 to n). Even if
the selection of a kind-of interaction diagram highly depends on the user, this report suggests
clock trees as a means to select the most appropriate interaction diagram taking into account
the system nature. Sequence diagrams appear to be a more suitable representation than
timing diagrams when the system has a synchronous nature. It is the other way around for
a system whose nature is asynchronous.

A proof of concept demonstrates the applicability of our approach. It shows that ccsl
is expressive enough to represent most of the semantics of uml sequence and timing dia-
grams. Some guidelines for future work are: 1) Solving the technical issues due to the use
of Papyrus as editor for displaying the derived sequence diagrams, 2) Animation of derived
sequence diagrams, 3) Extension of the approach to support activity diagram derivation and
4) Representation of uml interaction diagram semantics (e.g., loop combined fragment) to
which ccsl is currently not expressive enough.

References

[1] Barringer, H., Groce, A., Havelund, K., Smith, M.: Formal analysis of log �les. Journal
of aerospace computing, information, and communication 7(11) (2010) 365�390

[2] André, C.: Syntax and semantics of the Clock Constraint Speci�cation Language.
Technical Report 6925, INRIA (2009)

[3] Garcés, K., Deantoni, J., Mallet, F.: A model-based approach for reconciliation of poly-
chronous execution traces. In: 37th EUROMICRO Conference on Software Engineering
and Advanced Applications. (29 August 2011) 259�266

[4] OMG: Uni�ed Modeling Language, Superstructure. (January 2011) Version 2.4.

[5] Visual paradigm UML tool: UML case tool for software development. (September 2011)
http://www.visual-paradigm.com/product/vpuml/.

[6] Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling with time: Specifying
the semantics of multimedia sequence diagrams. Software and System Modeling 3(3)
(2004) 181�193

INRIA

Transforming CCSL partially-ordered Traces into UML Interaction Diagrams 27

[7] Hammal, Y.: Branching time semantics for uml 2.0 sequence diagrams. In Najm,
E., Pradat-Peyre, J.F., Donzeau-Gouge, V., eds.: Formal Techniques for Networked
and Distributed Systems - FORTE 2006. Volume 4229 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2006) 259�274

[8] Michelon, L., Costa, S.A.d., Ribeiro, L.: Formal speci�cation and veri�cation of real-
time systems using Graph Grammars. Journal of the Brazilian Computer Society 13
(12 2007) 51 � 68

[9] Iyenghar, P., Westerkamp, C., Wuebbelmann, J., Pulvermueller, E.: A model based
approach for debugging embedded systems in real-time. In: Proceedings of the tenth
ACM international conference on Embedded software. EMSOFT '10, New York, NY,
USA, ACM (2010) 69�78

[10] Iyenghar, P., Westerkamp, C., Wuebbelmann, J., Pulvermueller, E.: Design level de-
bugging of timing behavior in embedded systems: Using a model-based approach. In:
9th IEEE International Conference on Industrial Informatics. (2011) 889�894

[11] Apvrille, L., Becoulet, A.: Fast and multi-platform prototyping of embedded systems
from uml/sysml models. In: SAME 14th edition : Sophia Antipolis Microelectronics
Forum. (2011)

[12] UPPAAL: UPPAAL Home. http://www.uppaal.org.

[13] OMG: UML Pro�le for MARTE, v1.0. Object Management Group. (November 2009)
formal/2009-11-02.

[14] André, C., Mallet, F., de Simone, R.: Modeling time(s). In Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F., eds.: MoDELS. Volume 4735 of Lecture Notes in Computer
Science., Springer (2007) 559�573

[15] OMG: UML Superstructure, v2.2. Object Management Group. (February 2009)
formal/2009-02-02.

[16] DeAntoni, J., Mallet, F., André, C.: TimeSquare: on the formal execution of UML
and DSL models. Tool session of the 4th Model driven development for distributed real
time systems (2008)

[17] Bennett, A., Field, A., Woodside, C.: Experimental evaluation of the uml pro�le
for schedulability, performance, and time. In Baar, T., Strohmeier, A., Moreira, A.,
Mellor, S., eds.: UML 2004 - The Uni�ed Modeling Language. Modelling Languages
and Applications. Volume 3273 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2004) 143�157

[18] AOSTE: TimeSquare Home. http://timesquare.inria.fr/.

RR n° 7842

28 Garcés & DeAntoni & Mallet

[19] ALTOVA: UML Timing diagrams. (December 2011)
http://www.altova.com/umodel/timing-diagrams.html.

[20] Metamill: Product features. (December 2011)
http://www.metamill.com/features.html.

[21] team, P.: Papyrus UML. (Accessed on Dec. 2011) http://www.papyrusuml.org.

INRIA

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Background
	Related work
	ccsl in a nutshell
	Motivating example
	Going from ccsl partially-ordered traces to uml interaction diagrams
	Class and composite structure diagrams as a static specification
	CCSL as a dynamic specification
	Partial order
	Trace metamodel
	Event occurrence relation model

	Mappings between concepts
	Message
	Parallel combined fragment
	Differences between timesquare and uml timing diagram notation

	Clock trees
	Proof of concept
	Derivation of sequence diagrams
	Derivation of timing diagrams
	Results

	Conclusion

