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Abstract: This paper deals with the construction of conservative high order and positivity
preserving schemes for nonlinear hyperbolic conservation laws. In particular, we consider space-
time Petrov-Galerkin discretizations inspired by residual distribution ideas and based on a P k ×
Pm polynomial approximations in space-time. The approximation is continuous in space and
discontinuous in time so that one single space-time slab at the time can be dealt with. We show
constructions involving linear high order and nonlinear schemes. Principles borrowed from the
residual distribution approach, such as multidimensional upwinding and positivity preservation, are
used to construct the Petrov-Galerkin test functions. The numerical results on one dimensional
linear and nonlinear conservation laws show that higher accuracy and positivity are obtained
uniformly with respect to the physical CFL number.
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Résumé : This paper deals with the construction of conservative high order
and positivity preserving schemes for nonlinear hyperbolic conservation laws. In
particular, we consider space-time Petrov-Galerkin discretizations inspired by
residual distribution ideas and based on a P k ×Pm polynomial approximations
in space-time. The approximation is continuous in space and discontinuous in
time so that one single space-time slab at the time can be dealt with. We show
constructions involving linear high order and nonlinear schemes. Principles
borrowed from the residual distribution approach, such as multidimensional up-
winding and positivity preservation, are used to construct the Petrov-Galerkin
test functions. The numerical results on one dimensional linear and nonlin-
ear conservation laws show that higher accuracy and positivity are obtained
uniformly with respect to the physical CFL number.

Mots-clés : conservation laws, time dependent problem, high order, positivity
preservation, nonlinear schemes,residual distribution
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1 Generalities

We want to approximate solutions of the nonlinear conservation law

∂tu+ ∂xf(u) = 0 on [0, L]× [0, T ] ⊂ R× R
+ (1)

System (1) is assumed to be embedded with a set of boundary and initial condi-
tions, and to verify all the classical assumptions : existence of an entropy pair,
symmetrizability, hyperbolicity, etc...

1.1 Discrete equations

There is nowadays a large number of techniques allowing to deal with (1) nu-
merically. We can mention among them the Discontinuous Galerkin method
[12] and its implicit space-time [6, 33, 26] and explicit variants [29, 16, 19],
the spectral finite volume and finite difference schemes [35, 36, 37], high order
WENO [30] and residual based finite volume schemes [13, 14, 9, 10], to cite some.

The main issues to be dealt with when solving (1) numerically are the fol-
lowing :

Discrete conservation Across a discontinuity moving at speed σ, the discrete
equations should consistently approximate the Rankine-Hugoniot relation

σ[u] = [f ] (2)

having denoted by [·] the jumps across the discontinuity ;

Positivity, non-oscillatory character No unphysical numerical oscillations
should be produced in correspondence of discontinuities. Also for com-
ponents of u under a strict positivity constraint (as commonly density,
pressure or temperature), the non-negativity of these components should
be guaranteed when they go to zero (e.g. when a domain of void is gen-
erated) ;
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4 Larat & Ricchiuto

Time step size The above positivity condition is often achieved under a con-
straint on the time step size [8, 20]. This can be a flaw, especially if the
underlying discretization is implicit in time [28]. High order positivity
preserving schemes for (1) should be either explicit, or unconditionally
(w.r.t. the time step) positivity preserving ;

Accuracy It should be possible to increase arbitrarily the accuracy measured
in practice in correspondence of a smooth solutions, both in space and in
time ;

To the authors’ knowledge, no existing method allows to retain all of the
above properties in practical computations. In this paper we propose an ap-
proach allowing to obtain such a scheme.

2 The space-time residual approach

The schemes considered are inspired by the Residual Distribution (RD) schemes
[15, 1, 28]. The formulation proposed here, however, is a genuinely Petrov-
Galerkin method with test functions defined in such a way that the standard
RD schemes are recovered in the P 1 case.

In particular, we generalize the work of [21, 22] on space-time RD schemes
with discontinuous time representation. This generalization is obtained by
means of

1. a high order PnPm interpolation in space-time ;

2. a Petrov-Galerkin variational setting inspired by principles similar to those
used in RD schemes ;

3. a space-time conservative formulation via a P k+1Pm reconstruction of the
flux divergence ;

4. a positivity preserving approach based on the Limited Lax-Friedrich’s
scheme of [28] .

The above items are discussed in the following sections.

K
P2P1

i i+ 1 t
n,−

t
n,+

t
n+1,−

i i+ 1 t
n,−

t
n,+

t
n+1,−

K
P1P2

i i+ 1 t
n,−

t
n,+

t
n+1,−

K
P2P2

Figure 1: Examples of PnPm elements

Inria



P kPm space-time residual discretizations 5

2.1 Space-time approximation

We discretize the one-dimensional spatial domain [0, L] by means of a set of
non-overlapping elements

Ωh =
N⋃

i=1

[i, i+ 1] =
N⋃

i=1

Ki ,

having set Ki = [i, i+ 1], and the temporal domain [0, T ] by means of a set of
non-overlapping time slabs

T∆t =

M⋃

n=1

[tn, tn+1] =

M⋃

n=1

Kn .

having set Kn = [tn, tn+1]. We also set

h = min
i
(xi+1 − xi) , ∆t = min

n
(tn+1 − tn)

In the space-time slab [0, L]× [tn, tn+1] we consider space-time elements Kn
i =

Ki ×Kn = [i, i+1]× [tn, tn+1]. Over each Kn
i we introduce a polynomial rep-

resentation of the unknown, which we denote by uh. In order to do this, within
each Kn

i we consider {ϕs
j(x)}

k+1
j=1 and {ϕt

l(t)}
m+1
l=1 , the standard one dimensional

Lagrange basis functions on equally spaced points, of polynomial degree k and
m respectively. While we assume a continuous approximation in space, so that
the local values uj(t) are uniquely defined, the approximation in time is discon-
tinuous, hence the value un(x) is not uniquely defined. In particular, as shown
on figure 1, at the generic time level tn we define the limits

u
n,−
h (x) =

∑

Ki

k+1∑

j=1

ϕs
j(x)u

n,−
j , u

n,+
h (x) =

∑

Ki

k+1∑

j=1

ϕs
j(x)u

n,+
j (3)

and the jump

[uh]
n(x) =

∑

Ki

n+1∑

j=1

ϕs
j(x)[uj ]

n , [uj]
n = u

n,+
j − u

n,−
j (4)

With this notation, within each K we define the local approximation

uh|Kn
i
= u

n,+
h (x) +

k+1∑

j=1

∑

2≤l≤m

ϕs
j(x)ϕ

t
l (t)u

l
j + u

n+1,−
h (x) (5)

As illustrated on figure 1 this leads to the adoption of P kPm tensor product
elements in space-time.

2.2 Petrov-Galerkin setting and space-time conservation

Given the values {un,−j }j∈Ωh
, the values of the degrees of freedom in the slab

Ωh × [tn,+, tn+1,−] are computed by means of the variational statement

tn+1
∫

tn

∫

Ωh

βl
j(x, t)

(
∂tuh + ∂xfh(uh)

)
= 0 , ∀j ∈ Ωh and ∀1 ≤ l ≤ m+ 1 (6)
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6 Larat & Ricchiuto

with fh(uh) a discrete approximation of the flux, and where βl
j is a Petrov-

Galerkin test function, assumed to be uniformly bounded w.r.t. h, ∆t, uh, and
w.r.t. the local residuals { (∂tuh +∇ · fh(uh))|Kn

i
}∀i,n, and locally differentiable.

The test functions are also assumed to verify the consistency condition

k+1∑

j=1

m+1∑

l=1

βl
j = 1 (7)

Statement (6) does not take into account the discontinuous nature of the
temporal approximation. To do that, we integrate (6) by parts introducing the
upwind numerical flux ûnh(x) = u

n,−
h (x), in equations :

0 =−
∑

Kn
i
∈Ωh×T∆t

∫

Kn
i

(
∂tβ

l
j(x, t)uh

)∣
∣
Kn

i

+

∫

Ωh

(
βl
j(x, t

n+1,−)ûn+1
h − βl

j(x, t
n,+)ûnh

)

+

tn+1
∫

tn

∫

Ωh

βl
j(x, t)∂xfh(uh) =

=−
∑

Kn
i
∈Ωh×T∆t

∫

K

(
∂tβ

l
j(x, t)uh

)∣
∣
Kn

i

+

∫

Ωh

(
βl
j(x, t

n+1,−)un+1,−
h − βl

j(x, t
n,+)un,−h

)

+

tn+1
∫

tn

∫

Ωh

βl
j(x, t)∂xfh(uh)

We now add and subtract in the second integral the quantity βl
j(x, t

n,+)un,+h

and integrate by parts over each K again to obtain the final Petrov-Galerkin
form of the scheme

tn+1
∫

tn

∫

Ωh

βl
j(x, t)

(
∂tuh+∂xfh(uh)

)
+

∫

Ωh

βl
j(x, t

n,+)[uh(x)]
n = 0 , ∀j ∈ Ωh and ∀1 ≤ l ≤ m+1

(8)
The name of the game is now to find definitions of the test functions βl

j and of

the traces βl
j(x, t

n,+) yielding the desired properties.

Independently on this definition, it is important to remark that, provided
that the discrete flux fh(uh) is continuous in space, statement (8) is globally
conservative. This can be easily shown by noting that when testing the scheme
with functions βl

j = 1 (or equivalently when summing up the equations over j
and l, as in [4]) we obtain :

0 =

∫

Ωh

(
u
n+1,−
h −un,−h

)
+

tn+1
∫

tn

N∑

i=0

xi+1∫

xi

∂xfh(uh) =

∫

Ωh

(
u
n+1,−
h −un,−h

)
+

tn+1
∫

tn

(
f̂h(uh)

∣
∣
∣
x=L

−f̂h(uh)
∣
∣
∣
x=0

)

having introduced the numerical fluxes associated to the boundary conditions
f̂h(uh)

∣
∣
x=0

, and f̂h(uh)
∣
∣
x=L

. Summing up over n we finally obtain the global

Inria



P kPm space-time residual discretizations 7

conservation statement :

0 =

∫

Ωh

(
uh(x, T

−)− uh(x, 0)
)
+

T∫

0

(
f̂h(uh)

∣
∣
∣
x=L

− f̂h(uh)
∣
∣
∣
x=0

)

Note that under similar conditions a Lax-Wendroff theorem can be proved: when
converging (with respect to h and ∆t) the scheme converges to a weak solution
of (1). We refer to [4, 9] for details.

Before discussing the definition of the test functions, we are left with one
degree of freedom, namely the definition of the continuous fh(uh), or equiva-
lently of the discrete divergence ∂xfh(uh)

∣
∣
Kn

i

. To do this, we are aided by the

following simple result.

Proposition 2.1 (Trapped steady shocks). If the same continuous approxima-
tion is used for fh and uh, scheme (8) admits a spurious solution consisting of
(at least one) steady state shock trapped in a single cell [i, i+ 1].

Proof. Consider the initial solution ui = uL if xi ≤ xshock and ui = uR

otherwise. Across steady shocks we know that [f ] = f(uR) − f(uL) = 0.
Set f(uR) = f(uL) = f0. Trivially, scheme (8) admits the steady solution
uh = uh(x, 0), since for this choice we have identically ∂tuh

∣
∣
K

= ∂xfh
∣
∣
K

= 0,
since for this solution

fh
∣
∣
Kn

i

=

k+1∑

j=1

m+1∑

l=1

ϕs
j(x)ϕ

t
l (t)f0 = f0

For this reason, we have chosen to use in all numerical computations the
discrete flux

fh
∣
∣
Kn

i

=
k+2∑

σ=1

m+1∑

l=1

ϕs
σ(x)ϕ

t
l (t)f(u

l
σ) , ulσ =

k+1∑

j=1

ϕs
j(xσ)u

l
j (9)

having denote by ϕs
σ the (k+ 1) degree Lagrange polynomial basis functions in

space, and with {xσ}
k+2
σ=1 the corresponding (equally spaced) interpolation points

in K. The extra reconstructed interpolation point allows to break spurious
steady shocks.

3 Properties of the discretization

3.1 Accuracy conditions

We extend the consistency analysis of [3, 27, 4, 5] to (8). In Appendix A we
prove the following result.

Proposition 3.1 (Consistency estimate). Consider a smooth compactly sup-
ported function ψ ∈ Cr+1

0 ([0 , L] × [0, T ]), with r ≥ max(k,m), and an exact

RR n° 7843



8 Larat & Ricchiuto

smooth solution of (1), u ∈ Hr+1([0 , L]× [0, T ]). Define the truncation error

e(ψ, h,∆t) =
∑

Kn
i ∈Ωh×T∆t

k+1∑

j=1

m+1∑

l=1

ψl
j







∫

Kn
i

βl
j(x, t)

(
∂tuh + ∂xfh(uh)

)
+

∫

Ωh∩Kn
i

βl
j(x, t

n,+)[uh(x)]
n







(10)
having denoted by ψl

j the nodal values corresponding to the L2 projection of ψ

onto the approximation space, the pairs {(xj , t
l)}l=1,m+1

j=1,k+1 representing the grid
of degrees of freedom on Kn

i , and with uh the approximation (5) of the exact
solution u. Let the space-time grid verify

ν0 ≤
∆t

h
≤ ν1 , 0 < ν0, ν1 <∞ (11)

Let also

‖ψh‖L∞ ≤ ‖ψ‖L∞ ≤ C1 , ‖∂tψh‖L∞ ≤ ‖∂tψ‖L∞ ≤ C2 , ‖∂xψh‖L∞ ≤ ‖∂xψ‖L∞ ≤ C3

(12)
for some positive constants C1, C2, and C3, and in particular

sup
j,σ,l,r

|ψl
j − ψr

σ| ≤ max(C2, C3)h (13)

Under these hypotheses, scheme (8) verifies the truncation error estimate

|e(ψ, h,∆t)| ≤ C hp , p = min(k + 1,m+ 1) (14)

provided that the spatial and temporal approximations uh and fh respectively are
pth order accurate.

While details of the proof are reported in Appendix A, for the following
discussion, we remark that the error can be recast easily as

e(ψ, h,∆t) =−
∑

Kn
i
∈Ωh×T∆t







∫

Kn
i

(
uh∂tψh + fh(uh)∂xψh

)
+

∫

Ki

[ψh]
n+1ûn+1

h −

∫

Ki

[ψh]
nûnh






+

1

(k + 1)(m+ 1)

∑

Kn
i
∈Ωh×T∆t

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Kn
i

(βl
j(x, t) − ϕs

j(x)ϕ
t
l (t))

(
∂tuh + ∂xfh(uh)

)
+

1

(k + 1)(m+ 1)

M∑

n=0

∑

Ki

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Ki

(βl
j(x, t

n,+)− ϕs
i(x)ϕ

t
l (t

n,+))[uh]
n

(15)

which shows the contributions of both volume and trace terms.

3.2 Positivity

For scalar problems, the theory of positive coefficient schemes [31] allows to
characterize variations in space and time of the discrete solution, and to ensure
that a discrete maximum principle is observed. For scheme (8), we have the
following characterization.

Inria



P kPm space-time residual discretizations 9

Proposition 3.2 (Discrete maximum principle). Provided that

∫

Kn
i

βl
j(x, t)

(
∂tuh + ∂xfh(uh)

)
=

k+1∑

σ=1

m+1∑

r=1

clrjσ(u
l
j − urσ) with clrjσ ≥ 0

∫

Ki

βl
j(x, t

n,+)[uh(x)]
n =

k+1∑

σ=1

c
l,−
jσ (ulj − un,−σ ) with cl,−jσ > 0 for at least one triplet (j, σ, l)

(16)

then the solution of scheme (8) verifies the discrete inequality

un− = min
σ∈Ωh

uσ(t
n,−) ≤ uj(t

n,+), {ulj}2≤l≤m, , uj(t
n+1,−) ≤ max

σ∈Ωh

uσ(t
n,−) = Un

+ ∀ j ∈ Ωh

(17)

The proof of the proposition is reported in Appendix B. Schemes preserving
the positivity of the unknown and respecting the discrete maximum principle
(17) independently on the time step can be constructed provided that we are
able to retain conditions (16) in practice.

3.3 Choice of the trace

We introduce here a first simplification of the discrete prototype (8). As the
error analysis shows (cf. section §3.1 and appendix A), the necessary conditions
for the scheme to verify the error estimate (14) is that the test functions and the
traces of the test functions on the lower boundary are to be uniformly bounded
w.r.t space and time step, and solution data. A particular simple choice of the
traces is suggested by the last term in the truncation error (15). In the following,
we shall assume that we can find test functions βl

j(x, t) such that

lim
t→tn,+

βl
j(x, t) = ϕs

j(x)ϕ
t
l (t

n,+) , ∀ i, l (18)

This would correspond to a form of bubble stabilized Galerkin formulation,
which, for the approximation choice made here, can be written as

tn+1
∫

tn

∫

Ωh

βl
j(x, t)

(
∂tuh + ∂xfh(uh)

)
= 0 , for ulj with j ∈ Ωh and 2 ≤ l ≤ m+ 1

tn+1
∫

tn

∫

Ωh

β
n,+
j (x, t)

(
∂tuh + ∂xfh(uh)

)
+

∫

Ωh

ϕs
j(x)[uh(x)]

n = 0 , for u
n,+
j with j ∈ Ωh

(19)

In this case, the last term in the error representation (15) vanishes identically.

4 Numerical quadrature and examples of schemes

In the following section, we discuss numerical results obtained on linear and
nonlinear problems for approximations P kPm with k,m ∈ {1, 2, 3}, and with

RR n° 7843



10 Larat & Ricchiuto

different definitions of the test functions βl
j in (19). Before describing the choice

of these functions we consider the fully discrete version of (19) obtained by
replacing the continuous integrals by tensor product approximate quadrature
forms :

∑

Kn
i
|j∈Ki

Qs∑

ps=1

Qt∑

pt=1

ωps
ωptβl

j(xps
, tpt)

(
∂tuh + ∂xfh(uh)

)
(xps

, tpt) = 0, 2 ≤ l ≤ m+ 1

∑

Kn
i
|j∈Ki

Qs∑

ps=1

Qt∑

pt=1

ωps
ωptβ

n,+
j (xps

, tpt)
(
∂tuh + ∂xfh(uh)

)
(xps

, tpt)

+
∑

Ki|j∈Ki

Qs∑

ps=1

ωps
ϕs
j(xps

)[uh(xps
)]n = 0

where the discrete approximations uh and fh(uh) are obtained by means of
(5) and (9), respectively. The question is now how to choose the quadrature
formulas. The criterion used here is that each equations should correspond to
a splitting of the exact integral of the discrete space time divergence, in other
words that when summing up all the equations over a space time element Kn

i

we should obtain the exact integral of ∂tuh + ∂xfh. In formulas, we want the
identity

Qs∑

ps=1

Qt∑

pt=1

ωps
ωpt

(
∂tuh+∂xfh(uh)

)
(xps

, tpt)+

Qs∑

ps=1

ωps
[uh(xps

)]n =

∫

Kn
i

(
∂tuh+∂xfh(uh)

)

Kn
i

+

∫

Ki

[uh(x)]
n
Ki

to hold exactly. For approximations (5) and (9), this requires the one-dimensional
formulas used in the tensor product quadrature to be exact for polynomials of
degree k in space and m in time, thus allowing the use of the formulas natu-
rally defined by the one-dimensional elements. This further simplifies the form
of the scheme. Indeed, due to the interpolation properties ϕs

j(xσ) = δjσ and
ϕt
l(t

r) = δlr we obtain the fully discrete form used in the calculations

∑

Kn
i
|j∈Kn

i

k+1∑

σ=1

m+1∑

r=1

ωσω
rβl

j(xσ , t
r)
(
∂tuσ(t

r)δjσ + ∂xfh(xσ , t
r)
)
=0 2 ≤ l ≤ m+ 1

∑

Kn
i
|j∈Kn

i

k+1∑

σ=1

m+1∑

r=1

ωσω
rβ

n,+
j (xσ , t

r)
(
∂tuσ(t

r)δjσ + ∂xfh(xσ , t
r)
)
+ ∆xj [uj ]

n = 0

where
∆xj =

∑

Ki|j∈Ki

ωj(xi+1 − xi)

It only remains to define the test functions βl
j in space-time elements.

4.1 Space-time GLS(Pn
P

m)

In order to test our formulation and verify our code, we consider the Galerkin-
Least-Squares scheme. In particular, let

κlj(x, t) = ϕs
j(x)

dϕt
l (t)

dt
+
dϕs

j(x)

dx
ϕt
l(t) , (20)

Inria



P kPm space-time residual discretizations 11

the GLS scheme is obtained by setting in (19) (cf. [6] and references therein)

βl
j(x, t) = ϕs

j(x)ϕ
t
l (t) + κlj(x, t)τ(x, t) , τ(x, t) = 2

( k+1∑

σ=1

m+1∑

r=1

∣
∣κrσ(x, t)

∣
∣

)−1

(21)

The GLS scheme verifies the consistency estimate of proposition 3.1, and can
be shown to be energy stable, and to actually converge to weak solutions of (1).
The interested reader is referred to [24, 23, 32, 25, 18, 6] and references therein
for more.

4.2 Space-time LDA(Pn
P

m)

We consider the Petrov-Galerkin space-time formulation of the so-called multi-
dimensional upwind LDA residual distribution scheme [15, 34]. This formulation
is obtained on the space time element Kn

i by applying the residual distribution
philosophy to the non-integrated residual (constant advection case) :

φh = (∂tuh + a∂xuh)Kn
i
=

k+1∑

j=1

m+1∑

l=1

κlj(x, t)u
l
j

with κlj given by (20). The LDA residual distribution is obtained by assigning

to the degree of freedom corresponding to ulj the split residual

φlj = max(0, κlj)
( k+1∑

σ=1

m+1∑

r=1

max(0, κrσ)
)−1

φh

Conservative equations are obtained now by integrating these local contributions
over the element, leading to the sought Petrov-Galerkin form. In our case, this
leads to the use of

βl
j(x, t) = max(0, κlj)

( k+1∑

σ=1

m+1∑

r=1

max(0, κrσ)
)−1

(22)

in (19), with κlj as in (20). The interested reader is referred to [15, 34] for
more. We will refer to this discretization as to the LDA scheme, even though,
technically speaking, it is not anymore a residual distribution scheme. The LDA
scheme verifies the consistency estimate of proposition 3.1.

4.3 Space-time LLFs(Pn
P

m)

We construct a positivity preserving scheme based on the Limited and Stabilized
Lax Friedrich’s discretization of [1, 28, 2]. The principle is to start from a first
order scheme that verifies the first of (16). In our case, this is obtained by
defining on each Kn

i the quantity

Φl
j =

1

(k + 1)(m+ 1)

Φh
︷ ︸︸ ︷∫

Kn
i

(∂tuh + ∂xfh)+
α

(k + 1)(m+ 1)

k+1∑

σ=1

m+1∑

r=1

(ulj − urσ) (23)
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12 Larat & Ricchiuto

with the condition

α > max(h,∆t) max
(x,t)∈Kn

i

‖(1 , ∂uf(uh))‖L∞

guaranteeing that the first in (16) is verified. The next step is to compute
uniformly bounded distribution coefficients as [1, 2]

γlj =
max(0, Φl

jΦh)

k+1∑

σ=1

m+1∑

r=1
max(0, Φr

σΦh)

with Φh implicitly defined in (23). Note that one easily shows that

γljΦh = νljΦ
l
j , νlj ∈ [0, 1] (24)

Lastly, we evaluate (19), setting in each space-time element Kn
i

βl
j(x, t) = γlj + δ0(uh)δ1(uh)κ

l
j(x, t)τ(x, t) (25)

with κlj as in (20) and τ as in (21). The scheme obtained in this way is referred

to as the LLFs scheme. For δ0δ1 = 0 we obtain βl
j = γlj . In this case we refer

to the scheme as to the LLF (limited Lax-Friedrich’s). Note that, due to (24),
the LLF scheme is easily shown to verify proposition 3.2. However, as shown in
[1, 28, 2], the extra term is necessary to achieve to convergence rates of propo-
sition 3.1. The objective of the δ0 and δ1 sensors is to recover the propertied of
the LLF scheme where needed.

In particular, the quantity δ1(uh) is a smoothness sensor which is defined
following [1, 28] as

δ1(uh) = min
(

1,
‖uh‖L∞(Kn

i
)‖∂xf(uh)‖L∞(Kn

i
)

|∂tuh + ∂xfh(uh)|

)

note that δ1 is a function of (x, t), evaluated in each quadrature point when
evaluating (19). The scope of δ1 is to recover the non-oscillatory character of
the LLF scheme across discontinuities.

The function δ0(uh) is instead a positivity sensor. We use an improved
version of the one proposed in [28]. In particular we set

δ0 =
1

2

(

1 + tanh
(

α tan
(

π ∗ (0.5− e
−

c∗umin
Un
max−umin

)))

where Un
max is the maximal (necessarily positive) value of the considered com-

ponent over the whole solution between time steps n and n+ 1

Un
max = max

i∈Ωh,1≤l≤m+1
ulj,

umin is the local minimal value within the considered space-time element Kn
i

umin = min
(j,l)∈Kn

i

ulj,

Inria



P kPm space-time residual discretizations 13

and c is a cut-off parameter such that the exponential takes the value 0.5 when
umin equals a cut-off value ξ. A short calculation gives:

c = ln(2)
u
n
max − ξ

ξ
.

Finally, α is a parameter tunning the steepness of the hyperbolic tangent around
the cut-off value. During our computations, we have been using the following
values:

α = 1.0, ξ =

(
dx

k

dt

m

)2

.

The use of δ0 allows, for component of the solution under a strict positivity
constraint, to recover the positivity preserving property of the LLF scheme, in
particular the preservation of the non-negativity of the solution, consequence of
the left inequality in (17).

Appendix A : proof of proposition 3.1

We report here the proof of proposition 3.1. We start by remarking that using
the consistency condition (7) and the interpolation property

k+1∑

j=1

m+1∑

l=1

ϕs
jϕ

t
l = 1

by simple manipulations one can recast the error as

e(ψ, h,∆t) =−
∑

Kn
i
∈Ωh×T∆t







∫

Kn
i

(
uh∂tψh + fh(uh)∂xψh

)
+

∫

Ki

[ψh]
n+1ûn+1

h −

∫

Ki

[ψh]
nûnh






+

1

(k + 1)(m+ 1)

∑

Kn
i
∈Ωh×T∆t

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Kn
i

(βl
j(x, t)− ϕs

j(x)ϕ
t
l (t))

(
∂tuh + ∂xfh(uh)

)
+

1

(k + 1)(m+ 1)

M∑

n=0

∑

Ki

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Ki

(βl
j(x, t

n,+)− ϕs
i(x)ϕ

t
l (t

n,+))[uh]
n

(26)

By simple arguments, one can also show that the exact solution verifies

−
∑

Kn
i ∈Ωh×T∆t







∫

Kn
i

(
u∂tψh + f(u)∂xψh

)
+

∫

Ki

[ψh]
n+1un+1 −

∫

Ki

[ψh]
nun






= 0

So that the error can be recast as

e(ψ, h,∆t) = I + II + III + IV

RR n° 7843



14 Larat & Ricchiuto

with

I =−
∑

Kn
i
∈Ωh×T∆t

∫

Kn
i

(
(uh − u)∂tψh + (fh(uh)− f(u))∂xψh

)

II =
∑

Kn
i
∈Ωh×T∆t

∫

Ki

[ψh]
n+1(ûn+1

h − un+1)−

∫

Ki

[ψh]
n(ûnh − un)

III =
1

CKn
i

∑

Kn
i
∈Ωh×T∆t

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Kn
i

(βl
j(x, t) − ϕs

j(x)ϕ
t
l (t))

(
∂t(uh − u) + ∂x(fh(uh)− f(u))

)

IV =
1

CKn
i

M∑

n=0

∑

Ki

k+1∑

σ,j=1

m+1∑

r,l=1

(ψl
j − ψr

σ)

∫

Ki

(βl
j(x, t

n,+)− ϕs
j(x)ϕ

t
l (t

n,+))
(
(un,+h − un)− (un,−h − un)

)

with CKn
i
= (k + 1)(m + 1). We can now estimate the magnitude of the error

by bounding all the terms on the right hand side.

Using classical approximation results [11, 17] and (11) we can argue that

|uh − u|, |fh − f | = O(hp) and |∂t(uh − u)|, |∂x(fh − f)| = O(hp−1) (27)

Thanks to (12) we immediately deduce that

|I| ≤ C′
a(Ωh, T∆t)h

−2h2hp ≤ Ca(Ωh, T∆t)h
p

having used the fact that the total number of space-time elements is of the order
(h∆t)−1 and (11). Similarly, using (13), the boundedness of βl

j and of the basis
functions ϕs

jϕ
t
l , and (27) we deduce

|III| ≤ C′
b(Ωh, T∆t)h

−2hh2hp−1 ≤ Cb(Ωh, T∆t)h
p

Term IV is also easily estimated, since for both projections un,±h we have [11]

|un,±h − un| = O(hp), hence

|IV| ≤ C′
c(Ωh, T∆t)h

−2hh2hp ≤ Cc(Ωh, T∆t)h
p+1

Lastly, using the Lipschitz continuity and the consistency of the numerical fluxes
ûh in term II we can write

|ûnh − un| ≤|ûnh(u
n,+
h , u

n,−
h )− u

n,+
h |+ |un,+h − un| ≤ Lû|[uh]

n|+ C′
dh

p

≤Lû|u
n,+
h − un|+ Lû|u

n,−
h − un|+ C′

dh
p ≤ LûC

′′
dh

p + LûC
′′′
d h

p + C′
dh

p

Moreover, for the jumps in ψh we can also write

|[ψh]
n| = |ψn,+

h − ψn + ψn − ψ
n,−
h | ≤ |ψn,+

h − ψn|+ |ψn − ψ
n,−
h | ≤ C hp

leading to

|II| ≤ Cd(Ωh, T∆t)h
−2h2hphp = Cd(Ωh, T∆t)h

2p

which achieves the proof.
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P kPm space-time residual discretizations 15

Appendix B : proof of proposition 3.2

In order to prove proposition 3.2 we start by rewriting (8) as

C U = b−

with C a square (N + 1)× (m+ 1) matrix with

Cαjlβσr
=

∑

Kn
i
|ul

σ,u
r
σ∈Kn

i

clrjσ
∣
∣
Kn

i

+
∑

Kn
i
|ul

σ∈Kn
i
,u

n,−
σ ∈Ki

c
l,−
jσ

∣
∣
∣
Kn

i

αjl = j l, βσr = σ r with j, σ = 1, N + 1 and l, r = 1,m+ 1

and with

b− = C−U−

where U is the (N + 1)(m + 1) array of unknowns, U− is the N + 1 array
containing the values un,−σ , C− is a (N +1)(m+1)× (N+1) rectangular matrix
with

C−
αjlσ

=
∑

Kn
i |ul

σ∈Kn
i ,u

n,−
σ ∈Ki

c
l,−
jσ

∣
∣
∣
Kn

i

and noting that by hypothesis

• C is an L-matrix (Cαjlαjl
≥ 0, Cαjlβσr

≤ 0) ;

• C is irreducibly diagonally dominant. In particular, for the rows corre-
sponding to the triplets (j, σ, l) verifying the second hypothesis in (16) we
have

|Cαjlαjl
| −

∑

σ,r

|Cαjlβσr
| =

∑

Kn
i
|ul

σ ,u
r
σ∈Kn

i

clrjσ
∣
∣
Kn

i

+
∑

Kn
i
|ul

σ∈Kn
i
,u

n,−
σ ∈Ki

c
l,−
jσ

∣
∣
∣
Kn

i

−
∑

Kn
i
|ul

σ,u
r
σ∈Kn

i

clrjσ
∣
∣
Kn

i

=
∑

Kn
i
|ul

σ∈Kn
i
,u

n,−
σ ∈Ki

c
l,−
jσ

∣
∣
∣
Kn

i

> 0

Hence, C is an irreducibly diagonally dominant L-matrix, and its inverse is
positive [7] : C−1

jσ ≥ 0 ∀j σ. Not also that

C1 = C−
1 = r−, r−αjl

=
∑

Kn
i
|ul

σ∈Kn
i
,u

n,−
σ ∈Ki

c
l,−
jσ

∣
∣
∣
Kn

i

> 0 (28)

where αjl = j l, βσr = σ r with j = 1, N + 1 and l = 1,m+ 1, and with 1 and
1 the (N + 1)(m+ 1) and N + 1 arrays of ones. Finally (equalities/inequalities
meant by component)

C U = C−U−

C
−

jσ
≥0

︷︸︸︷

≥ C−
1un−

eq. (28)
︷︸︸︷
= C1un−

The left inequality is obtained upon multiplication by the positive matrix C−1.
Similarly one obtains the right inequality.
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