
HAL Id: hal-00652992
https://hal.inria.fr/hal-00652992v2

Submitted on 20 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

e-Surgeon: Diagnosing Energy Leaks of Application
Servers

Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, Lionel Seinturier

To cite this version:
Adel Noureddine, Aurélien Bourdon, Romain Rouvoy, Lionel Seinturier. e-Surgeon: Diagnosing En-
ergy Leaks of Application Servers. [Technical Report] RR-7846, INRIA. 2012. �hal-00652992v2�

https://hal.inria.fr/hal-00652992v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

46
--

FR
+E

N
G

RESEARCH
REPORT
N° 7846
January 2012

Project-Teams ADAM

e-Surgeon: Diagnosing
Energy Leaks of
Application Servers
Adel Noureddine1,2, Aurélien Bourdon1, Romain Rouvoy1,2, Lionel
Seinturier1,2,3

1 INRIA Lille – Nord Europe, Project-team ADAM
2 University Lille 1 - LIFL CNRS UMR 8022, France
3 Institut Universitaire de France

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

e-Surgeon: Diagnosing Energy Leaks of
Application Servers

Adel Noureddine1,2, Aurélien Bourdon1, Romain Rouvoy1,2,
Lionel Seinturier1,2,3

1 INRIA Lille – Nord Europe, Project-team ADAM
2 University Lille 1 - LIFL CNRS UMR 8022, France

3 Institut Universitaire de France

Project-Teams ADAM

Research Report n° 7846 — January 2012 — 27 pages

Abstract: GreenIT has emerged as a discipline concerned with the optimization of software
solutions with regards to energy consumption. In this domain, most of the state-of-the-art solutions
concentrate on coarse-grained approaches to monitor the energy consumption of a device or a
process. However, none of the existing solutions addresses in-process energy monitoring to provide
in-depth analysis of a process energy consumption. In this paper, we therefore report on a fine-
grained real-time energy monitoring framework we developed to diagnose energy leaks with a better
accuracy than the state-of-the-art.
Concretely, our approach adopts a 2-layer architecture including OS-level and process-level energy
monitoring. OS-level energy monitoring estimates the energy consumption of processes according
to different hardware devices (CPU, network, memory). Process-level energy monitoring focuses
on Java-based applications and builds on OS-level energy monitoring to provide an estimation of
energy consumption at the granularity of classes and methods. We argue that this per-method
analysis of energy consumption provides better insights to the application in order to identify
potential energy leaks. In particular, our preliminary validation demonstrates that we can diag-
nose energy hotspots of Jetty application servers and monitor their variations when stressing web
applications.

Key-words: Energy, Performance, Measurement, Power Model, Monitoring, Profiling, Bytecode
Instrumentation

e-Surgeon: Diagnostic des fuites énergétiques des
serveurs d’applications

Résumé : L’informatique verte a émergé comme une discipline qui s’intéresse
à l’optimisation des solutions logicielles en ce qui concerne la consommation
d’énergie. Dans ce domaine, la plupart des solutions de l’état de l’art se concen-
tre sur des approches à gros grains pour contrôler la consommation énergétique
d’un matériel ou un processus. Toutefois, aucune des solutions existantes gère
la surveillance au niveau processus afin de fournir une analyse en profondeur de
la consommation énergétique d’un processus. Dans ce papier, nous proposons
un canevas logiciel à grain fin pour surveiller en temps réel la consommation
énergétique des applications, et pour diagnostiquer les fuites d’énergie avec une
meilleure précision que l’état de l’art.

En particulier, notre approche adopte une architecture à 2 couches, une au
niveau du système d’exploitation et le suivi de l’énergie au niveau des processus.
La couche de surveillance de l’énergie au niveau de l’OS estime la consomma-
tion énergétique au niveau du processus selon différents périphériques matériels
(processeur, réseau, mémoire). La couche de surveillance de l’énergie au niveau
des processus se concentre sur les applications Java et s’appuie sur la couche
OS pour fournir une estimation de la consommation d’énergie à la granularité
des classes et méthodes. Nous soutenons que cette analyse au niveau des méth-
odes de la consommation énergétique fournit un meilleur aperçu de l’application
afin d’identifier les fuites énergétiques potentielles. En particulier, nos expéri-
ences démontrent que nous pouvons diagnostiquer les hotspots énergétique des
serveurs d’application Jetty et de surveiller leurs variations lorsque nous mettons
sous pression les applications web.

Mots-clés : Énergie, Performance, Mesure, Modèle énergétique, Surveillance,
Profilage, Instrumentation du bytecode

e-Surgeon: Diagnosing Energy Leaks of Application Servers 3

1 Introduction
Energy-aware software solutions and approaches are becoming broadly available
as energy concerns is becoming mainstream. The increasing usage of computers
and other electronic devices (e.g., smartphones, sensors, or digital equipment)
is continuously impacting our overall energy consumption. Although ICT ac-
counted for 2% of global carbon emissions in 2007 [14], ICT solutions can help
in reducing the energy footprint of other sectors (e.g., building, transportation,
industry). In [30], the Climate Group estimates that ICT solutions could re-
duce carbon emissions by 15% in 2020. However, in 2007, ICT footprint was
830 MtCO2e and is expected to grow to 1,430 MtCO2e in 2020 [30]. These
values illustrate the opportunities for efficient ICT solutions to reduce carbon
emissions and energy consumption.

Rising energy costs in computers and mobile devices requires the optimiza-
tion and the adaptation of computer systems. In this domain, research in
GreenIT already proposes various approaches aiming at achieving energy savings
in computers and software. However, most of the state-of-the-art approaches
either focus only the hardware, or only offer coarse-grained energy feedback and
optimization.

In this paper, we therefore propose to gather fine-grained energy feedback
information at runtime and in real-time. Our approach monitors the hardware
and the software of a given system, and is able to report the energy consump-
tion at a finer grained than the state-of-the-art. In particular, the solution
we propose an approach that profile applications more deeply with providing
thread-level and method-level energy information.

Our approach consists of a 2-layer architecture including a system monitoring
library (at the OS level), and an application energy profiler (at the process level).
The system level library estimates the energy consumption of running processes,
in real-time, based on raw information collected from hardware devices (e.g.,
CPU, network card) and the operating system. The application profiler gathers
resources information of software (e.g., CPU time, bytes transmitted using the
network card) and builds a usage model of system resources for each thread and
method. We both use state-of-the-art energy models and propose new models
for calculating the energy consumption of software at a fine-grained level.

As a first implementation, we target Java-based applications and we vali-
date our approach using standard application servers, such as the Jetty Web
Server [17]. Our preliminary results demonstrate that we can diagnose energy
hotspots of Java-based applications at runtime, offering opportunities to reduce
their energy consumption.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe our motivations and the main challenges we tackle. Section 3 describes
our approach, the design of our proposed architecture and our energy models.
Section 4 details the implementation of our prototype. In Section 5, we report
on the preliminary results we obtained and we validate them using a stress
benchmark for the Jetty Web Server. Related work is discussed in Section 6,
while we conclude in Section 7.

RR n° 7846

4 Noureddine & Bourdon & others

2 Motivation and Challenges

2.1 Motivation

Nowadays, energy management of software and hardware is achieved either
through real-time coarse-grained monitoring, or through analyzing dump files of
the application’s resources utilization. Although these approaches allow energy
management of software, they do not allow real-time and fine-grained monitor-
ing of the applications. Fine-grained monitoring and visualization have many
advantages: i) diagnose at a detailed level the energy consumption and detect
energy hot spots at the threads and methods level, ii) provide detailed energy
information to be used for runtime energy-aware software adaptation, and iii)
helps in providing insights to developers for producing energy-efficient code. The
Green Challenge for USI 2010 [5] has identified that profiling applications to de-
tect CPU hotspots is a winning strategy for limiting the energy consumption
of applications. Therefore, we argue that a fine-grained approach for propos-
ing energy-aware information is a keystone for future energy-aware systems and
software.

2.2 Challenges

Hardware monitoring is usually achieved through additional hardware measure-
ment equipments, such as multimeters or specialized integrated circuits (cf.
Section 6). This approach offers a precise and accurate measurement of the
energy consumption of hardware components but at a cost of an additional in-
vestment. However, it can neither monitor the energy consumption of software
components, nor go into the details of software classes and methods usages.

We rather believe that a scalable approach can be better obtained through a
software-centric approach. Monitoring the energy consumption of software has
to yield many challenges in order to build an accurate software-centric approach.
We outline some of the main difficulties that software monitoring has to cope
with if accurate monitoring is to be offered:

• Accuracy. The biggest problem that software monitoring tools face is
providing accurate estimations of energy consumption based on various
collected information. Unlike hardware measurement, software approaches
uses energy models in order to provide an estimation of the energy con-
sumption of software components. However, these estimations tend to
have different degrees of accuracy and overhead.

• Overhead. As software approaches monitor the executing software and
calculate an energy estimation of their consumption, an overhead is there-
fore always observed. The latter depends both on the degree of accuracy
needed and on the size of the monitoring tool and the monitored applica-
tion. This leads to a difficult tradeoff between the accuracy requirements
and the weight of the software monitoring tool.

• Fine-grained. Many of the current approaches (cf. Section 6) stop their
energy consumption calculation at the process level. Some of these ap-
proaches provide limited fine-grained but still raw values (such as ex-
ecution time of methods or active time of threads). However, providing

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 5

fine-grained estimation of the energy consumption of software components
is not as intuitive as mixing raw values and energy models. The question
arises to know which raw values is needed. Where can we collect them?
Which energy models can we use and in which context?

• Energy Models. Models to estimate the energy consumption have al-
ready been proposed (cf. Section 6). However, most of these models are
coarse-grained and hardware related, such as providing general formulas
for energy consumption of the hardware components (e.g., CPU, Mem-
ory, Hard disk). Models therefore need to be optimized for our context of
fine-grained energy consumption computation.

Laying these challenges, we propose in the next section an approach named
e-Surgeon for monitoring and profiling applications at runtime.

RR n° 7846

6 Noureddine & Bourdon & others

3 e-Surgeon Design and Approach

In this section, we present e-Surgeon general architecture and we describe the
approach we use for defining our energy models. The architecture is based on
a modular approach, mixing power monitoring and profiling tools with energy
models in order to provide energy information per-method in software.

3.1 Architecture

e-Surgeon architecture is split in two parts: a low level hardware resources mon-
itoring environment; and a high level application profiling environment. These
two parts work along each other in order to provide accurate real-time energy
information at the application level (threads and methods levels). Figure 1
depicts the overall architecture of our approach.

Figure 1: e-Surgeon Reference Architecture.

Low-level monitoring

The low-level monitoring part (named e-Surgeon Library in Figure 1) is the
base layer of our architecture. It provides system resources (e.g., CPU, network
card, . . .) energy consumption by process (PID) in real-time. It is based on a
modular design, adapting to both the execution environment and to the needs
of the application profiling.

This low-level monitoring is constructed as separate modules that can be
started or stopped at runtime upon needs. A set of modules (e.g., CPU, net-
work) collects raw information about the hardware resource utilization directly
from the devices or through the operating system. These information are then
exposed to another set of modules (e.g., energy CPU, energy network) that uses
our energy models (cf. Section 3.2) to compute the energy consumption for
each hardware component. These modules also compute the energy consump-
tion of running processes per hardware resource. Finally, all of these modules
are managed through a module manager. The manager is responsible for start-
ing, stopping or modifying the modules at runtime, by following commands sent
by applications.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 7

Intra-Process Correlation

Using the low-level API, energy information for all or some hardware compo-
nents are used to calculate the energy consumption at a process level. Process
correlation therefore provides per-process energy information classified for each
monitored hardware component. This information is then exposed in an API
to be used by the high-level application profiling.

High-level profiling

The high-level profiling part is responsible for profiling running applications in
real-time and estimating their energy consumption at a finer grain, e.g. at a
thread and/or methods level. Several profiling techniques can be used, such as
bytecode instrumentation or sampling the application. Each of these methods
has its advantages and drawbacks. Our approach, however, does not specify a
single method of profiling. We prefer to keep this as a technical choice during im-
plementation. Nevertheless, whatever implementation method is chosen, APIs
to communicate in the profiler and with the low-level monitoring environment
are to be respected.

The profiling part introspects the application at runtime, building statistics
about its resources utilization. Information, such as methods durations, CPU
time, or the number of bytes transferred through the network card, are collected
and classified at a finer grain, e.g., for each method of the application. Next,
a correlation phase takes place to correlate the application-specific statistics
with the process-level energy information. Details on our energy model for the
correlation are presented in Section 3.2. Finally, the per-method or per-thread
energy consumption information is visualized to the user and can be exposed as
a service (to be used, for example, in an application’s autonomous adaptation
cycle).

3.2 Power Models
We propose a comprehensive energy model using our own proposed formulas and
formulas taken from the state-of-the-art. In [27], the energy cost of a software
component c is computed based on the following formula:

Ec = Ecomp + Ecom + Einfra (1)

where Ecomp is the computational cost (i.e., CPU processing, memory access,
I/O operations), Ecom is the cost of exchanging data over the network, and
Einfra is the additional cost incurred by the OS and runtime platform (e.g.,
Java VM).

In [18], the following model is proposed:

EApp = EActive + EWait + EIdle (2)

where EActive is the energy cost of running the application and the underlying
system software, EWait is the energy spent in wait states (when a subsystem
is powered up while the application is using another), and EIdle is the energy
spent while the system is in idle state.

We base our model on a similar principle, taking into account the modular
aspect of the energy calculation (e.g., the sum of the energy consumption of

RR n° 7846

8 Noureddine & Bourdon & others

different hardware components). We also consider the wait and idle time, but we
exclude it from our calculation. This is because, at a finer level (e.g., threads and
methods level), current applications are multi-threaded. If a method is waiting
for a network packet, another thread is likely to be running and consuming CPU
and network energy too. Infrastructure energy is included in the computational
cost of our energy models and in our prototype. From this, we can abstract our
global energy formulas to the following:

Ec = Ecomp + Ecom (3)

Next, we will detail the energy model we use in e-Surgeon, both at the system
intra-process level and at the application profiling method level.

CPU Energy

In order to calculate the energy consumed by the processor, we use the Thermal
Design Power (TDP). TDP represents the maximum amount of power the cool-
ing system of a computer is required to dissipate the heat produced by the CPU.
Manufacturers generally provide the maximum value of the TDP, or TDPmax.
Then, the following formula can be used to estimate the TDP of the CPU at
different frequencies and voltages [9]:

TDP = C × TDPmax × (
freq

freqmax
)× (

voltage

voltagemax
)2 (4)

where freq and voltage are the current CPU frequency and voltage, and freqmax

and voltagemax are the maximum frequency and voltage that the CPU can sup-
port for the provided TDPmax. Because the TDP is usually much higher than
the real CPU energy consumption, we multiply the equation with a constant
factor C equal to 0.7, which is the appropriate value reported by [26]. The
resulting consumption is therefore always lower than TDPmax [31].

In our experimentations (cf. Section 5), our TDP formula is accurate (com-
pared to values reported by a wattmeter) on a Intel Core 2 Quad processor
(4 physical cores), while we observe that the results are not as satisfactory on
an Intel Core i7 processor (4 cores including 2 logical cores). As such, we can
conclude that the TDP formula, as it is currently reported in the literature,
strongly depends on the internals of the processor architecture and is only valid
for a specific family of processor. Our goal, in a near future, is to investigate
this issue and to define an agnostic formula to compute the processor energy
consumption of a wider range of processor architectures.

Using this calculated value, we estimate the energy consumption per-process
by basing our model on the CPU time of each process within each CPU fre-
quency. We propose the following formula for calculating the process CPU
energy consumption:

EnergyCPU
process =

∑
i∈Frequencies ti × TDPi

ttotal
(5)

where ti is the CPU time spend at frequency i, TDPi is the TDP calculated
at frequency i using formula 4, and ttotal is the total CPU time spend at all
supported frequencies.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 9

Network Energy

The network energy of a process is calculated using a formula similar to the
CPU energy. We base our model on available information, whether it is collected
at runtime or from devices’ documentations. As we are targeting application
servers, our network model is focusing on ethernet network card. A similar
model using a linear equation can be applied for wireless network cards [12],
but we did not investigate these options yet.

From the documentations provided by constructors, we obtained the energy
consumed (in watt) for transmitting bytes for one second according to a given
throughput mode of the network card (e.g., 1 MB, 10 MB. . .). Our network
energy model is therefore defined as:

Energynetwork
process =

∑
i∈states ti × Ei × d

ttotal
(6)

where Estate is the energy consumed by the network card in the state i (provided
by constructors), d is the duration of the monitoring cycle, and ttotal is the total
time spent in transmitting data with the network card.

CPU Computation

Using the information collected from profiling applications and the monitored
system, we are able to calculate a reasonable estimation of the CPU time per
method. And we use this information to calculate the CPU energy consumed
per method.

We first calculate the energy consumed per thread. For that, we apply the
following formula:

EnergyCPU
thread =

TimeCPU
thread × EnergyCPU

process

Durationcycle
(7)

where TimeCPU
thread is the CPU time of the thread in the last cycle, EnergyCPU

process

is the energy consumed by the application process in the last cycle, andDurationcycle

is the duration of the monitoring cycle.
We then filter the methods to get the list of methods running in the last cycle

(whether they are still running or not). For each thread, we get its methods
from the list. We then estimate with a good accuracy the CPU time for each
method using the following formula:

TimeCPU
method =

Durationmethod × TimeCPU
thread∑

m∈Methods Durationm
(8)

where Durationmethod is the execution time of the method in the last cycle, and∑
Durationmethods is the sum of the execution time of all methods in the last

cycle.
Finally, we calculate the energy consumed per method using this formula:

EnergyCPU
method =

TimeCPU
method × EnergyCPU

thread

Durationmethod
(9)

In our code, we also take account of the method call tree in order to limit
the computation to the leafs of the call tree. This is done to avoid situations

RR n° 7846

10 Noureddine & Bourdon & others

where, for example, a main method is always running, thus consuming energy,
while in fact, its invoked methods are the one actually consuming CPU cycles
and energy.

Network Computation

The client collects the number of bytes read and written per method from the
agent. We, first, calculate the number of bytes read/written in the last cycle
(a simple subtraction between the current and the last raw values). Then, we
collect the network energy consumed by the application process from our system
library. The network energy consumed per method is therefore:

EnergyNetwork
method =

Bytesmethod × EnergyNetwork
process

Bytesprocess
(10)

where Bytesmethod is the number of bytes read and written by the method,
EnergyNetwork

process is the energy consumed by the application, and Byteprocess is
the number of bytes read and written by all methods of the application.

The network energy consumption per thread is therefore the sum of the
network energy of all methods running in the thread as shown in the following
formula:

EnergyNetwork
thread =

∑
EnergyNetwork

methods (11)

In the next section, we will describe the implementation of our power models
and the architecture of e-Surgeon.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 11

4 Implementation
e-Surgeon is implemented as both a system level modular library, and a Java
agent instrumenting bytecode at runtime. CPU and network modules as well
as profiling functionalities are provided.

4.1 Library
Our system-level library aims to provide energy information per PID 1 for each
system component (CPU, NIC2. . .).

The library is therefore based on a modular approach where each system
component is represented as an energy module. Energy modules operate inde-
pendently of each others and are composed by two sub-modules: formula and
sensor. These sub-modules communicate using the Service-Oriented Architec-
ture (SOA) paradigm, and are contained in an OSGi 3 container. In particular,
we use Service Oriented Framework (SOF) [3] to implement the various modules
of e-Surgeon in C++.

The sensor sub-module is responsible for gathering hardware and operat-
ing system related information for the module. For example, it gathers the
number of bytes transmitted by the network card, and the time spent by the
CPU at each of the frequencies when it supports Dynamic Voltage Frequency
Scaling (DVFS). This sub-module is OS-dependent. We implemented sensor
sub-modules for the CPU and NIC on a GNU/Linux operating system. In par-
ticular, our implementation exploits system informations available in the procfs
and sysfs file systems.

The formula sub-module, on the other hand, is platform independent. The
sub-module is responsible for calculating the energy consumed for each process
by using information gathered by the sensor sub-module.

Additionally, our library supports the lifecycle management of its energy
modules. The latter can be started, stopped and their parameters changed at
runtime, using a modules manager. The benefit of this modular approach is to
offer flexibility while monitoring the system.

From the application point of view, the library communications are achieved
by using the formula’s interfaces. These interfaces follow the following pattern:

TY PE − Energy : get− TY PE − Energy(PID, d) (12)

Where TY PE is the system component type to monitor (e.g., CPU, NIC),
PID is the process ID and d is the monitoring cycle duration. For example,
for the CPU, the pattern indicates that a method with the following signa-
ture offers the energy consumed by the PID for a duration d: CPUEnergy:
getCPUEnergy(PID, d). CPU monitoring for a given PID and duration can be
described as the sequence diagram depicted in Figure 2.

When a getCPUEnergy(PID, duration) request is sent, CPUFormulaService
asks a CPUFormulaComputer (associated to a specified PID) to start the compu-
tation. In collaboration with the CPUSensorService, the
CPUFormulaComputer produces a CPUEnergy report when computation is com-
pleted (every duration time).

1Process IDentifier
2Network Integrated Card
3formerly Open Service Gateway Initiative

RR n° 7846

12 Noureddine & Bourdon & others

Figure 2: Library sequence diagram.

4.2 Application Energy Monitoring

We also develop a real-time application energy monitoring component, called
Jalen, as part of the e-Surgeon architecture. Jalen uses the per-process energy
information provided by our system library, and correlates it with information
collected from the application monitoring in order to provide per-method energy
information. Jalen is designed as a two-parts architecture: i) a Java agent
using bytecode instrumentation for monitoring the application, and ii) a JMX
client computing and correlating the collected data. This client extracts the
per-method energy consumption values. Figure 3 overviews the architecture of
Jalen.

We use bytecode instrumentation technics [8] to inject our monitoring code
into the methods of legacy applications. We choose instrumentation rather than
sampling for two main reasons: i) accuracy as we require fresh energy values;
and ii) repeatability as bytecode instrumentation produces similar results with
the same environment and parameters. Although bytecode instrumentation
has a non-negligible overhead for very large Java applications, we argue that
supporting precise and accurate per-method energy profiling is better-suited for
diagnosing energy leaks in applications. As our solution is expected to be used
in a tested environment, we expect that, once optimized, the Java applications
would not need to be instrumented when deployed in production.

Nonetheless, in order to reduce this overhead, we migrate all the computa-
tion to a remote JMX client. Therefore, our Java agent only collects raw values

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 13

Figure 3: The Jalen Architecture.

(e.g., method start time, thread ID). We instrumente the Java bytecode for
collecting CPU and network usages information. For the CPU, we collect the
following metrics per method: start time, end time, running status, executing
thread identifier and callee method (using a custom execution stack trace). For
the network, we use a delegator class to route calls from the class SocketImpl
to a custom implementation. We override the methods getInputStream() and
getOutputStream() to monitor the number of bytes read and written to sock-
ets. This information is then correlated with the method names invoking the
methods getInputStream() or
getOutputStream(), in order to get the number of bytes read/written by method.

All these collected information are then exposed in a MXBean interface.
In particular, the agent performs calculations in order to determine the actual
duration of the execution of the method during the last monitoring cycle. This
calculation takes into account all the calls to the methods executed in a same
thread. It also separates the calculations of these methods by thread. For
example, method A() is called twice from thread X, and three times from thread
Y. The calculations generate two results: one where the duration is the sum of
the two calls in thread X, and the second where the duration is for the sum of
the three calls in thread Y. We do not merge these numbers because we need
to construct the call tree in order not to take into account the delta duration
of the callee method when its children are being executed. Our prototype can
handle this on a per-thread basis, thus the need for separation.

Then, we build a JMX client that, not only display the collected information,
but also do the computation and correlation in order to determine the CPU and
network energy consumed per method in each monitoring cycle. The JMX client
collects information exposed by the agent’s MXBean. Using energy models and
metrics correlations (cf. Section 3.2), we estimate the CPU energy and the
network energy consumed per method. Finally, a graphical interface shows the
energy consumption per methods as a real-time updated pie chart and table.
Figure 4 portrays the graphical interface of the Jalen client. The figure shows
the energy consumption of Tomcat 7 during its execution. Displayed values
refer to the last monitoring cycle (here it is 1 second).

RR n° 7846

14 Noureddine & Bourdon & others

Figure 4: The Jalen Client’s Graphical Interface.

5 Experimentation

We run our e-Sugeon prototype on a Dell Precision T3400 workstation with an
Intel Core 2 Quad processor (Q6600), running Ubuntu Linux 11.04. We first
evaluate the accuracy of our library, and then estimate the overhead of our Java
agent. Based on these results, we conduct an analysis of a stress benchmark
on a Jetty Web Server [17] in Section 5.3. Our preliminary experimentations
shows that the consumed network energy is largely negligible compared to the
consumed CPU energy on our test server. This observation is in correlation
with related research [26]. Therefore, we will only outline the results of our
CPU experimentations. Note that the network energy can have a higher impact
on the global energy consumption in a different experimentation set, such as
a mobile phone. However, we limit our experimentations on a workstation
machine.

5.1 Accuracy

We first assess the accuracy of the results provided by our system library. We
compared these values with the actual energy consumption of the computer
using a powermeter.

First, we stress the processor using the Linux stress command [20]. Figure 5
depicts the results as an evolution of the CPU energy consumption during time
(normalized values). The peaks corresponds to stressing 1, 2, 3, 4, and then 1
and 2 cores, respectively. Then, we compare the values of our library and the
powermeter in three additional scenarios: running a video using MPlayer [2]
(results in Figure 6), the SunSpider JavaScript benchmark [4] running on Firefox
(cf. Fgure 7), a stress test on Tomcat using Apache JMeter [1] (cf. Figure 8),
and on Jetty (cf. Figure 9).

The results show minor variations between our calculated values in the li-
brary, and the real energy consumption values. Therefore, we can reasonably
argue that using software-only approach, we manage to provide values that are
accurate enough to be used in energy management software.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 15

Figure 5: Stressing the processor cores.

5.2 Overhead

We calculate the CPU overhead of our Jalen java agent using several programs:
a CPU-intensive application, for example a recursive version of the Towers of
Hanoi program, and a CPU and network-intensive application: the Tomcat
application server. We develop, in addition to our agent, a thread-only version
of the agent. This version uses the same methods delegations for calculating the
network energy, however it does only calculate the CPU energy consumption
per thread. In this case, no bytecode instrumentation is needed. We first
calculate the overhead of our thread-only agent that does not use bytecode
instrumentation. Then, we use our methods-level agent in order to estimate the
overhead of the bytecode instrumentation, thus the overhead of our full agent.

Thread-only agent

We first calculate the CPU overhead of our agent on a CPU-intensive applica-
tion. We iterate 50 times the program with and without injecting our thread-
only version of our Jalen agent. On each loop, we set the number of towers
to 10. On average, the program takes 22.64 ms to execute, while it took 22.74
ms when we added our agent. The average overhead is therefore negligible at
1.79%.

We also calculate the overhead of our thread-only agent on Tomcat 7 appli-
cation server. Results of 10 executions show that our bytecode instrumentation

RR n° 7846

16 Noureddine & Bourdon & others

Figure 6: Running a video under MPlayer.

has practically no impact on the server. On average, we even have better results
when running Tomcat with our agent than without it (716 ms compared to 724
ms!). However, when comparing server startup time on each loop, we find that
our agent does not have any real impact. The overhead was alternating with
some executions being more efficient when running the agent, while other was
worst.

Methods-level agent

However, when running the overhead benchmarks using our methods-level ver-
sion of our Jalen agent, the observed overhead was more consequent. The Tow-
ers of Hanoi program took 115.92 ms to execute compared to 24.14 ms without
the agent, resulting in an overhead of 380.12%. This high overhead can be
explained by the usage of thread-safe maps and lists, in particular the usage
of CopyOnWriteArrayList, which is responsible for nearly half of the overall
overhead (the overhead dropped 40% when we used an ArrayList instead).

We also test our agent with Tomcat 7 application server. On 5 loops, our
agent has an overhead of 246.41%. Tomcat needed in average 878.2 ms to start
without the agent, while this number grow up to 3042.2 ms on average.

Even though these numbers appear to be high, they should be leveraged by
what similar profilers provide. For example, Java Interactive Profiler (JIP) is
reported as having a very low overhead [6]. But still, we calculate an average

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 17

Figure 7: Running the SunSpider JavaScript benchmark.

overhead of 167.46% (with an average execution time of 64.97 ms) with the
Towers of Hanoi program with 10 towers. We also calculated the overhead of
the VisualVM Profiler [29]: 84.85% (with an average time of 49.93 ms), and the
overhead of the Oktech Profiler [23]: 55.5% (41.22 ms). Figure 10 summarizes
these numbers. Our code is therefore twice slower than the available tools but
we can provide, at runtime and in real-time, detailed information of the energy
consumption of methods.

5.3 Jetty Web Server Experimentation

We run our e-Surgeon prototype (system library and Java agent plus a JMX
client) on an instance of Jetty Web Server. We use JMeter to stress Jetty
server using a benchmark scenario (stressing the examples provided by default
in Jetty). We run the experimentation for an average time of one minute, with 20
threads (users in JMeter) and a loop count of 500. The results we gathered are
presented in Figure 11. The graph portrays the top 10 most energy-consuming
methods in the X axis (out of 726 instrumented methods). The right Y axis (thus
the bars) represents the energy consumed during our execution in percentage
of the total energy consumed. The left Y axis (thus the line) represents the
number of invocation of the method. We run this experiment several times, and
although we had difference in the watt energy values, we notices that the global
and proportional percentage is stable. Note also that the provided values are

RR n° 7846

18 Noureddine & Bourdon & others

Figure 8: Running stress tests on Tomcat using JMeter.

an aggregation of the execution the methods on all threads.
The first observation is that the top 10 methods consumes nearly half of

the total energy consumed by Jetty during the stress benchmark (e.g., 50.99%).
More interestingly, we observed that the method org/eclipse/jetty/io/
ByteArrayBuffer.get consumes 14.22% of the total energy by its own, with a
similar number of invocations compared to other methods.

We also analyzed the energy performance of the top 10 methods. We calcu-
late the energy consumption per method invocation. The results are presented
in Figure 12. We observe that org/eclipse/jetty/io/
AbstractBuffer.putIndex has a better performance per invocation. This
method consumed 2.89% of total energy during the tests, but was invoced 42293
times (the most in the top 10). Thus, this method has a energy per invocation
of 5.81% of the top 10. On the other hand, org/eclipse/
jetty/io/ByteArrayBuffer.get has a performance of 23.18% with 52159 in-
vocations and 14.22% of global energy consumed.

The results for the top 10 most consuming classes (out of 146) are pre-
sented in Figure 13. We note that the 2 classes (org/eclipse/jetty/io/
AbstractBuffer with 39.22% and org/eclipse/jetty/io/ByteArrayBuffer
with 23.89%) consumes alone more than 60% of the total energy (63.11%).

We believe that this information can help the developers to investigate alter-
native implementations of the class org/eclipse/jetty/io/ByteArrayBuffer
in order to reduce the energy footprint of this method. By keeping track of

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 19

Figure 9: Running stress tests on Jetty using JMeter.

Figure 10: CPU overhead of instrumentation tools with Towers of Hanoi pro-
gram.

the energy footprint of classes and methods,we think that coding completion
systems (like the one available in Eclipse) could be extended to recommend the
developer to use energy-efficient implementation of standard classes (e.g., List,
Set, Map).

RR n° 7846

20 Noureddine & Bourdon & others

Figure 11: Cumulated energy consumption of Jetty methods under JMeter
stresses (top 10 most energy-consuming methods).

Figure 12: Methods energy performance in percentage of the top 10 most energy-
consuming methods (lower is better).

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 21

Figure 13: Cumulated energy consumption of Jetty classes under JMeter stresses
(top 10 most energy-consuming classes).

6 Related Works

Energy Metering and Modeling

Monitoring energy consumption of hardware components usually requires an
hardware investment, like a multimeter or a specialized integrated circuit. For
example in [22], the energy management and preprocessing capabilities is inte-
grated in a dedicated ASIC (Application Specific Integrated Circuit). It continu-
ously monitors the energy levels and performs power scheduling for the platform.
However, this method has the main drawback of being difficult to upgrade to
newer and more precise monitoring and it requires that the hardware compo-
nent be built with the dedicated ASIC, thus making any evolution impossible
without replacing the whole hardware.

On the other hand, an external monitoring device provides the same accuracy
as ASIC circuits and does not prohibit energy monitoring evolutions. Devices,
such as AlertMe Smart Energy [7], monitor home devices and allow users to
visualize their energy consumption history through application services, such
as the now defunct Google Powermeter [16]. However, these approaches do not
adapt the system autonomously: the user takes the decision, while our approach
opens up solutions for adapting the system with limited user intervention.

The previous monitoring approaches allow getting energy measures about
hardware components only. However, knowing the energy consumption of soft-
ware services and components requires an estimation of that consumption. This
estimation is based on calculation formulas as in [27] and [18]. In [27], the au-
thors propose formulas to compute the energy cost of a software component
as the sum of its computational and communication energy costs. For a Java

RR n° 7846

22 Noureddine & Bourdon & others

application running in a virtual machine, the authors take into account the
cost of the virtual machine and eventually the cost of the called OS routines.
In [18], the authors take into account the cost of the wait and idle states of the
application (e.g., an application consumes energy when waiting for a message
on the network). In [13], the authors propose a tool, PowerScope, for profiling
energy usages of applications. This tool uses a digital multimeter to sample the
energy consumption and a separate computer to control the multimeter and to
store the collected data. PowerScope can sample the energy usage by process.
This sampling is more precise than energy estimation, although it still needs a
hardware investment.

In [24], Petre presents an energy model using the middleware language MI-
DAS [25] that classifies energy as data, code, or computation unit resources.
Computation units are distinguished into 3 types: software, hardware, and elec-
trical sockets. However, this model is too generic for providing energy values.
It is rather used as an energy-aware add-on to the MIDAS platform.

System Level Tools

pTop [10] is a process-level power profiling tool. Similar to the Linux top pro-
gram [21], the tool provides the power consumption (in Joules) of the running
processes. For each process, it gives the power consumption of the CPU, the
network interface, the computer memory and the hard disk. The tool consists
in a daemon running in the kernel space and continuously profiling resource
utilization of each process. It obtains these information by accessing the /proc
directory. For the CPU, it also uses TDP provided by constructors in the energy
consumption calculations. It then calculates the amount of energy consumed
by each application in a t interval of time. It also consists of a display utility
similar to the Linux top utility. A Windows version is also available, so called
pTopW, and offers similar functionalities, but using Windows APIs.

In addition to pTop, several utilities exist on Linux for resource profiling.
For example, cpufrequtils [28], in particular cpufreq-info to get kernel informa-
tion about the CPU (i.e., frequency), and cpufreq-set to modify CPU settings
such as the frequency. iostat [19] that is used to get devices’ and partitions’
input/output (I/O) performance information, as well as CPU statistics. Other
utilities [15] also exist with similar functionalities, such as sar, mpstat, or the
system monitoring applications available in Gnome, KDE or Windows. How-
ever, all of these utilities only offer raw data (e.g., CPU frequency, utilized
memory) and do not offer energy information.

Our approach is more flexible and fine-grained than pTop. Not only we
offer process-level energy information, but we also go deep into the application
in order to profile and report thread and method-level energy consumptions.
Furthermore, the system level part of e-Surgeon offers better flexibility and on-
demand scaling of the tool. Monitoring modules can be shutdown or started
depending on the context: on limited resources devices, modules, such as the
network or hard disk modules, can be shutdown in order to monitor only the
CPU. When more resources become available, these modules will be re-started.
Other situations are also possible, such as situations where the user is only
interested in monitoring the CPU or the network energy consumption. Our
flexible and modular approach therefore offers these functionalities, and extends
them to not only OS processes, but also to Java-based applications profiling.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 23

Application Profiling Tools
Several open-source or commercial Java profiling tools already propose some
statistics of Java applications. Tools, such as VisualVM [29], Java Interactive
Profiler (JIP) [6], JProfiler [11], or the Oktech Profiler [23], offer coarse-grained
information on the application and fine-grained resource utilization statistics.
However, they fail in providing energy consumption information of the appli-
cation at the granularity of threads or methods. For example, the profiler of
VisualVM only provides self wall time (e.g., time spend between the entry and
exit of the method) for its instrumented methods. We rather provide real-time
values for the duration of execution of methods in a monitoring cycle, and give
a good estimation of the CPU time of these methods. These tools also lack of
providing network related information, such as the number of bytes transmitted
by methods and thus the energy consumed. On the other hand, these tools
have a smaller overhead than our prototype. This is due, in part, to source code
optimizations made into these tools by dozens of developers in several years.
Nevertheless, our approach can be used to extend these tools with our energy
models.

RR n° 7846

24 Noureddine & Bourdon & others

7 Conclusion and Future Works
In this paper, we present the e-Surgeon architecture. It allows to gather and
calculate the energy consumption at threads and methods level. Its modu-
lar architecture allows real-time context-based adaptations of the monitoring
environment itself, leveraging performance and accuracy at the wish of the ap-
plication or the user. We also propose energy models to calculate the energy
consumption. Our models use and extend the state-of-the-art models and for-
mulas, and port them to fine-grained context. Our initial results show the
potential of our approach for diagnosing, at runtime, energy leaks of Java-based
applications. As for future work, we plan to: i) propose more energy models for
other hardware resources (in particular, memory and disk); ii) optimize our im-
plementation prototype, in particular the overhead of the methods-level version;
and iii) extend our experimentation to more applications, such as the Eclipse
platform and the JOnAS Java EE Application Server.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 25

References

[1] Apache JMeter. http://jmeter.apache.org.

[2] MPlayer. http://www.mplayerhq.hu.

[3] Service Oriented Framework. http://sof.tiddlyspot.com.

[4] SunSpider JavaScript Benchmark. http://www.webkit.org/perf/sunspider/
sunspider.html.

[5] The Green Challenge for USI 2010. https://sites.google.com/a/octo.com/
green-challenge.

[6] The Java Interactive Profiler. http://jiprof.sourceforge.net.

[7] AlertMe. http://www.alertme.com/smart_energy.

[8] ASM. http://asm.ow2.org.

[9] Benchtest.com. Temperature, Watts and C/W Calculators.
http://benchtest.com/calc.html.

[10] Thanh Do, Suhib Rawshdeh, and Weisong Shi. pTop: A Process-level
Power Profiling Tool. In HotPower’09: Proceedings of the 2nd Workshop
on Power Aware Computing and Systems, Big Sky, MT, USA, october
2009.

[11] ej-techonologies. JProfiler. http://www.ej-
technologies.com/products/jprofiler/overview.html.

[12] L.M. Feeney and M. Nilsson. Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In IN-
FOCOM 2001: Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1548–
1557, 2001.

[13] Jason Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications. In WMCSA’99: Proceedings of the
Second IEEE Workshop on Mobile Computer Systems and Applications,
page 2, Washington, DC, USA, 1999. IEEE Computer Society.

[14] Gartner. Green IT: The New Industry Shockwave. In Gartner, Presentation
at Symposium/ITXPO Conference, 2007.

[15] Vivek Gite. How do I Find Out Linux CPU Utiliza-
tion? http://www.cyberciti.biz/tips/how-do-i-find-out-linux-cpu-
utilization.html.

[16] Google Powermeter. http://www.google.com/powermeter.

[17] Jetty Web Server. http://www.eclipse.org/jetty.

[18] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31, 2008.

RR n° 7846

26 Noureddine & Bourdon & others

[19] Linux User’s Manual. iostat. http://linux.die.net/man/1/iostat.

[20] Linux User’s Manual. stress. http://linux.die.net/man/1/stress.

[21] Linux User’s Manual. top. http://linux.die.net/man/1/top.

[22] Dustin McIntire, Thanos Stathopoulos, and William Kaiser. ETOP: sensor
network application energy profiling on the LEAP2 platform. In IPSN’07:
Proceedings of the 6th international conference on Information processing
in sensor networks, pages 576–577, New York, NY, USA, 2007. ACM.

[23] OKTECH-Info Kft. OKTECH Profiler. http://code.google.com/p/oktech-
profiler.

[24] Luigia Petre. Energy-Aware Middleware. In ECBS’08: Proceedings of the
15th Annual International Conference and Workshop on the Engineering
of Computer Based Systems, pages 326–334. IEEE, 2008.

[25] Luigia Petre, Kaisa Sere, and Marina Waldén. A Language for Modeling
Network Availability. In Zhiming Liu and Jifeng He, editors, Formal Meth-
ods and Software Engineering, volume 4260 of Lecture Notes in Computer
Science, pages 639–659. Springer Berlin, Heidelberg, 2006.

[26] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Chris-
tos Kozyrakis. JouleSort: a balanced energy-efficiency benchmark. In SIG-
MOD’07: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 365–376, New York, NY, USA, 2007. ACM.

[27] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption
framework for distributed java-based systems. In ASE’07: Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, pages 421–424, New York, NY, USA, 2007. ACM.

[28] The Linux Kernel. cpufrequtils. http://www.kernel.org/pub/linux/utils/
kernel/cpufreq/cpufrequtils.html.

[29] VisualVM. http://visualvm.java.net.

[30] Molly Webb. SMART 2020: enabling the low carbon economy in the infor-
mation age, a report by The Climate Group on behalf of the Global eSus-
tainability Initiative (GeSI). GeSI, 2008.

[31] CPU World. Therman Design Power (TDP). http://www.cpu-
world.com/Glossary/T/Thermal_Design_Power_(TDP).html.

Inria

e-Surgeon: Diagnosing Energy Leaks of Application Servers 27

Contents
1 Introduction 3

2 Motivation and Challenges 4
2.1 Motivation . 4
2.2 Challenges . 4

3 e-Surgeon Design and Approach 6
3.1 Architecture . 6
3.2 Power Models . 7

4 Implementation 11
4.1 Library . 11
4.2 Application Energy Monitoring 12

5 Experimentation 14
5.1 Accuracy . 14
5.2 Overhead . 15
5.3 Jetty Web Server Experimentation 17

6 Related Works 21

7 Conclusion and Future Works 24

RR n° 7846

RESEARCH CENTRE
LILLE – NORD EUROPE

Parc scientifique de la Haute-Borne
40 avenue Halley - Bât A - Park Plaza
59650 Villeneuve d’Ascq

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Motivation and Challenges
	Motivation
	Challenges

	e-Surgeon Design and Approach
	Architecture
	Power Models

	Implementation
	Library
	Application Energy Monitoring

	Experimentation
	Accuracy
	Overhead
	Jetty Web Server Experimentation

	Related Works
	Conclusion and Future Works

