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A Formalization of Polytime Functions⋆

Sylvain Heraud1 and David Nowak2,⋆⋆

1 INRIA Sophia Antipolis - Méditerranée, France
2 IT Strategic Planning Group, ITRI, AIST, Japan

Abstract. We present a deep embedding of Bellantoni and Cook’s syntactic characterization of poly-
time functions. We prove formally that it is correct and complete with respect to the original char-
acterization by Cobham that required a bound to be proved manually. Compared to the paper proof
by Bellantoni and Cook, we have been careful in making our proof fully contructive so that we obtain
more precise bounding polynomials and more efficient translations between the two characterizations.
Another difference is that we consider functions on bitstrings instead of functions on positive integers.
This latter change is motivated by the application of our formalization in the context of formal secu-
rity proofs in cryptography. Based on our core formalization, we have started developing a library of
polytime functions that can be reused to build more complex ones.

Keywords: implicit computational complexity, cryptography

1 Introduction

When formally verifying algorithms, one often proves their correctness and termination, but complexity is
rarely considered. However proving correctness or termination of an algorithm that is not executable in
polynomial time is of little practical use. Even at a theoretical level, it might not make much sense. For
instance, in the context of security proofs one has to restrict the computational power of the adversary
in the model. Indeed, an adversary with unlimited computational power could break most cryptographic
schemes without actually making them insecure.

One way to take into account complexity in formal verification would be to formalize a precise execution
model (e.g., Turing machines) and to explicitly count the number of steps necessary for the execution of the
algorithm. Such approach would be for the least tedious and would give results depending on the particular
execution model that is used whereas one is mainly interested in the complexity class independently of a
particular execution model. A more convenient approach is implicit computational complexity that relates
programming languages with complexity classes without relying on a particular execution model nor counting
explicitly execution steps.

The main motivation behind our work presented in this paper is its application in the context of secu-
rity proofs in cryptography for restricting the computational power of the adversary so that it is feasible.
Cobham’s thesis asserts that being feasible is the same as being computable in polynomial time [8]. Cryp-
tographers follow Cobham’s thesis in their security proofs by assuming that the adversary is computable in
probabilistic polynomial time (PPT), i.e., executable on a Turing machine extended with a read-only random
tape that has been filled with random bits, and working in (worst-case) polynomial time. Moreover the class
of functions computable in polynomial time (a.k.a. polytime functions) has several natural closure properties
that are convenient for programming. It is in particular closed under composition and a limited kind of
recursion. Cobham uses those closure properties to characterize the polytime functions independently of any
particular execution model. Indeed, although in his proof he uses a particular model of Turing machine, he
claims that it is quite incidental, i.e., the particularities such as the number of tapes or the chosen instruction
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set have no significant effect on the proof. Even adding an instruction to erase a tape or put back the head
in its initial position in a single step would not break the proof [8].

Unfortunately, the characterization of Cobham is not fully syntactic: a size bound has to be proved on
the semantics of recursive functions. This thus does not allow for an automatic procedure to check whether
a program satisfies or not the conditions to be in Cobham’s class. About 30 years later, Bellantoni and
Cook have proposed a syntactic mechanism to control the growth rate of functions and thus eliminate the
need for an explicit size bound [6]. Being a fully syntactic characterization, membership in the Bellantoni-
Cook’s class can be checked automatically. They show that the existence of an algorithm in Cobham’s class
is equivalent to the existence of an algorithm in Bellantoni-Cook’s class that computes the same function.
This makes their class a sound and complete characterization of polytime functions: any function definable
in Bellantoni-Cook’s (or Cobham’s) class is computable in polynomial time, and any function computable
in polynomial time is definable in Bellantoni-Cook’s (and Cobham’s) class.

Related work. It is not uncommon that a few months or a few years after a so-called security proof
for a cryptographic scheme is published (e.g., in a top-level conference in cryptography), an attack on this
same scheme is published. This shows that there is a need for formal verification in cryptography. This
need is well-known among and acknowledged by cryptographers [11]. As a matter of fact, these last few
years, several frameworks for machine-checking security proofs in cryptography have been proposed [3, 4,
16]. However, these frameworks either ignore complexity-theoretic issues or postulate the complexity of the
involved functions.

Zhang has proposed a probabilistic programming language with a type system to ensure computation in
probabilistic polynomial time and an equational logic to reason about those programs [25]. In [19], it has
been applied to security proofs in cryptography. Zhang rely on Hofmann’s SLR [13] and its extension to the
probabilistic case by Mitchell et al. [15]. Those latter work are about functions on positive integers. Like us
in this paper, Zhang made the move to bitstrings in order to be applicable in the context of cryptography
where, for example, the bitstrings 0 and 00 are considered different although they would be identified if they
were interpreted as positive integers.

In [22], it is acknowledged the need for a “polytime checker”, possibly based on Bellantoni and Cook’s
work, and to be used to check automatically that a reduction between two NP-complete problems is com-
putable in polynomial time. In this paper, we provide such polytime checker.

There are many other criteria to ensure that functions, defined using various programming paradigms,
are in particular complexity classes. To cite only a few, some propose logical characterizations of polytime
functions [14, 23] or characterizations in terms of rewrite system [2]. Others deal with different complexity
classes [1]. To the best of our knowledge, none of those criteria have been applied to cryptography.

Contributions. In the proof assistant Coq, we have deep embedded the bitstring versions of Cobham and
Bellantoni-Cook’s classes and their relation. Initially, those classes were about functions on positive integers.
But in the context of cryptography we must deal with bitstrings. The reformulation of Cobham’s class with
bitstrings and the proof that it contains exactly the function computable in polynomial time was done in [24].
In a similar way, we have reformulated the definition of Bellantoni-Cook’s class.

We have also extended Bellantoni and Cook’s proof that their class is equivalent to Cobham’s one by
making it fully constructive, i.e., we provide explicit algorithms to perform translations between the two
classes. Those algorithms can be executed in Coq and extracted automatically into a certified translator
in an ML dialect supported by Coq. We also make more precise the bounding polynomials thus obtaining
better bounds and a more efficient translation, whereas Bellantoni and Cook overapproximate them since
they are only interested in their existence and do not try to optimize the translations.

We have started to implement libraries of functions in Cobham’s and Bellantoni-Cook’s classes that can
be used to build more complex functions.

In the context of security proofs in cryptography, we have shown how to apply our work with the second
author’s toolbox for certifying cryptographic primitives [16–18]. We have also extended Certicrypt [4] with
support to define in Bellantoni-Cook’s class the mathematical functions used by adversaries: The benefit
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is that one gets for free polynomials that had to be postulated before our extension, thus bringing more
confidence in the security proof.

We have proved a new result on Bellantoni-Cook’s class: we give explicitly a polynomial that bounds the
running time of a function in Bellantoni-Cook’s class. Such explicit polynomial was necessary to interface
our library with Certicrypt.

Outline. We start by some preliminaries in Section 2. In Section 3, we formalize Cobham’s and Bellantoni-
Cook’s classes that characterize polytime functions. Then in Sections 4 and 5 we respectively formalize the
translation from Bellantoni-Cook’s class to Cobham’s class and vice versa. Finally in Section 6 we show how
our formalization can be used for the purpose of formalizing security proofs in cryptography.

2 Preliminaries

In this section, we introduce our formalization of multivariate polynomials and various notations that will
be used in the rest of this paper.

2.1 Multivariate polynomials

We have implemented a library of positive multivariate polynomials. A shallow embedding of polynomials
might consist in representing them as a particular class of functions on positive integers. However, since we
need in Section 4 to translate polynomials into expressions in Cobham’s class, we have opted for a deep
embedding. A polynomial is represented as a pair of the number of distinct variables and a list of monomials.
A monomial is represented as a pair of a constant positive integer and a list of variables and their powers.
A variable is represented as an integer. For example, the polynomial 3y3 + 5x2y + 16 is represented by

(2, [(3, [(1, 3)]); (5, [(0, 2); (1, 1)]); (16, [])])

where the leftmost 2 is the number of variables, and variables x and y are respectively represented by 0 and
1. We chose to put the number of variables in the representation of a polynomial so as to easily inject a
polynomial using m variables into the class of polynomials with n variables when n > m. Otherwise we would
have to add artificial occurrences of variables with coefficient 0. In the library we provide utility functions
in Coq to create and combine polynomials (constant, variables, addition, multiplication, composition. . . ).
We use those functions when building a polynomial. Those functions are parameterized by the number of
variables, but we will omit this parameter in the rest of the paper since it will be clear from context. We
write x0, . . . , xn−1 for the variables of a polynomial with n variables. If P is a polynomial with m variables
and Q = 〈Q0, . . . , Qm−1〉 is a vector of polynomials with n variables, we write P (Q) for the polynomial with
n variables defined by substituting each variable xi in P by the polynomial Qi and by applying distributivity
of multiplication over addition and associativity of addition.

In [10], multivariate polynomials are represented in sparse Horner form and thus allow for a more efficient
numerical evaluation of polynomials. Since we do not intend to numerically evaluate polynomials, we have
opted for a more direct approach. This will moreover facilitate the connection with univariate polynomials
in Certicrypt (cf. Section 6.2).

2.2 Notations

We list some notations that will be useful to present the results and their proofs in a concise manner.
However, the meaning of those notations should be clear from the context. We write:

– xb for the concatenation of the bitstring x with a bit b in the least significant position;

– x for a vector 〈x0, . . . , xn−1〉 (for some n);

– x, y for the concatenation of vectors x and y;
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– |x| for the length of a vector x;

– |x| for the size of a bitstring x;

– |x| for the vector of sizes of the components of the vector x, i.e., if x = 〈x0, . . . , xn−1〉 then |x| =
〈|x0|, . . . , |xn−1|〉;

– f(x) for the vector of applications of f to each component of the vector x, i.e., if x = 〈x0, . . . , xn−1〉 then
f(x) = 〈f(x0), . . . , f(xn−1)〉;

– f(x) for the vector of applications of each component of the vector f to x, i.e., if f = 〈f0, . . . , fn−1〉 then
f(x) = 〈f0(x), . . . , fn−1(x)〉.

3 Characterizing polytime functions

In this section, we explain our deep embedding of the bitstring versions of Cobham’s and Bellantoni-Cook’s
classes, and state some of their bounding properties.

3.1 Cobham’s class

In a seminal paper [8], Cobham characterized polytime functions as the least class of functions containing
certain initial functions and closed under composition and a certain kind of recursion. However this char-
acterization is not fully syntactic as it requires a size bound to be proved on the semantics of recursive
functions.

We use the reformulation of Cobham’s class taken from [24] and that deals with bitstrings instead of
positive integers as it was the case in [8].

The syntax of Cobham’s class C is given by:

C ::= O constant zero
| Πn

i projection (i < n)
| Sb successor
| # smash
| Compn h g composition
| Rec g h0 h1 j recursion

where i and n are positive integers, b is a bit, g, h, h0, h1 and j are expressions in C, and g is a vector of
expressions in C. Well-formed expressions e in C have a well defined arity A(e) given by:

A(O) = 0 A(Πn
i ) = n A(Sb) = 1 A(#) = 2

A(h) = ah |g| = ah ∀g ∈ g,A(g) = n

A(Compn h g) = n

A(g) = ag A(h0) = A(h1) = ah A(j) = aj ah = ag + 2 = aj + 1

A(Rec g h0 h1 j) = aj

In our implementation, A is a Coq function that computes the arity of a Cobham’s expression if it is well
formed, or returns an error message otherwise. It is helpful when programming and debugging polytime
functions in Cobham’s class.

The semantics is given by:

– O denotes the constant function that always returns the empty bitstring ǫ.
– Πn

i (x0, . . . , xn−1) is equal to xi.
– Sb(x) is equal to xb.
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– #(x, y) is equal to 10 . . . . . . 0
︸ ︷︷ ︸

|x|.|y| times

.

– Compn h g is equal to the function f such that:

f(x) = h(g(x))

– Rec g h0 h1 j is equal to the function f such that:

f(ǫ, x) = g(x)
f(yi, x) = hi(y, f(y, x), x)
|f(y, x)| ≤ |j(y, x)| (RecBounded)

We illustrate Cobham’s class by implementing the binary successor function:

Rec

Succ(ǫ) = 1 (Comp0 S1 O)
Succ(x0) = x1 (Comp0 S1 Π2

0 )
Succ(x1) = Succ(x)0 (Comp0 S0 Π2

1 )
Succ(x) ≤ x1 (Comp0 S1 Π1

0 )

We prove in the following proposition that the output of a Cobham’s function is bounded by a polynomial
in the lengths of its inputs.

Proposition 1. For all f in C with a well-defined arity A(f) and semantics (i.e., satisfying the condi-
tion RecBounded), there exists a length-bounding monotone polynomial PolC(f) such that:

|f(x)| ≤ (PolC(f))(|x|)

Proof. By induction on the syntax of f . Our proof is fully constructive in the sense that we define explicitly
PolC . For any f in C with arity A(f) = n, PolC(f) is the monotone polynomial with n variables x0, . . . , xn−1

defined by:

PolC(O) = 0
PolC(Π

n
i ) = xi

PolC(Sb) = x0 + 1
PolC(#) = x0.x1 + 1

PolC(Compn h g) = (PolC(h))(PolC(g))
PolC(Rec g h0 h1 j) = PolC(j) ⊓⊔

We define a translation Poly→C from polynomials into Cobham’s expressions. It is such that, for any
polynomial P , Poly→C(P ) is a unary encoding of P in Cobham’s class, i.e.,

|Poly→C(P )(x)| = P (|x|)

3.2 Bellantoni-Cook’s class

Bellantoni and Cook have given a fully syntactic characterization of polytime functions that does not require
any explicit mechanism to count the number of computation steps [6]. The control of the growth rate
of functions is achieved by distinguishing two kinds of variables: the “normal” and “safe” ones written
respectively on the left and right side of a semicolon such as:

f(x0, . . . , xn−1
︸ ︷︷ ︸

normal

;xn, . . . , xn+s−1
︸ ︷︷ ︸

safe

)
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The syntax of Bellantoni-Cook’s class B is given by:

B ::= 0 constant zero
| π

n,s
i projection (i < n+ s)

| sb successor
| pred predecessor
| cond conditional
| compn,s h gN gS composition
| rec g h0 h1 recursion

where i, n and s are positive integers, b is a bit, g, h, h0 and h1 are expressions in B, and gN and gS are
vectors of expressions in B. Note that, contrary to Cobham’s class, a bounding function j is not needed for
recursion. Well-formed expressions e in B have well defined arities A(e) (counting separately the numbers of
normal and safe variables) given by:

A(0) = (0, 0) A(πn,s
i ) = (n, s) A(sb) = (0, 1)

A(pred) = (0, 1) A(cond) = (0, 4)

A(h) = (nh, sh) |gN | = nh |gS| = sh

∀g ∈ gN ,A(g) = (n, 0) ∀g ∈ gS ,A(g) = (n, s)

A(compn,s h gN gS) = (n, s)

A(g) = (ng, sg) A(h0) = A(h1) = (nh, sh) nh = ng + 1 sh = sg + 1

A(rec g h0 h1) = (nh, sg)

This function A is implemented like the one for Cobham’s class.
The semantics is given by:

– 0 denotes the constant function that always returns the empty bitstring ǫ.
– π

n,s
i (x0, . . . , xn−1;xn, . . . , xn+s−1) is equal to xi.

– sb(;x) is equal to xb.
– pred(; ǫ) = ǫ and pred(;xi) = x.
– cond(; ǫ, x, y, z) = x, cond(;w0, x, y, z) = y and cond(;w1, x, y, z) = z.
– compn,s h gN gS is equal to the function f such that:

f(x; y) = h(gN (x; ); gS(x; y))

Note here that the functions in gN only have access to normal variables.
– rec g h0 h1 is equal to the function f such that:

f(ǫ, x; y) = g(x; y)
f(zi, x; y) = hi(z, x; f(z, x; y), y)

Note here that the result of the recursive call f(z, x; y) is passed at a safe position. This prevents it to
be used as the recursion argument in a nested recursion.

One can see that, contrary to Cobham’s class C, there is no size bound to be proved on recursive functions:
Bellantoni-Cook’s class B is syntactically defined.

Reader may have noticed that our definition of Bellantoni-Cook’s class is slightly different from the one
in [6]. First, here the conditional cond distinguishes between three cases (empty, even or odd bitstrings),
whereas in [6] the empty bitstring is treated as an even one. Second, here the base case for recursion is the
empty bitstring, whereas in [6] it is any bitstring whose interpretation as a positive integer is 0, i.e., the
empty bitstring or any bitstring made of any number of bits 0 only. We made those changes because in
cryptography one wants to distinguish, for example, bitstrings 0 and 00 although they would have the same
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interpretation in terms of positive integers. These changes are validated by the results we proved in the rest
of the paper where we translate our Bellantoni-Cook’s expressions to/from the bitstring version of Cobham’s
expressions [24].

The following examples illustrate how one can program addition and multiplication in Bellantoni-Cook’s
class and their respective arity:

plus := rec

(π0,1
0 )

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1, 1)

mult := rec

(comp1,0 O 〈〉 〈〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

A(mult) = (2, 0)

We prove in the following proposition that the output of a Bellantoni-Cook’s function is bounded by
the sum of a polynomial in the lengths of its normal inputs and the size of its longest safe input. This is
so because syntactic restrictions ensure that we cannot increase the lengths of safe inputs by more than an
additive constant that will be taken into account in the polynomial part.

Proposition 2 (Polymax Bounding). For all f in B with well-defined arities A(f), there exists a length-
bounding monotone polynomial PolB(f) such that, for all x and y:

|f(x; y)| ≤ (PolB(f))(|x|) +maxi|yi|

Proof. By induction on the syntax of f . Our proof is fully constructive in the sense that we define explicitly
PolB. For any f in B with arity A(f) = (n, s), PolB(f) is the monotone polynomial with n variables x0, . . . ,
xn−1 defined by:

PolB(0) = 0
PolB(π

n,s
i ) = xi if i < n

0 otherwise
PolB(sb) = 1
PolB(pred) = 0
PolB(cond) = 0

PolB(compn,s h gN gS) = PolB(h)(PolB(gN )) +
∑

(PolB(gS))
PolB(rec g h0 h1) = shift(PolB(g)) + x0.(PolB(h0) + PolB(h1))

where shift(P ) is the polynomial P with each variable xi replaced by xi+1. ⊓⊔

We define a translation Poly→B from polynomials into Bellantoni-Cook’s expressions. It is such that,
for any polynomial P , Poly→B(P ) is a unary encoding of P in Bellantoni-Cook’s class, i.e.,

|Poly→B(P )(x)| = P (|x|)

In order to ease further development of functions in Bellantoni-Cook’s class, we provide a mechanism
to infer automatically the optimal values for the parameters n and s appearing in π

n,s
i and compn,s thus

obtaining more elegant code. This is implemented with a new syntax Binf for Bellantoni-Cook’s class where
arities do not appear in the syntax:

Binf ::= 0 constant zero
| πnormal

i projection (normal) (i < n)
| πsafe

i projection (safe) (i < s)
| sb successor
| pred predecessor
| cond conditional
| comp h gN gS composition
| rec g h0 h1 recursion

7



We have validated this new syntax by providing certified translations between Binf and B. When translating
from Binf to B, we can force arities to be larger that the minimal ones that are inferred.

4 Compiling Bellantoni-Cook into Cobham

In this section, we provide our formalization of the translation of expressions in Bellantoni-Cook’s class into
expressions in Cobham’s class. The main result is stated in the following theorem.

Theorem 1. For all f in B with well defined arities A(f), there exists f ′ in C such that for all vectors of
bitstrings x and y, f(x; y) = f ′(x, y).

Proof. The proof is split into two inductions on the syntax of f : The first one to prove the equality and the
second one to prove that the condition RecBounded is satisfied. Our proof is fully constructive in the sense
that we define explicitly the translation B → C from B to C and define f ′ as B→C(f). The difficulty of the
proof is in the generation of a Cobham expression that satisfies the condition RecBounded , and to build the
polynomial j that bounds the recursive calls.

– The first cases are immediate:

B→C(0) = O

B→C(πn,s
i ) = Πn+s

i

B→C(sb) = Sb

– pred and cond are translated by using Rec:

B→C(pred) = Rec O Π2
0 Π2

0 Π1
0

B→C(cond) = Rec Π3
0 Π5

4 Π5
3

Comp4 # 〈

Comp4 S1 〈Π4
1 〉;

Comp4 # 〈 Comp4 S1 〈Π4
2 〉;Comp4 S1 〈Π4

3 〉 〉〉

– For compn,s h gN gS we need to add dummy variables, since the functions in gN do not take the safe
arguments as parameters. We need to transform these functions in gN into functions with arity n + s.
dummiess (written in C) add s dummy variables that are ignored:

B→C(compn,s h gN gS) = Compn+s B→C(h)
(

dummiess (B→C(gN )),B→C(gS)
)

– For rec g h0 h1 we need to change the order of the arguments passed to the translations of h0 and h1.
Indeed, while in B the recursive argument is put after the normal ones, in C it should be the second
argument. This reordering is done by the function move arg2,n (written in C). Moreover, we need to
derive a suitable bound for the fourth argument of Rec. By Proposition 2 and the fact that the sum
|xn|+ · · ·+ |xn+s−1| of the sizes of the safe arguments is greater than or equal to the maximum size of
the safe arguments, we can take the polynomial PolB(rec g h0 h1)+ xn + · · ·+ xn+s−1 for the bound. We
then use Poly→C to encode it in C:

B→C(rec g h0 h1) = Rec

B→C(g)
move arg2,n (B→C(h0))
move arg2,n (B→C(h1))

Poly→C

(
PolB(rec g h0 h1) +
xn + · · · + xn+s−1

)

⊓⊔
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5 Compiling Cobham into Bellantoni-Cook

Contrary to Bellantoni-Cook’s class B, one does not distinguish between normal and safe variables in Cob-
ham’s class C. In C it is possible to recur on any argument, whereas in B one can only recur on normal
arguments. Thus, when translating from C to B, we must introduce a distinction and deal appropriately with
recursion. In our formalization, we follow Bellantoni and Cook’s translation scheme by assuming that all the
arguments are safe and adding an artificial normal argument w whose length is large enough to ensure enough
recursion steps. This gives us the lemma below. After that, we will get rid of w thus obtaining Theorem 2.

Lemma 1 (Recursion Simulation). For all function f in C with well-defined arity A(f) = n and seman-
tics (i.e., satisfying the condition RecBounded), there exists an f ′ in B and a monotone polynomial PolC→B(f)
such that for all vector of bitstrings x and bistring w such that PolC→B(f)(|x|) ≤ |w|, f(x) = f ′(w;x).

Proof. By induction on the syntax of f . Our proof is fully constructive in the sense that we define explicitly
the polynomial PolC→B(f) and the translation C→B, and define f ′ as C→B(f). Our translation is such that
if A(f) = n then A(f ′) = (1, n), i.e., f ′ takes one normal argument and n safe arguments.

– The first cases for C→B(f) are immediate. We just have to make sure that the arities are right:

C→B(O) = comp1,n O 〈〉 〈〉

C→B(Πn
i ) = π

1,n
i+1

C→B(Sb) = comp1,n sb 〈〉 〈π1,n
1 〉

C→B(Compn h g) = comp1,n (C→B(h)) 〈π1,0
1 〉 C→B(g)

PolC→B(f)(|x|) is also immediate for these first cases:

PolC→B(O) = 0
PolC→B(Π

n
i ) = 0

PolC→B(Sb) = 0

PolC→B(Compn h g) = PolC→B(h)(PolC(g)) +
∑

g∈g

PolC→B(g)

The rightness of the case for Comp follows by induction hypothesis and Proposition 1.
– For the case of Rec g h0 h1 j, we follow [6] in defining intermediate functions in B. However we need less

of them since our definition of f̂ below is simpler. We define P in B such that P (a; b) removes the |a| least
significant bits of b, i.e., P (ǫ; b) = b and P (ai; b) = pred(;P (a; b)). We define Y in B such that Y (z, w; y)
removes the |w|− |z| least significant bits of y, i.e., Y (z, w; y) = P (P ′(z, w); y) where P ′(a, b; ) = P (a; b).

P and Y are then used to define f̂ in B:

f̂(ǫ, w; y, x) = g(w;x)

f̂(zj, w; y, x) =







g′(w;x) if Y (S1z, w; y) is ǫ

h′
0(w, Y (z, w; y), f̂(z, w; y, x), x) if Y (S1z, w; y) is even

h′
1(w;Y (z, w; y), f̂(z, w; y, x), x) if Y (S1z, w; y) is odd

where g′, h′
0 and h′

1 are respectively C→B(g), C→B(h0) and C→B(h1). Our definition of f̂ is simpler
than in [6] because we do not need, like in [6], an additional intermediate function to check whether y is
an encoding of the positive integer 0. In our case, we stop the recursion when y is equal to ǫ, since the
cond can check whether the first safe argument is ǫ.
We then define f ′(w; y, x) in B such that it is equal to f̂(w,w; y, x), and finally:

C→B(Rec g h0 h1 j) = f ′ (C→B(g)) (C→B(h0)) (C→B(h1))

For the polynomial, we have:

PolC→B(Rec g h0 h1 j)(|y|, |x|)=(PolC→B(h0)+PolC→B(h1))(|y|,PolC(f), |x|)+

shift(PolC→B(g)(|x|)) + |y|+ 2
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– We can define the smash function # from C in B by a double recursion:

#′(ǫ, y) = y

#′(xi, y) = #′(x, y) 0 (concatenation with a bit 0)
#(ǫ, y) = 1
#(xi, y) = #′(y,#(x, y))

In order to implement in B those two recursive functions we apply the same technique as in the case of Rec
above. We first obtain a #′ in B by constructing f ′ with g = π

1,1
1 and h0 = h1 = comp1,3 S0 〈〉 〈π1,3

2 〉.
We then obtain # in B by applying the same construction of f ′ with g = one1,1 and h0 = h1 =
dummies0,1(comp1,2 #′ 〈π1,0

0 〉 〈π1,2
2 ;π1,2

1 〉).

For the polynomial, we obtain (after simplification):

PolC→B(#) = x0 + 2x1 + 18 ⊓⊔

Finally, the main result of this section is stated in the following theorem.

Theorem 2. For all f in C with well-defined arity A(f) and semantics (i.e., satisfying the condition RecBounded),
there exists f ′ in B such that, for all vectors of bitstrings x, f(x) = f ′(x; ).

Proof. We define the expression bf in B by:

Poly→B(PolC→B(f))

By definition of Poly→B, for all vector of bistrings x, |bf(x; )| = PolC→B(f)(|x|). We can thus apply Lemma 1
which gives:

f ′(x; ) = (C → B(f))(bf (x; );x) ⊓⊔

Our translation gives a more efficient code than the one in [6] since our definition of bf is more precise: the
number of recursive calls will be no more than what is strictly necessary. Indeed, authors of [6] use general
properties of multivariate polynomials to first prove the existence of positive integers a and c such that

PolC→B(f)(|x|) ≤ (
∑

j

|xj |)
a + c

and then use a and c to build a bf that satisfies the condition of Lemma 1, i.e., PolC→B(f)(|x|) ≤ |b(x; )|.
Their bf is an overapproximation of PolC→B(f) while our bf is an exact encoding.

6 Applications

Security properties in cryptography are often modeled as games, and then security proofs consist in showing
that no adversary can win the game [7, 21]. Most of those proofs are based on computational assumptions
that state that an effective adversary cannot solve a particular mathematical problem, e.g., Diffie-Hellman
problems [9]. Effective adversaries are modeled as strict probabilistic polynomial-time functions, i.e., inde-
pendently of the random choices, the execution time is bounded by a polynomial in a security parameter
(typically the length of the inputs). This means that an adversary can be modeled as a polytime function
with, as an additional parameter, a long enough bitstring that will be used by the adversary as its source of
random bits.
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6.1 Application to the second author’s toolbox

The second author’s toolbox is a collection of definitions and lemmas to be used for verifying game trans-
formations in security proofs [16–18]. With this toolbox, our library can be used as such when applying a
computational hypothesis. The computational hypotheses can indeed be restricted to adversaries defined in
Cobham’s or Bellantoni-Cook’s class (it is not too restrictive since those classes are complete) and adversaries
appearing in proofs must then be defined in one of those classes. For example, when applying the Decisional
Diffie-Hellman assumption (DDH) in the security proof for Hashed ElGamal in [16], a new adversary ϕ is
built from two adversaries A1 and A2:

ϕ(X,Y, Z) =def A2(r, (X, k), (Y,Hk(Z)⊕ πb(A1(r, (X, k)))))
?
= b

where b, k and r are fixed, ⊕ is a the bitwise exclusive or (xor), πb is the bth projection (b is equal to 1 or 2),

and
?
= is the equality test. That A1 and A2 are polytime is given by hypothesis. We can also assume that

the hash function Hk is polytime. Being polytime, they are definable in Bellantoni-Cook’s class. Moreover,
projections, exclusive or and equality test are easily defined in Bellantoni-Cook’s class. Therefore ϕ is easily
definable in Bellantoni-Cook’s class and thus it is polytime.

6.2 Application to Certicrypt

The application of our library to Certicrypt requires more work but brings noticeable benefits.

In Certicrypt, a game is a probabilistic imperative program that transforms a distribution of input states
into a distribution of output states. A state includes a time index. A distribution of states is polynomially
bounded if there are two (univariate) polynomials p and q respectively bounding the size of the data and the
time index of each state in the distribution. A program is strict probabilistic polynomial time (PPT) iff: it
always terminates; and, there exists two (univariate) polynomial transformers F and G such that, for every
polynomially bounded (by p and q) distribution of input states, the distribution of output states is bounded
by F (p) (bounding the output size) and q + G(p) (bounding the execution time). Interested reader should
refer to [4] for further explanation about this way to formalize PPT.

We have built an interface with Certicrypt made of the following components:

– The core language of Certicrypt can be extended with user-defined types and functions. But the time
cost of each function has to be axiomatized in the current implementation of Certicrypt. We have added
the possibility to include functions that have been defined in our implementation of Bellantoni-Cook’s
class and that are thus automatically proved executable in polynomial time, thus removing the need for
postulates.

– We have added a conversion from any multivariate polynomial P given by our library into a univariate
one ⌈P ⌉ in Certicrypt that overapproximates P when applied to the maximal argument: This is easily
done by substituting all variables x0, . . . , xn−1 in P by a single variable x:

⌈P ⌉ =def P [x0 7→ x; . . . ;xn−1 7→ x]

– In the case of a program c defined in Bellantoni-Cook’s class, we can take F (p) to be equal to:

1 + 2 ⌈PolB(c)⌉(p)

This is justified by Proposition 2. The multiplication by 2 and and addition of 1 are here because of
technical reasons coming from Certicrypt. For example, the multiplication by 2 comes from the fact that
the size of a boolean in Certicrypt is 2.

– In order to obtain G(p), we need to consider the obvious implementation of Bellantoni-Cook’s class on a
stack machine as described in Section 3.4.2 of [5]. We have equipped the semantics of Bellantoni-Cook’s
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class with a time index that keeps track of the running time. We can then prove that the multivariate
polynomial Poltime below is an upper bound of the running time, and use it to define G(p).

Poltime(0) = Poltime(π
n,s
i ) = Poltime(sb) = Poltime(pred) = Poltime(cond) = 1

Poltime(compn,s h gN gS) = Poltime(h)(PolB(gN ))+
∑

(Poltime(gN )) +
∑

(Poltime(gS))
Poltime(rec g h0 h1) = shift(Poltime(g))+

x0.(Poltime(h0) + Poltime(h1))

where shift(P ) is the polynomial P with each variable xi replaced by xi+1. An interesting thing about
Poltime is that, in the case of compn,s h gN gS , it is necessary to consider the size PolB(gN ) of the outputs
of the functions in gN for the running time of h, but not the size of the outputs of the functions in gS .
This is so because syntactic restrictions ensure that we cannot increase the lengths of safe inputs by more
than an additive constant. Finally, for a program c defined in Bellantoni-Cook’s class, we take G(p) to
be equal to:

⌈Poltime(c)⌉(p)

The reader might be surprised that in this section we consider a particular implementation of Bellantoni-
Cook’s class while in introduction we said that we are interested in complexity independently of any execution
model. The reason is that, although being in Cobham’s or Bellantoni-Cook’s class guarantees that there exists
a polynomial bounding the execution time, it does not give any clue on the actual value of this polynomial.
However Certicrypt requires that we explicitly give such a polynomial. This is why we consider here a
particular execution model: to be able to compute a polynomial.

7 Conclusions and future work

We have formalized Cobham’s and Bellantoni-Cook’s classes and their relations in the proof assistant Coq.
Usage of proof assistant led us to formalize parts of the proofs that were only informal in Bellantoni and
Cook’s paper. Our formalization allows to use those classes as programming languages to define any function
that is computable in polynomial time. We have shown in particular that it can be used to build adversaries
in security proofs in cryptography.

Future Work. In order to facilitate the use of our formalization, an important future work is to carry on
developing a convenient library of polytime functions on bitstrings that can be reused in the construction of
more advanced polytime functions. It is easy to implement bitwise operations such as bitwise XOR, NOT,
AND, etc. However, when implementing numerical operations such as bitwise addition, dealing with the carry
bit does not fit immediately in Bellantoni-Cook’s recursion scheme. One possible solution is to implement
binary addition, multiplication and other numerical functions in Cobham’s class such as in [20], and use
our automatic translation C→B (defined in Section 5) to derive their implementations in Bellantoni-Cook’s
class. Also, our approach can be extended with higher order so as to formalize a more powerful programming
language such as CSLR [25].

Acknowledgments. We are grateful to Benjamin Grégoire and Santiago Zanella Béguelin for replying so
quickly to every question we have had on Certicrypt, and for their comments on an earlier draft of this
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