
HAL Id: hal-00654418
https://hal.inria.fr/hal-00654418

Submitted on 21 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Live Migration of I/O Intensive
Workloads: A Transparent Storage Transfer Proposal

Bogdan Nicolae, Franck Cappello

To cite this version:
Bogdan Nicolae, Franck Cappello. Towards Efficient Live Migration of I/O Intensive Workloads: A
Transparent Storage Transfer Proposal. [Research Report] 2011, pp.20. �hal-00654418�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49934434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00654418
https://hal.archives-ouvertes.fr

Joint INRIA-UIUC Laboratory on PetaScale Computing

Towards Efficient Live Migration of I/O Intensive Workloads:

A Transparent Storage Transfer Proposal

Bogdan Nicolae, Franck Cappello

Technical Report TR-JLPC-11-11

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Towards Efficient Live Migration of I/O Intensive Workloads:

A Transparent Storage Transfer Proposal

Bogdan Nicolae1, Franck Cappello 1,2

bogdan.nicolae@inria.fr, fci@lri.fr

1 INRIA Saclay, France
2 University of Illinois at Urbana-Champaign, USA

Abstract

Live migration of virtual machines (VMs) is key feature of virtualization that is extensively leveraged
in IaaS cloud environments: it is the basic building block of several important features, such as load
balancing, pro-active fault tolerance, power management, online maintenance, etc. While most live
migration efforts concentrate on how to transfer the memory from source to destination during the
migration process, comparatively little attention has been devoted to the transfer of storage. This
problem is gaining increasing importance: due to performance reasons, virtual machines that run I/O
intensive workloads tend to rely on local storage, which poses a difficult challenge on live migration:
it needs to handle storage transfer in addition to memory transfer. This paper proposes a completely
hypervisor-transparent approach that addresses this challenge. It relies on a hybrid active push-prioritized
prefetch strategy, which makes it highly resilient to rapid changes of disk state exhibited by I/O intensive
workloads. At the same time, transparency ensures a maximum of portability with a wide range of
hypervisors. Large scale experiments that involve multiple simultaneous migrations of both synthetic
benchmarks and a real scientific application show improvements of up to 10x faster migration time, 5x
less bandwidth consumption and 62% less performance degradation over state-of-art.

1 Introduction

Over the last few years, a large shift was recorded from privately own and managed hardware to Infrastructure-
as-a-Service (IaaS) cloud computing [1, 2]. Using IaaS, users can lease storage space and computation time
from large datacenters in order to run their applications, paying only for the consumed resources.

Virtualization is the core technology behind IaaS clouds. Computational resources are presented to the
user in form of virtual machines (VMs), which are fully customizable by the user. This equivalent to owning
dedicated hardware, but without any long term cost and commitment. Thanks to virtualization, IaaS cloud
providers can isolate and consolidate the workloads across their datacenter, thus being able to serve multiple
users simultaneously in a secure way.

Live migration [3] is a key feature of virtualization. It gives the cloud provider the flexibility to freely
move the VMs of the clients around the datacenter in a completely transparent fashion, which for the VMs
is almost unnoticeable (i.e. they typically experience an interruption in the order of dozens of milliseconds
or less). This ability can be leveraged for a variety of management tasks, such as:

Load balancing the VMs can be rearranged across the physical machines of the datacenter in order to
evenly distribute the workload and avoid imbalances caused by frequent deployment and termination of VMs.

2

bogdan.nicolae@inria.fr
fci@lri.fr

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Online maintenance when physical machines need to be serviced (e.g. upgraded, repaired or replaced),
VMs can be moved to other physical machines while the maintenance is in progress, without the need to
shutdown or terminate any VM.

Power management if the overall workload can be served by less physical machines, VMs can be consol-
idated from the hosts that are lightly loaded to hosts that are more heavily loaded [4]. Once the migration
is complete, the hosts initially running the VMs can be shutdown, enabling the cloud provider to save on
energy spending.

Proactive fault tolerance if a physical machine is suspected of failing in the near future, its VMs can
be pro-actively moved to safer locations [5]. This has the potential to reduce the failure rate experienced
by the user, thus enabling the provider to improve the conditions stipulated in the service level agreement.
Even if the machine will not completely fail, migration may still prevent VMs from running with degraded
performance.

A particularly difficult challenge arises in the context of live migration when the VMs make use of local
storage. This scenario is frequently encountered in practice [6]: VMs need a “scratch space”, i.e. a place
where to store temporary data generated during their runtime. For this purpose, cloud providers typically
install local disks on the physical machine that are dedicated for this purpose. Since one of the goals of live
migration is to relinquish the source as fast as possible, no residual dependencies on the source host should
remain after migration. Thus, the complete disk state needs to be transferred to the destination host while
the VMs keep running and may be altering the disk state.

In this paper we propose a live storage transfer mechanism that complements existing live migration
approaches in order to address the challenge mentioned above. Our approach is specifically optimized to
withstand rapid changes to the disk state during live migration, a scenario that is frequently caused by VMs
executing I/O intensive workloads that involve the scratch space. We aim to minimize the migration time
and network traffic overhead that live migrations generate under these circumstances, while at the same time
minimizing the I/O performance degradation perceived by the VMs. This is an important issue: as noted
in [7], the impact of live migration on a heavy loaded VM cannot be neglected, especially when service level
agreements need to be met.

Our contributions can be summarized as follows:

• We present a series of design principles that facilitate efficient transfer of storage during live migration.
Unlike conventional approaches, our proposal is designed to efficiently tolerate I/O intensive workloads
inside the VM while the live migration is in progress. (Section 4.1)

• We show how to materialize these design principles in practice through a series of algorithmic descrip-
tions, that are applied to build a completely transparent implementation with respect to the hypervisor.
For this purpose, we rely on a series of building blocks covered by our previous work: BlobSeer, a dis-
tributed storage repository specifically designed for high throughput under concurrency [8, 9], as well
as an associated FUSE-based mirroring module that exposes VM disk images as regular files to the
hypervisor [10]. (Sections 4.2, 4.3 and 4.4)

• We evaluate our approach in a series of experiments, each conducted on hundreds of nodes provisioned
on the Grid’5000 testbed, using both synthetic benchmarks and real-life applications. These exper-
iments demonstrate significant improvement in migration time and network traffic over state-of-art
approaches, while reducing at the same time the negative impacts of live migration on performance
inside the VMs. (Section 5)

3

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

2 The problem of storage transfer during live migration

In order to migrate a VM, its state must be transferred from the host node to the destination node where it
will continue running. This state consists of three main components: memory, state of devices (e.g. CPU,
network interface) and storage. The state of devices typically comprises a minimal amount of information:
hardware buffers, processor execution state, etc. Thus, transferring it to the destination can be considered
negligible. The size of memory and storage however can explode to huge sizes and can take extended periods
of time to transfer.

One solution to this problem is to simply pay for the cost of interrupting the application while transferring
the memory and storage, which is known as offline migration. However, in practice a VM is not working in
isolation: it may host a server or be part of a distributed application, etc. Thus, offline migration causes an
unacceptably long downtime during which the VM is not accessible from the outside, potentially leading to
service loss, violation of service level agreement and failures.

To alleviate this issue, live migration [3] was introduced, enabling a VM to continue almost uninterrupted
(i.e. with a downtime in the order of dozens of milliseconds) while experiencing minimal negative effects due
to migration.

The key challenge of live migration is to keep a consistent view of memory and storage at all times for
the VM, while converging to a state where the memory and storage is fully available on the destination and
the source is not needed anymore. Techniques to do so have been extensively studied for memory, but how
to achieve this for storage remains an open issue.

Initially, the problem of keeping a consistent view of storage between the source and destination was
simply avoided by using a parallel file system rather than local disks. Thus, the source and destination are
always fully synchronized and no transfer of storage is necessary. However, under normal operation, this
approach can have several disadvantages: (1) it consumes system bandwidth and storage space on shared
disks for temporary I/O that is not intended to be shared; (2) it limits the sustained throughput that the VM
can achieve for I/O; (3) it raises scalability issues, especially considering the growing sizes of datacenters.

Given these disadvantages, such a solution is not feasible to adopt just for the purpose of supporting live
migrations. It is important to enable VMs to use local storage as scratch space, while still providing efficient
support for live migration. As a consequence, in order to obtain a consistent view of storage that does not
indefinitely depend on the source, storage must be transferred from the source to the destination.

Apparently, transferring local storage is highly similar to the problem of transferring memory: one
potential solution is simply to consider local storage as an extension of memory. However, such an approach
does not take into account the differences between the I/O workload and memory workload, potentially
performing sub-optimally. Furthermore, unlike memory, storage does not always need to be fully transferred
to the destination, as a large part of it is never touched during the lifetime of the VM and can obtained in
a different fashion, for example directly from the cloud repository.

With a growing tendency for VMs to exhibit I/O intensive workloads, live migration needs to efficiently
tolerate such scenarios. In this context, the storage transfer strategy plays a key role. To quantify the
efficiency of such a strategy, we rely on a series of performance indicators. Our goal is to optimize the
storage transfer according to these indicators:

Migration time is the total time elapsed between the moment when the live migration was initiated on the
source and the moment when all resources needed by the VM instance are fully available at the destination.
This parameter is important because it indicates the total amount of time during which the source is busy
and cannot be reallocated to a different task or shut down. Even if migration time for a single VM instance
is typically in the order of seconds and minutes, when considering the economy of scale, multiple migrations
add up to huge amounts of time during which resources are wasted. Thus, a low migration time is highly
desirable.

4

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Network traffic is the amount of network traffic that can be traced back to live migration. This includes
memory (whose transfer cannot be avoided), any direct transfer of storage from source to destination, as well
as any traffic generated as a result of synchronizing the source with the destination through shared storage.
Network traffic is expensive: it steals away bandwidth from VM instances, effectively diminishing the overall
potential of the datacenter. Thus, it must be lowered as much as possible.

Impact on application performance is the extent to which live migrations cause a performance degra-
dation in the application that runs inside the VM instances. This is the effect of consuming resources
(bandwidth, CPU time, etc.) during live migrations that could otherwise be leveraged by the VM instances
themselves to finish faster. Obviously, it is desirable to limit the overhead of migration as much as possible,
in order to minimize any potential negative effects on the application.

3 Related work

If downtime is not an issue, offline migration is a solution that potentially consumes the least amount
of resources. This is a three-stage procedure: freeze the VM instance at the source, take a snapshot of
its memory and storage, then restore the VM state at the destination based on the snapshot. Several
techniques to take a snapshot of VM instances have been proposed, such as: dedicated copy-on-write image
formats [11, 12], dedicated virtual disk storage services based on shadowing and cloning [10], fork-consistent
replication systems based on log-structuring [13], de-duplication of memory pages [14]. Many times, it is
cheaper to save the state of the application inside the virtual disk of the VM instance and then reboot the
VM instance on the destination, rather than save the memory inside the snapshot [15].

Extensive live migration research was done for memory-to-memory transfer. The pre-copy strategy [3, 16]
is by far the most widely adopted approach implemented in production hypervisors. It works by copying
the bulk of memory to the destination in background, while the VM instance in running on the source. If
any transmitted memory pages are modified in the mean time, they are re-sent to the target subsequently,
based on the assumption that eventually the memory on the source and destination converge up to a point
when it is cheap to synchronize them and transfer control to the destination. Several techniques are used to
reduce the overhead incurred by the background transfer of memory pages, such as delta compression [17].

However, pre-copy has its limitations: if memory is modified faster than it is copied in the background to
the destination, this solution never converges. To address this limitation, several approaches were proposed.
Checkpoint/Restart and Log/Replay was successfully adopted by [18] to significantly reduce downtime and
network bandwidth consumption over pre-copy. A post-copy strategy was proposed in [19]. Unlike pre-copy,
it transfers control to the destination from the beginning, while relying on the source to fetch the needed
content in the background up to the point when the source is not needed anymore. This approach copies
each memory page only once, thus guaranteeing convergence regardless of how often the memory is modified.

Although not directly related to live migration, live memory transfer techniques are also developed in [20].
In this work, the authors propose VM cloning as an abstraction for VM replication that works similar to
the fork system call. This is similar to live migration in that the destination must receive a consistent view
of the source’s memory, however, the goal is to enable the source to continue execution on a different path
rather than shut it down as quickly as possible.

The problem of storage transfer was traditionally avoided in favor of shared storage that is fully synchro-
nized both at source and destination. However, several attempts break from this tradition.

A widely used approach in production is incremental block migration, as available in QEMU/KVM [21].
In this case, copy-on-write snapshots of a base disk image, shared using a parallel system, are created on the
local disks of the nodes that run the VMs. Live migration is then performed by transferring the memory
together with the copy-on-write snapshots, both using pre-copy. Thus, this approach inherits the drawbacks
of pre-copy for I/O: under heavy I/O pressure the disk content may be changed faster than it can be copied
to the destination, which introduces an infinite dependence on the source.

5

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

In [22], the authors propose a two-phase transfer: in the first phase, the whole disk image is transferred in
the background to the destination. Then, in the second phase the live migration of memory is started, while
all new I/O operations performed by the source are also sent in parallel to the destination as incremental
differences. Once control is transferred to the destination, first the hypervisor waits for all incremental
differences to be successfully applied, then resumes the VM instance. However, waiting for the I/O to finish
can increase downtime and reduce application performance. Furthermore, since a full disk image can grow
in the order of many GB, the first phase can take a very long time to complete, negatively impacting the
total migration time.

A similar approach is proposed in [23]: the first phase transfers the disk content in the background to
the destination, while in the second phase all writes are trapped and issued in parallel to the destination.
However, unlike [22], confirmation is waited from the destination before the write completes on the source.
Under I/O intensive workloads, this can lead to increased latency and decreased throughput for writes that
happen before control is transferred to the destination.

Our own effort tries to overcome these limitations while achieving the goals presented in Section 2.

4 Our approach

To address the issues mentioned in Section 2, in this section we propose a completely transparent live storage
transfer scheme that complements the live migration of memory. We introduce a series of design principles
that are at the foundation of our approach (Section 4.1), then show how to integrate them in an IaaS cloud
architecture (Section 4.2) and finally introduce a series of algorithmic descriptions (Section 4.3) that we
detail how to implement in practice (Section 4.4).

4.1 Design principles

Transfer only the modified contents of the VM disk image to the destination Conceptually,
the disk space of the VMs is divided into two parts: (1) a basic part that holds the operating system files
together with user applications and data; (2) a writable part that holds all temporary data written during
the lifetime of the VM. The basic part is called the base disk image. It is configured by the user, stored
persistently on the cloud’s repository and then used as a template to deploy multiple VM instances.

As this part is never altered, it must not necessarily be transferred from the source to the destination: it
can be obtained directly from the cloud repository. Thus, we propose to transfer only the actually written
data from the source to the destination, while any data that is required from the basic part is directly
accessed from the cloud repository where the base disk image is stored.

To reduce latency and improve read throughput on the destination, we transparently prefetch the hot
contents of the base disk image according to hints obtained from the source. Note that under concurrency, this
can incur a heavy load on the repository. To avoid any potential bottleneck introduced by read contention,
we assume a distributed repository is present that can evenly distribute a read workload under concurrency.
Under these circumstances, we can store the disk image in a striped fashion: it is split into small chunks
that are distributed among the storage elements of the repository.

Transparency with respect to the hypervisor The I/O workload of the VM can be very different
from its memory workload. At one extreme, the application running inside the VM can change the memory
pages very frequently but rarely generate I/O to local storage. At the other extreme, the application may
generate heavy I/O to local storage but barely touch memory (e.g. it may need to flush in-memory data
to disk). For this reason, the best way to transfer memory can be different from the best way to transfer
storage.

To deal with this issue, we propose to separate the storage transfer from memory transfer and handle
it independently from the hypervisor. Doing so has two important advantages. First, it enables a high
flexibility in choosing what strategy to apply for the memory transfer and how to fine tune it depending on

6

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

the memory workload. Second, it offers high portability, as the storage transfer can be used in tandem with
a wide selection of hypervisors without any modification.

Note that this separation implies that our approach is not directly involved in the process of transferring
control from source to destination. This is the responsibility of the hypervisor. How to detect this moment
and best leverage it to our advantage is detailed in Section 4.4.

Hybrid active push-prioritized prefetch strategy Under an I/O intensive workload, the VM rapidly
changes the disk state, which under live migration becomes a difficult challenge for the storage transfer
strategy. Under such circumstances, attempting to synchronize the storage on the source and destination
before transferring control to the destination introduces two issues:

• The same disk content may change repeatedly. In this case, content is unnecessarily copied at the
destination, eventually being overwritten before the destination receives control. Thus, migration time
is increased and network traffic is generated unnecessarily.

• Disk content may change faster than it can be copied to the destination. This has devastating con-
sequences, as live migration will never finish and control will never be transferred to the destination.
Thus all network traffic and negative impact on the application is in vain, not to mention keeping the
destination busy.

To avoid these issues, we propose a hybrid strategy described below.
As long as the hypervisor did not transfer control to the destination, the source actively pushes all local

disk content to the destination, While the VM is still running at the source, we monitor how many times
each chunk was written. If a chunk was written more times than a predefined Threshold, we mark this
chunk as dirty and avoid pushing it to the destination. Doing so enables us deal with the first issue: each
chunk is transferred no more than Threshold times to the destination.

Once the hypervisor transfers control to the destination, we send the destination the list of remaining
chunks that it needs from the source in order to achieve a consistent view of local storage. At this point,
our main concern is to eliminate the dependency on the source as fast as possible. In order to do so, we
prefetch the chunks in decreasing order of access frequency. This ensures that dirty chunks, which are likely
to be accessed in the future, arrive first on the destination. If the destination needs a chunk from the source
before it was prefetched, we suspend the prefetching and serve the read request with priority.

Doing so enables us to deal with the second issue, since storage does not delay in any way the transfer
of control to the destination. No matter how fast disk changes, once control arrives at the destination, the
source is playing a passive role and does not generate any new disk content, thus leaving only a finite amount
of data to be pulled from the source.

4.2 Architecture

The simplified architecture of an IaaS cloud that integrates our approach is depicted in Figure 1. The typical
elements found in the cloud are illustrated with a light background, while the elements introduced by our
approach are illustrated by a darker background.

The shared repository is a service that survives failures and is responsible to store the base disk images
that are used as a template by the compute nodes. It can either use a dedicated set of resources or simply
aggregate a part of each of the local disks of the compute nodes into a common pool. For example, Amazon

S3 [24] or a parallel file system can serve this role. The cloud client has direct access to the repository and
is allowed to upload and download the base disk images.

Using the cloud middleware, which is the frontend of the user to the cloud, an arbitrary number of VM
instances can be deployed starting from the same base disk image. Typically these VM instances form a
virtual distributed environment where they communicate among each other. The cloud middleware is also
responsible to coordinate all VM instances of all users in order to meet its service level agreements, while

7

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Hypervisor

Mirroring module

Local disk

Cloud middleware

Source

R/W image

Local

R/W

Remote R/W

Control VM

MIGRATE

Hypervisor

Mirroring module

Destination

R/W image

Local R/W

MIGRATE

Local disk
Shared repository

Remote R/W Local R/W

Control VM

Hybrid push-pull

migration strategy

Figure 1: Cloud architecture that integrates our approach via the mirroring module (dark background).

minimizing operational costs. In particular, it implements the VM scheduling strategies that leverage live
migration in order to perform load-balancing, power saving, pro-active fault tolerance, etc.

Each compute node runs a hypervisor that is responsible for running the VM instances. All reads and
writes issued by the hypervisor to the underlying virtual disk are trapped by the mirroring module, which is
the central actor of our approach and is responsible to implement our live storage migration strategy.

Under normal operation, the mirroring module presents the disk image to the hypervisor as a regular
file that is accessible from the local disk. Whenever the hypervisor writes to the image file, the mirroring
module generates new chunks that are stored locally. Whenever the hypervisor reads a region of the image
that has never been touched before, the chunks that cover that region are fetched from the repository and
copied locally. Thus, future accesses to a region that has been either read or written before are served from
the local disk directly. Using this strategy, the I/O pressure put on the repository is minimal, as contents
is fetched on-demand only. At the same time, the mirroring module is listening for migration requests and
implements the design principles presented in Section 4.1. The next section is dedicated to detail this aspect.

4.3 Zoom on the mirroring module

The mirroring module is designed to listen for two types of events: migration requests and migration notifi-

cations.
The cloud middleware can send migration requests to the mirroring module using theMIGRATION REQUEST

primitive (Algorithm 1). Upon receipt of this event, the mirroring module assumes the role of migra-

tion source (by setting the isSource flag). At this point, all chunks that were locally modified (part of
ModifiedSet) are queued up into the RemainingSet for active pushing to the destination in the back-
ground. Furthermore, it starts keeping track of how many times each chunk is modified during the migration
process. This information is stored in WriteCount, initially 0 for all chunks. Once this initialization step
completed, it sends a migration notification to the mirroring module running on Destination, which assumes
the role of migration destination and starts accepting chunks that are pushed from the source. At the same
time, the source forwards the migration request to the hypervisor, which independently starts the migration
of memory from the source to the destination. As soon as the migration has started, the BACKGROUND PUSH

task is launched, which starts pushing all chunks whose access count is less than Threshold to the source.
If a chunk c is modified before control is transferred to the destination, its write count is increased and

the BACKGROUND PUSH task is notified (potentially waking it up if not already busy with pushing other
chunks). A simplified WRITE primitive that achieves this (but does not handle writes to partial chunks or
writes spanning multiple chunks) is listed in Algorithm 2.

Once the hypervisor is ready to transfer control to the destination and invokes SYNC on the disk image
exposed by the mirroring module, the BACKGROUND PUSH task is stopped and the source enters in a passive
phase where it listens for pull requests coming from the destination. In order to signal that it is ready
for this, the source invokes TRANSFER IO CONTROL on the destination, as shown in Algorithm 3. The

8

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Algorithm 1 Migration request on the source

1: procedure MIGRATION REQUEST(Destination)
2: RemainingSet←ModifiedSet

3: for all c ∈ V irtualDisk do

4: WriteCount[c]← 0
5: end for

6: start BACKGROUND PUSH

7: isSource← true

8: invoke MIGRATION NOTIFICATION on Destination

9: forward migration request to the hypervisor
10: notify BACKGROUND PUSH

11: end procedure

12: procedure BACKGROUND PUSH

13: while true do

14: wait for notification
15: while ∃c ∈ RemainingSet : WriteCount[c] < Threshold do

16: buf ← contents of c
17: push (c, buf) to Destination

18: RemainingSet← RemainingSet \ {c}
19: end while

20: end while

21: end procedure

Algorithm 2 Simplified writes of single full chunks

1: function WRITE(c, buffer)
2: if isDestination then

3: cancel any pull(c) in progress
4: RemainingSet← RemainingSet \ {c}
5: end if

6: contents of c← buffer

7: ModifiedSet←ModifiedSet ∪ {c}
8: if isSource then

9: WriteCount[c]←WriteCount[c] + 1
10: RemainingSet← RemainingSet ∪ {c}
11: notify BACKGROUND PUSH

12: end if

13: return success
14: end function

9

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

TRANSFER IO CONTROL primitive receives as parameters the remaining set of chunks that need to be pulled
from the source, together with their write counts. It then starts the BACKGROUND PULL task, whose role
is to prefetch all remaining chunks from the source. Priority is given to the chunks with the highest write
count, under the assumption that frequently modified chunks will also be modified in the future.

Algorithm 3 Migration notification and transfer of control on destination

1: procedure MIGRATION NOTIFICATION

2: isDestination← true

3: accept chunks from Source

4: end procedure

5: procedure TRANSFER IO CONTROL(RS,WC)
6: RemainingSet← RS

7: WriteCount← AC

8: start BACKGROUND PULL

9: end procedure

10: procedure BACKGROUND PULL

11: while RemainingSet 6= ∅ do
12: c← c′ ∈ RemainingSet : WriteCount[c′] = max(WriteCount[RemainingSet])
13: RemainingSet← RemainingSet \ {c}
14: pull(c) from Source

15: end while

16: end procedure

Note that chunks may be needed earlier than they are scheduled to be pulled by BACKGROUND PULL.
To accommodate this case, the READ primitive needs to be adjusted accordingly. A simplified form that
handles only reads of single full chunks is listed in Algorithm 4. There are two possible scenarios: (1) the
chunk c that is needed is already being pulled - in this case it is enough to wait for completion; (2) c is
scheduled for prefetching but the pull has not started yet - in this case BACKGROUND PULL is suspended
and resumed at a later time in order to allow READ to pull c. On the other hand, if a chunk c that is part of
the RemainingSet is modified by WRITE, the old content must not be pulled from the source anymore and
any pending pull of chunk c must be aborted.

Algorithm 4 Simplified reads of single full chunks

1: function READ(c)
2: if isDestination and c ∈ RemainingSet then

3: if c is being pulled by BACKGROUND PULL then

4: wait until c is available
5: else

6: suspend BACKGROUND PULL

7: pull(c) from Source

8: RemainingSet← RemainingSet \ {c}
9: resume BACKGROUND PULL

10: end if

11: end if

12: fetch c from repository if c not available locally
13: return contents of c
14: end function

Once all remaining chunks have been pulled at the destination, the source is not needed anymore. Both
the hypervisor and the mirroring module can be stopped and the source can be shut down (or its resources

10

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Hypervisor
Mirroring

module

Source

MIGRATION

Hypervisor
Mirroring

module

Destination

REQUEST

FORWARD

REQUEST

Push chunk

Push chunk

Push chunk

SYNC

SYNC ACK
Send list of remaining chunks

Prefetch chunk

Prefetch chunk

Pull chunk on demand

Prefetch chunk

Transfer control to destination

NOTIFY

Active

phase

Passive

phase

Shut

down

Passive

phase

Active

phase

Listen

mode

Figure 2: Overview of the live storage transfer as it progresses it time

used for other purposes). At this point, the live migration is complete.
A graphical illustration of the interactions performed in parallel by the algorithms presented above, from

the initial migration request on the source to the moment when the live migration is complete, is depicted in
Figure 2. Solid arrows are used to represent interactions between the mirroring modules. A dotted pattern is
used to represent interactions between the mirroring module and the hypervisor, as well as the interactions
between the hypervisors themselves. Note that the transfer of memory is not explicitly represented, as our
approach is completely transparent with respect to the hypervisor and its migration strategy.

4.4 Implementation

We implemented the mirroring module on top of FUSE (File System in UserspacE) [25]. Its basic function-
ality (i.e. to intercept the reads and writes of the hypervisor with the purpose of caching the hot contents
of the base disk image locally, while storing all modifications locally as well) is based on our previous work
presented in [10, 26]. The mirroring module exposes the local view of the base disk image as file inside the
mount point, accessible to the hypervisor through the standard POSIX access interface.

To keep a maximum of portability with respect to the hypervisor, we exploit the fact that the hypervisor
calls the sync system call right before transferring control to the destination. Thus, our implementation of the
sync system call invokes TRANSFER IO CONTROL on the destination, ensuring that the destination is ready
to intercept reads and writes before the hypervisor transfers control to the VM instance itself. Furthermore,
we strive to remain fully POSIX-compliant despite the need to support migration requests. For this reason,
we implemented the MIGRATION REQUEST primitive as an ioctl.

Finally, the mirroring module is designed to integrate with BlobSeer [8, 9], which acts as the repository
that holds the base VM disk images. BlobSeer enables scalable aggregation of storage space from a large
number of participating nodes, while featuring transparent data striping and replication. This enables it to

11

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

reach high aggregated throughputs under concurrency while remaining highly resilient under faults.

5 Evaluation

5.1 Experimental setup

The experiments were performed on Grid’5000 [27], an experimental testbed for distributed computing that
federates nine sites in France. We used 144 nodes of the graphene cluster from the Nancy site, each of which
is equipped with a quadcore Intel Xeon X3440 x86 64 CPU with hardware support for virtualization, local
disk storage of 278 GB (access speed ≃55 MB/s using SATA II ahci driver) and 16 GB of RAM. The nodes
are interconnected with Gigabit Ethernet (measured 117.5 MB/s for TCP sockets with MTU = 1500 B with
a latency of ≃0.1 ms).

The hypervisor running on all compute nodes is QEMU/KVM [21] 0.14.0, while the operating system
is a recent Debian Sid Linux distribution. For all experiments, a 4 GB raw disk image file based on the
same Debian Sid distribution was used as the guest environment. We rely on the standard live migration
implemented in QEMU (pre-copy) in order to transfer the memory. In order to minimize the overhead of
migration, we set the maximum migration speed to match the maximum bandwidth of the network interface
(i.e. 1G).

5.2 Methodology

The experiments we perform involve a set of VM instances, each of which is running on a different compute
node. We refer to the nodes where the VM instances are initially running as sources. The rest of the nodes
act as destinations and are prepared to receive live migrations at any time.

We compare three approaches throughout our evaluation:

5.2.1 Live storage transfer using our approach

In this setting, the VM instances write all modifications locally and the storage transfer is performed using
our approach. We rely on BlobSeer to store base disk image and on the FUSE-based mirroring module
(described in Section 4.4) to expose a locally modifiable view of the disk image to the hypervisor. We deploy
BlobSeer in the following configuration: a version manager and a provider manager, each on a dedicated
node, along with 10 metadata providers, again each on a dedicated node. The rest of 120 nodes are used
as compute nodes. On each compute node we deploy a data provider and a mirroring module. Once all
processes are deployed, we upload the base image into BlobSeer, using a stripe size of 256 KB (which we found
to be large enough to avoid excessive fragmentation overhead, while being small enough to avoid contention
under concurrent accesses). At this point, the VM instances can be deployed on the sources using the image
locally exposed by the mirroring module. Any live migration will be performed in a two-step procedure:
first the storage transfer is initiated on the mirroring module, then QEMU/KVM is instructed to initiate
the transfer of memory. Both the transfer of storage and memory proceed concurrently and independently.
For the rest of this paper, we refer to this setting as our approach.

5.2.2 Live storage transfer using pre-copy block migration

We compare our approach to the case when the modifications are locally stored using a qcow2 [11] disk
snapshot, whose backing base disk image is shared through a parallel file system. In this case, the storage
transfer is performed using QEMU/KVM’s incremental block migration feature, which is representative of a
pre-copy strategy. For the purpose of this work, we have chosen PVFS [28] as the parallel file system, as it
implements high performance data striping and offers similar read performance to BlobSeer under concurrent
accesses. PVFS is deployed on all nodes, out of which 120 are reserved as compute nodes. The base image
is uploaded to PVFS using the same stripe size as in the case of our approach. Once this step completed,

12

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

the VM instances are deployed on the sources using the qcow2 files as the underlying disk images. Live
migrations are performed by instructing QEMU/KVM to perform incremental block migration in addition
to the transfer of memory. For the rest of this paper, we refer to this setting as pvfs-cow.

5.2.3 Synchronization through a parallel file system

We include in our evaluation a third setting where the modifications to the base disk image are not stored
locally but are synchronized on the source and destination through a parallel file system. This corresponds to
a traditional solution that avoids storage transfer during live migration altogether in order to better tolerate
live migration. However, not taking advantage of local storage can decrease performance and generates
additional network traffic overhead. To study this trade-off, we use the same setting as above except for
the fact that we store the qcow2 images in the PVFS deployment rather than locally. Live migrations are
performed by instructing QEMU/KVM to initiate the transfer the memory only. For the rest of this paper,
we refer to this setting as pvfs-shared.

These approaches are compared based on the performance metrics defined in Section 2:

• Migration time: is the time elapsed between the moment when the migration has been initiated and
the source has been relinquished. For pfvs-cow and pvfs-shared, the live migration ends as soon as the
control is transferred to the destination. For our approach, an additional time is required after the
control was transferred in order to pull all remaining local modifications from the source.

• Network traffic: is the total network traffic generated during the experiments by the VM instances due
to I/O to their virtual disks and live migration. In the case of our approach and pvfs-cow, this means
all traffic generated by the live migration, including traffic due to remote read accesses to BlobSeer
and PVFS respectively. In the case of pvfs-shared, this is the traffic generated by the live migration of
memory and all remote reads/writes to PVFS.

• Impact on application performance: is the performance degradation perceived by the application during
live migration when compared to the case when no migration is performed. For the purpose of this work,
we are interested in the impact on the sustained I/O throughput in various benchmarking scenarios,
as well as the impact on total runtime for scientific data-intensive applications.

5.3 Live migration performance of I/O intensive benchmarks

Our first series of experiments evaluates the performance of live migration for two I/O intensive benchmarks:
Bonnie++ [29] and AsyncWR.

Bonnie++ is a standard benchmarking tool that measures the I/O access performance to any mounted
file system. It creates and writes a set of files that fill a large part of the remaining free space of the file
system, then reads back the written data, and then overwrites the files with new data, recording throughput
in all cases. Other performance factors such as how many files per second can be created and deleted are
also recorded. Given the high I/O pressure generated by this workload, it is the ideal candidate to push all
three approaches to their limits.

AsyncWR is a benchmarking tool that we developed to simulate the behavior of data-intensive applica-
tions that mix computations with intensive I/O. It runs a fixed number of iterations, each of which performs
a computational task that keeps the CPU busy while generating random data into a memory buffer. This
memory buffer is copied at the beginning of next iteration into an alternate memory buffer and written
asynchronously to the file system. Using this workload, we aim to study the impact of storage migration in
a scenario where a moderate constant I/O pressure is generated inside the VM instances.

The experiment consists in launching each of the benchmarks inside a VM instance and then performing
a live migration after a delay of 10 seconds. This gives the VM instance a small warm-up period that avoids
instant migrations due to lack of accumulated changes, while at the same time forcing the live migration
to withstand the full I/O pressure from the beginning. The total amount of data written by Bonnie++

13

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

 0

 10

 20

 30

 40

 50

 60

 70

 80

Bonnie++ AsyncWR

T
im

e
 (

s
)

Benchmark type

our-approach
pvfs-cow

pvfs-shared

(a) Migration time for Bonnie++ and
AsyncWR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Bonnie++ AsyncWR

T
o

ta
l
n

e
tw

o
rk

 t
ra

ff
ic

 (
M

B
)

Benchmark type

our-approach
pvfs-cow

pvfs-shared

(b) Total network traffic for Bonnie++
and AsyncWR

 0

 20

 40

 60

 80

 100

RD-NoMigr RD-Migr WR-NoMigr WR-Migr

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Access pattern

our-approach
pvfs-cow

pvfs-shared

(c) Performance degradation of Bon-
nie++: sustained read (RD) and write
(WR) throughputs without (NoMigr) and
with (Migr) migration

Figure 3: Migration performance of a VM instance (256MB of RAM) that performs I/O intensive workloads

is fixed at 800 MB. The same total amount of data is written by AsyncWR in 80 iterations (i.e. 10 MB
per iteration). The amount of RAM available to the VM instance is fixed at 256 MB. We have chosen this
small amount of RAM in order to limit the effects of write caching inside the VM instance, forcing the guest
operating system to flush the written data to the virtual disk. At the same time, a low amount of RAM
minimizes the impact of memory transfer.

The total migration time is depicted in Figure 3(a). As can be noticed, for the highly I/O intensive
Bonnie++ workload there is a large difference between the three approaches. Since the pvfs-shared approach
needs to transfer memory only, it is the fastest of all three. Comparatively, our approach manages to perform
a complete storage transfer during live migration in about 3x more time, which is more than 10x faster than
pvfs-cow. As mentioned in Section 4.1, the reason for this large difference in migration time between our
approach and pvfs-cow lies in the fact that the contents of the virtual disk changes faster than it can be
pushed by the pre-copy strategy, leading to a scenario where new data written to the disk accumulates on
the source and needs to be eventually migrated. This effect is further accentuated by the repeated transfer
of modified data, which our approach avoids. Furthermore, our approach transfers control to the destination
as early as possible, which enables new data to accumulate directly on the destination, greatly reducing
migration time. The same effect is noticeable in the AsyncWR workload as well, albeit at lesser extent: in
this case our approach achieves a speed-up of 2.8x over pvfs-cow. Thanks to the early transfer of control to
the destination, our approach needs to pull only a small amount of data, enabling it to perform almost as
well as pvfs-shared.

The high overhead exhibited by the pre-copy strategy is also easily visible in the total network traffic that
was generated during the live migration. As can be observed in Figure 3(b), for the Bonnie++ benchmark
the amount of network traffic reaches well over 4 GB. This is 8x more than the amount of network traffic
generated by our approach, which is less than 500 MB. Furthermore, it can also be observed that the
advantage of pvfs-shared in terms of migration time comes at the expense of network traffic: our approach
manages to outperform it by almost 5x. For the AsyncWR benchmark, this effect is even more visible:
pvfs-shared performs the worst with a total network traffic of 1.5 GB. It is closely followed by pvfs-cow,
whose network traffic is considerably less that in the case of Bonnie++ due to lower I/O pressure. Thanks
to its fast transfer of control to the destination, our approach manages to take advantage of local storage at
the destination much faster than pvfs-cow, thus consuming around 2x less network traffic than pvfs-cow and
even more than 2x when compared to pvfs-shared.

Finally, the impact of live migration on the performance results of Bonnie++ and AsyncWR is illustrated
in Figure 3(c) and Table 1 respectively.

For the Bonnie++ benchmark, a large gap can be observed between pvfs-shared and the other two
approaches when comparing the sustained write throughput with and without live migration. At only

14

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

Table 1: Performance degradation of AsyncWR under live migration
Approach Without migration With migration

our approach 7.7 MB/s 3.6 MB/s
pvfs-cow 7.7 MB/s 3.16 MB/s

pvfs-shared 2.8 MB/s 2.66 MB/s

15 MB/s, this low throughput is easily explained by the fact that pfvs-shared does not take advantage of local
storage, thus experiencing a significant slowdown vs. our approach and pvfs-cow (3x and 2.5x respectively).
Our FUSE-based mirroring module achieves a high write throughput that reaches about 45 MB/s without
migration and then drops by 20% when performing the live migration. By comparison, pvfs-cow reaches
a write throughput of 40 MB/s without migration (slightly lower than our approach because of additional
copy-on-write management overhead) that eventually drops by 30% when performing the live migration.
The higher drop in performance experienced by pvfs-cow is again explained by the high overhead of its
pre-copy strategy. On the other hand, as expected, the write throughput sustained by pvfs-shared during
live migration suffers no noticeable drop.

The gap between pvfs-shared and the other two approaches grows even higher when comparing the sus-
tained read throughput. This is explained by the fact that both the source and the destination aggressively
cache the contents that is written locally (which is independent of the caching performed inside the VM
instance). This is not the case for pvfs-shared, contributing to its throughput of about 17 MB/s. Compara-
tively, both our approach and pvfs-shared reach well over 600 MB/s, greatly surpassing the maximal value of
100 MB/s used in Figure 3(c) for clarity. For all three approaches, the performance drop of read throughput
caused by live migration is negligible.

In the case of AsyncWR, the drop in sustained write throughput when performing live migration is
significantly higher than in the case of Bonnie++. Both our approach and pvfs-cow drop from 7.7 MB/s
to 3.6 MB/s (55%) and 2.8 MB/s (64%) respectively. This higher drop in performance is explained by the
fact that unlike Bonnie++, which is a purely I/O oriented workload, AsyncWR performs memory-intensive
operations on the data before it is written, which increases the overhead of the memory transfer, ultimately
leading to a lower bandwidth available for storage migration and thus the observed effect. The higher
overhead of memory transfer is noticeable in the case of pvfs-shared too, where we recorded a drop from
2.8 MB/s to 2.66 MB/s. However, compared to the other two approaches this drop is significantly lower.

5.4 Performance of concurrent live migrations

Our next series of experiments aims to evaluate the performance of all three approaches in a highly concurrent
scenario where multiple live migrations are initiated simultaneously. To this end, we use the AsyncWR

benchmark presented in Section 5.3.
The experimental setup is as follows: we fix the number of sources to 50 and gradually increase the

number of destinations from 1 to 50, in steps of 10. On all sources we launch the AsyncWR benchmark,
wait until a warm-up period of 10 seconds has elapsed, and then simultaneously initiate the live migrations
to the destinations. We keep the same configuration as in the previous section: the total amount of data is
fixed at 800 MB, while the amount of RAM available to the VM instance is fixed at 256 MB.

As can be observed in Figure 4(a), with increasing number of live migrations, both our approach and
pvfs-shared keep a constant average migration time, which is only slightly higher for our approach. On the
other hand, pvfs-cow experiences a steady increase in average migration time, which reaches almost 35% for
50 migrations when compared to 1 migration.

In order to explain this finding, it needs to be correlated to the total network traffic, depicted in Fig-
ure 4(b). As can be noticed, pvfs-cow experiences a sharp increase in network traffic, whereas our approach
and pvfs-shared experience a much milder trend. Both our approach and pvfs-cow generate network traffic
exclusively because of the live migrations. Thus, the depicted network traffic is concentrated over very short
periods of time. Since the total system bandwidth (approx. 8 GB/s provided by a Cisco Catalyst switch) is

15

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

A
v
g
.
m

ig
ra

ti
o
n
 t
im

e
 /
 i
n
s
ta

n
c
e
 (

s
)

Number of concurrent migrations

our approach
pvfs cow

pvfs shared

(a) Average migration time

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
n
e
tw

o
rk

 t
ra

ff
ic

 (
G

B
)

Number of concurrent migrations

our approach
pvfs cow

pvfs shared

(b) Network traffic generated during the experiment

Figure 4: Performance of AsyncWR when increasing the number of concurrent live migrations from 1 to 50

insufficient to accommodate the instantaneous needs of pvfs-cow, a slowdown in transfer speed occurs when
increasing the number of live migrations, which ultimately reflects into increased average migration time.

Thanks to earlier transfer of control to the destination, our approach enables new data to be generated
directly at the destination, greatly reducing the network traffic generated by storage migration which enables
it to avoid reaching the system bandwidth limit. Actually, most of the network traffic generated by our
approach is caused by the memory transfer rather than storage migration. This is observable when comparing
our approach to pvfs-shared: If we subtract from the curve corresponding to pvfs-shared the network traffic
generated by interactions with PVFS (which remains constant at around 62 GB/s), we obtain the traffic
generated by the transfers of memory. The resulting curve is very similar to the one corresponding to our
own approach, hinting at low storage migration overhead. Note that although very high, the network traffic
generated by pvfs-shared is evenly distributed throughout the experiment and thus pvfs-shared remains
scalable with respect to migration time (unlike pvfs-cow).

Overall, we conclude that under a concurrent migration scenario, our approach remains highly scalable
both with respect to migration time and network traffic. At 50 concurrent live migrations, it is faster than
pvfs-cow by 4.6x, and generates 2.5x less network traffic. Furthermore, thanks to local storage it consumes
2x less overall network traffic than pvfs-shared.

5.5 Impact on real life applications

Our next series of experiments illustrates the behavior of our proposal in real life. For this purpose we have
chosen CM1, a three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model suitable for
idealized studies of atmospheric phenomena. This application is used to study small-scale processes that
occur in the atmosphere of the Earth, such as hurricanes.

CM1 is representative of a large class of HPC stencil applications that model a phenomenon in time
which can be described by a spatial domain that holds a fixed set of parameters in each point. The problem
is solved iteratively in a distributed fashion by splitting the spatial domain into subdomains, each of which
is managed by a dedicated MPI process. At each iteration, the MPI processes calculate the values for all
points of their subdomain, then exchange the values at the border of their subdomains with each other,
which is a highly network intensive process. After a certain number of iterations was successfully completed,
each MPI process dumps the values of the subdomain it is responsible for into a file on the local storage,
which generates a moderately intensive I/O write pressure. These files are then asynchronously collected
and processed in order to visualize the evolution of the phenomenon in time. For the purpose of this work,

16

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7

C
u

m
u

la
te

d
 m

ig
ra

ti
o

n
 t

im
e

 (
s
)

Number of successive migrations

our approach
pvfs cow

pvfs shared

(a) Cumulative live migration time

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7

T
o

ta
l
n

e
tw

o
rk

 t
ra

ff
ic

 (
G

B
)

Number of successive migrations

our approach
pvfs cow

pvfs shared

(b) Network traffic generated during the
experiments (excluding traffic generated
by CM1 itself)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

In
c
re

a
s
e

 i
n

 a
p

p
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of successive migrations

our approach
pvfs cow

pvfs shared

(c) Increase in application execution time

Figure 5: Performance of CM1 when performing an increasing number of live migrations separated by a one
minute interval

we omitted the visualization part.
The experiment consists in deploying a fixed number of 64 sources, each of which hosts a VM instance

that runs an MPI process of CM1. The memory size of each instance is 1 GB. As input data for CM1, we
have chosen a 3D hurricane that is a version of the Bryan and Rotunno simulations [30]. We split the spatial
domain into 8x8 subdomains, each of which has a size of 200x200. The output frequency is set at 30 seconds
of simulated time, which for this configuration roughly translates to 40 seconds of computation time, during
which approx. 200 MB of data per process are generated. While CM1 is running, we perform an increasing
number of live migrations, starting from 1 to 7. The migrations are initiated successively at an interval of 60
seconds in the following pattern: source 1 is migrated to a target node after 60 seconds, source 2 is migrated
to a target node after 120 seconds, etc. This simulates a highly dynamic datacenter where live migrations
happen frequently.

The cumulated migration time, i.e. the sum of the migration time from all sources is depicted in Fig-
ure 5(a). As expected, all three approaches exhibit a linear trend in growth as the number of successive
migrations increases. Interestingly enough, our approach outperforms pvfs-shared by a small margin, despite
transferring local storage in addition to memory. This effect can be traced back to the lower I/O throughput
sustained by pvfs-shared, which ultimately impacts the memory access pattern in a way that generates more
memory transfer overhead than our own approach. Compared to pvfs-cow, we observe a steady decrease in
cumulated migration time of about 2x.

The network traffic incurred by live migrations is shown in Figure 5(b). Since CM1 generates network
traffic during normal operation, we subtracted this amount from the total observed network traffic in order
to obtain the network traffic that can be traced back to live migration. As can be noticed, a huge gap exists
between pvfs-shared and our approach / pvfs-cow. Thanks to local storage, both approaches generate more
than 90% less network traffic. Since CM1 does not overlap computation with I/O, pvfs-shared and pvfs-cow
perform much closer that in our AsyncWR benchmark. Still, our approach outperforms pvfs-cow by an
overall 15% less network traffic overhead.

Finally, the impact on application performance is shown in Figure 5(c). As can be observed, live migration
introduces a considerable increase in execution time that even surpasses the cumulated migration time,
despite the fact that the application was not interrupted. This shows how sensitive HPC workloads are to
performance degradation (one single slow VM can drag all other VMs down), underling the importance of
minimizing the negative impact of live migration. In this context, our approach generates up to 40% less
increase in total execution time compared to pvfs-shared. This number grows as high as 62% when compared
to pvfs-cow. When further increasing the number of live migrations, an even higher gap can be expected.

17

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

6 Conclusions

Live migration is a key feature of virtualization. It enables a large variety of management tasks (such as
load balancing, offline maintenance, power management and pro-active fault tolerance) that are critical in
the maintenance of large IaaS cloud datacenters. In such datacenters, virtual machines often take advantage
of locally available storage space in order to efficiently handle I/O intensive workloads. However, this poses
a difficult challenge for live migration.

In this paper, we have presented a storage transfer proposal for live migration that is highly efficient
under such circumstances. Unlike other state-of-art approaches that require the storage on the source and
destination to be synchronized before control can be transferred to the destination, we propose a completely
hypervisor-transparent approach that relies on a hybrid active push-prioritized prefetch strategy. This makes
our approach highly resilient to rapid changes of disk state which are exhibited by I/O intensive workloads,
while keeping a maximum of portability with a wide range of hypervisors.

We demonstrated the benefits of our approach through experiments that involve hundreds of nodes,
using both benchmarks and real applications. When pushed to the extreme, such as the live migration of
I/O benchmarks, our approach finished the migration up to 10x faster, consumed up to 5x less bandwidth
and sustained the highest I/O throughput inside the VM instance when compared to other state-of-art
approaches, suffering only a 20% drop in I/O performance due to migration. Furthermore, in a scenario
of concurrent live migrations, it demonstrated excellent scalability with respect to migration time, while
consuming half of the bandwidth required by other approaches. Finally, in a real life scenario that involves
HPC stencil applications, we have shown a 2x decrease in cumulative migration time for successive migrations,
while consuming up to 90% less bandwidth and causing up to 62% less overall increase in execution time.

Based on these results, we plan to explore the problem of storage transfer for live migration more ex-
tensively. In particular, there are two directions we consider. First, we plan to actively involve the cloud
repository in the live migration by offloading some chunks modified on the source during live migration
there. This could potentially decrease the migration time because of less dependencies on the source after
transfer of control. However, if such chunks are modified too often, the source might see a performance drop,
resulting in a trade-off that needs to be further analyzed. Second, we plan to monitor I/O patterns with the
purpose of predicting the best moment to initiate a live migration. Such information could be leveraged by
the cloud middleware to better orchestrate live migrations on the datacenter.

Acknowledgments

This work was supported in part by the Agence Nationale de la Recherche (ANR) under Contract ANR-10-
01-SEGI and the Joint Laboratory for Petascale Computing, an INRIA-UIUC initiative. The experiments
presented in this paper were carried out using the Grid’5000/ALADDIN-G5K experimental testbed, an
initiative of the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and
RENATER and other contributing partners (see http://www.grid5000.fr/).

References

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: towards a cloud
definition,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live
migration of virtual machines,” in NSDI’05: Proceedings of the 2nd Symposium on Networked Systems

Design & Implementation - Volume 2, Boston, USA, 2005, pp. 273–286.

18

http://www.grid5000.fr/

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

[4] R. Nathuji and K. Schwan, “Virtualpower: Coordinated power management in virtualized enterprise
systems,” in SOSP ’07: Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles,
Stevenson, USA, 2007, pp. 265–278.

[5] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive fault tolerance for hpc with xen
virtualization,” in ICS ’07: Proceedings of the 21st Annual International Conference on Supercomputing,
Seattle, USA, 2007, pp. 23–32.

[6] “Amazon Elastic Compute Cloud (EC2),” http://aws.amazon.com/ec2/.

[7] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of virtual machine live migration in
clouds: A performance evaluation,” in CloudCom ’09: Proceedings of the 1st International Conference

on Cloud Computing, Beijing, China, 2009, pp. 254–265.

[8] B. Nicolae, “Blobseer: Towards efficient data storage management for large-scale, distributed systems,”
Ph.D. dissertation, University of Rennes 1, November 2010.

[9] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie, “Blobseer: Next-generation data
management for large scale infrastructures,” J. Parallel Distrib. Comput., vol. 71, pp. 169–184, 2011.

[10] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu, “Going back and forth: Efficient multide-
ployment and multisnapshotting on clouds,” in HPDC ’11: 20th International ACM Symposium on

High-Performance Parallel and Distributed Computing, San José, USA, 2011, pp. 147–158.

[11] M. Gagné, “Cooking with Linux—still searching for the ultimate Linux distro?” Linux J., vol. 2007,
no. 161, p. 9, 2007.

[12] C. Tang, “Fvd: a high-performance virtual machine image format for cloud,” in ATEC ’11: Proc. of

the 2011 USENIX Annual Technical Conference, Portland, USA, 2011, pp. 1–18.

[13] J. G. Hansen and E. Jul, “Scalable virtual machine storage using local disks,” SIGOPS Oper. Syst.

Rev., vol. 44, pp. 71–79, December 2010.

[14] E. Park, B. Egger, and J. Lee, “Fast and space-efficient virtual machine checkpointing,” in VEE ’11:

Proceedings of the 7th International Conference on Virtual Execution Environments, Newport Beach,
USA, 2011, pp. 75–86.

[15] B. Nicolae and F. Cappello, “BlobCR: Efficient checkpoint-restart for hpc applications on iaas clouds
using virtual disk image snapshots,” in SC ’11: 24th International Conference for High Performance

Computing, Networking, Storage and Analysis, Seattle, USA, 2011, in press.

[16] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration for virtual machines,” in ATEC

’05: Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, USA, 2005, pp. 1–25.

[17] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta compression techniques for
efficient live migration of large virtual machines,” in VEE ’11: Proceedings of the 7th International

Conference on Virtual Execution Environments, Newport Beach, USA, 2011, pp. 111–120.

[18] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual machine based on full system trace
and replay,” in HPDC ’09: Proceedings the 18th ACM international symposium on High Performance

Distributed Computing, Garching, Germany, 2009, pp. 101–110.

[19] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration of virtual machines,” SIGOPS

Oper. Syst. Rev., vol. 43, pp. 14–26, July 2009.

19

http://aws.amazon.com/ec2/

Joint INRIA-UIUC Laboratory on PetaScale Computing TR-JLPC-11-11

[20] H. A. Lagar-Cavilla, J. A. Whitney, R. Bryant, P. Patchin, M. Brudno, E. de Lara, S. M. Rumble,
M. Satyanarayanan, and A. Scannell, “Snowflock: Virtual machine cloning as a first-class cloud primi-
tive,” ACM Trans. Comput. Syst., vol. 29, pp. 2:1–2:45, February 2011.

[21] “Qemu/kvm,” http://www.linux-kvm.org.

[22] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-area migration of virtual
machines including local persistent state,” in VEE ’07: Proceedings of the 3rd International Conference

on Virtual Execution Environments, San Diego, USA, 2007, pp. 169–179.

[23] K. Haselhorst, M. Schmidt, R. Schwarzkopf, N. Fallenbeck, and B. Freisleben, “Efficient storage syn-
chronization for live migration in cloud infrastructures,” in PDP ’11: Proceedings of the 19th Euromicro

International Conference on Parallel, Distributed and Network-based Processing, Ayia Napa, Cyprus,
2011, pp. 511–518.

[24] “Amazon Simple Storage Service (S3),” http://aws.amazon.com/s3/.

[25] “File System in UserspacE (FUSE),” http://fuse.sourceforge.net.

[26] B. Nicolae, F. Cappello, and G. Antoniu, “Optimizing multi-deployment on clouds by means of self-
adaptive prefetching,” in Euro-Par ’11: 17th International Euro-Par Conference on Parallel Processing,
Bordeaux, France, 2011, pp. 503–513.

[27] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri, J. Leduc,
N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche,
“Grid’5000: A large scale and highly reconfigurable experimental grid testbed,” Int. J. High Perform.

Comput. Appl., vol. 20, pp. 481–494, November 2006.

[28] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur, “PVFS: A parallel file system for Linux clusters,”
in Proceedings of the 4th Annual Linux Showcase and Conference, Atlanta, USA, 2000, pp. 317–327.

[29] B. Martin, “Using Bonnie++ for filesystem performance benchmarking,” Linux.com, vol. Online edition,
2008.

[30] G. H. Bryan and R. Rotunno, “The maximum intensity of tropical cyclones in axisymmetric numerical
model simulations,” Journal of the American Meteorological Society, vol. 137, pp. 1770–1789, 2009.

20

http://www.linux-kvm.org
http://aws.amazon.com/s3/
http://fuse.sourceforge.net

	Introduction
	The problem of storage transfer during live migration
	Related work
	Our approach
	Design principles
	Architecture
	Zoom on the mirroring module
	Implementation

	Evaluation
	Experimental setup
	Methodology
	Live storage transfer using our approach
	Live storage transfer using pre-copy block migration
	Synchronization through a parallel file system

	Live migration performance of I/O intensive benchmarks
	Performance of concurrent live migrations
	Impact on real life applications

	Conclusions

