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Automati data binning for improved visualdiagnosis of pharmaometri modelsMar Lavielle & Kevin BleakleyINRIA Salay and University Paris�SudSeptember 2011AbstratVisual Preditive Cheks are graphial tools to help deide whethera given model ould have plausibly generated a given set of real data.Typially, time-ourse data is binned into time intervals, then statis-tis are alulated on the real data and data simulated from the model,and represented graphially for eah interval. Poor seletion of bins aneasily lead to inorret model diagnosis. We propose an automati bin-ning strategy that improves reliability of model diagnosis using VisualPreditive Cheks. It is implemented in version 4 of the MONOLIXsoftware.1 IntrodutionModel evaluation is a ruial part of model building. The modeler re-quires appropriate numerial and graphial tools to deide whether a pro-posed model adequately desribes the underlying proess. Due to the om-plexity of pharmaometri models, whih an involve mixed e�ets, non-linearities, ategorial and/or ontinuous ovariates, residual errors, belowthe limit of quanti�ation (BLQ) data, et., diagnostis must be performedextremely arefully to avoid misinterpretation.A Visual Preditive Chek (VPC) is a tool used to ompare the distribu-tion of real observations with that of simulated data [1, 2, 3, 4℄. Summarystatistis of the observed and simulated data are ompared visually. Thesimulated data itself is generated from the mathematial model expeted1



to haraterize the underlying biologial proess. Inter-individual variability(IIV), residual variability and possibly inter-oasion variability (IOV) arealso aounted for in the simulation. Typially, the summary statistis arerelated to the median and two extreme perentiles, for example the 10th and
90th. The hoie of perentiles depends on how muh data is available; lessdata leads to poorer estimation of extreme perentiles.For time-ourse data one an thus plot the relevant median and perentilesof both the real and simulated data with respet to time, and visually om-pare them. If the model is good, we would expet the simulated median andperentiles to be systematially �lose� to the real data ones.Further developments to VPCs have been suggested to improve modeldiagnosis. One strategy is to reate a on�dene interval (CI) for the per-entiles based on the simulated data, and then visually hek how well theperentiles alulated on the real data ��t inside� the interval [5℄. Another,�reverse� strategy, is to reate a CI on the perentiles of the real data bybootstrapping, then see how well the simulated perentiles ��t inside� thisinterval [6℄. However, the bootstrap has limitations when the data is sparse;this may be the ase in the tails of the distributions, leading for exampleto uninformative CIs for the 10th and 90th perentiles. Other interestingdevelopments have been proposed more reently [7, 8, 9℄.When trying to visually ompare real and simulated data, the real dataare usually �rst binned into spei� time intervals. Otherwise, the preditedCIs may exhibit overly �bumpy� patterns, making visual interpretation di�-ult. However, binning leads to two fundamental questions: How should webin? and, What is the e�et of our hoie of binning on the onlusions wedraw from a VPC?A partial reply is that there are two �simple� binning strategies for phar-maometri time-ourse data. Either make the bins equal-width, or makethem equal-size, i.e., eah ontaining the same number of (real) data points.Unfortunately, as we will show further on, the design of typial experimentsmakes both these options inherently poor �representations� of the real data.This may end up hiding the evidene of a poor model hoie, or inorretlyrejeting the orret model when doing a VPC.In this ontribution, we present a binning strategy for pharmaometritime-ourse data that automatially determines a �good� binning, i.e., a well-hosen number of bins and their edges. A modi�ed least-squares riteria anddynami programming determine the edges, and a model-seletion approahselets the number of bins. In pratie, this leads to irregularly sized bins2



that better orrespond to the lusters we see in the data. Consequently, weimprove the math between the real data and the VPC �summary�, leadingto better model diagnosis in pratie. In partiular, we show how this auto-mati binning leads to better VPC diagnosis of orret and inorret modelsompared to the other �simple� binning strategies. The new algorithm isimplemented in version 4.0 of Monolix.2 Methods for VPC onstrution2.1 What are VPCs?VPCs are ommonly-used model evaluation methods for evaluatingstohasti models. They provide a fundamental way to evaluate whethera model orretly desribes given data and deide if the model is likely toaurately predit responses in future subjets. For CI VPCs, several sets ofdata are simulated with the proposed model. Then, the distribution of thesimulated data is ompared with the empirial distribution of the true data.What follows is a detailed desription of how basi CI VPCs are onstrutedin Monolix, also illustrated in Figure 1.a) Observations (yi; 1 ≤ i ≤ n) are measured at times (ti; 1 ≤ i ≤ n).Here, n is the total number of observations aross the whole set ofindividuals, i.e., in a population ontext, data is pooled. Figure 1(a)displays an example of pharmaokineti (PK) data (ti, yi).b) Data is grouped into adjaent time intervals (bins).) To summarize the distribution, empirial perentiles are omputed forthe data in eah bin. Here, the 10th, 50th and 90th perentiles arealulated.d) A large number of datasets are simulated under the model being eval-uated, using the design of the original dataset.e) The data from eah simulated dataset is grouped into the same originalbins.f) The same perentiles are omputed in eah bin for eah of the simulateddatasets. 3



g) CIs for eah perentile are alulated using these simulated perentiles.Here, 90% CIs are omputed.h) Observed perentiles are ompared with these CI.i) Regions where the observed perentiles are not found within the CIsare �lled in with red, in order to help detet misspei�ed models. Asmall number of regions �lled in with red does not neessarily mean amisspei�ed model; indeed, it is expeted, and the modeler must makea deision as to whether there are too many suh regions.Remark: Ideally, we would like to assoiate VPCs with a deision rule basedon a statistial test, to aept or rejet a proposed model. However, the datais not independent in suessive bins, so multiple testing strategies suh as[10℄ are not diretly appliable to quantifying the regions �lled in with red.It was also shown by [11℄ that there was no lear deision rule for on�deneinterval VPCs. Creating a statistial test that leads to a deision rule is aninteresting line of researh, but out of the sope of the paper.2.2 BinningIn general, the distribution of the observations (here, measures of onen-tration) hanges with time. Binning the data, i.e., grouping observations intotime intervals, leads to an approximation of this distribution by a pieewise-onstant distribution (onstant in eah time interval). The hoie of the setof bins is ruial, as binning will always lead to a ertain distortion betweenthe true and estimated distributions. A binning strategy should aim to be�good�, in the following senses:
• for a given number of bins, the loations of the bin edges must behosen so as to minimize heterogeneity of the data in eah bin.
• the number of bins must be arefully hosen, i.e., we require a goodtradeo� between a large number of bins and a large number of observa-tions in eah bin; the true distribution an be aurately approximatedby a pieewise-onstant distribution with a large number of bins, whilea large number of observations in eah bin is required to auratelyestimate this true distribution. 4
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Figure 1: Visual Preditive Chek onstrution: (a) the data, (b) datagrouped into bins, () empirial 10th, 50th and 90th perentiles omputedfor eah bin, (d) several simulated data sets, (e) these simulated data setsgrouped into the same bins, (f) the 10th, 50th and 90th perentiles of eahsimulated data set omputed for eah bin, (g) 90% on�dene intervals om-puted from the perentiles of the simulated data, (h) observed perentilesand 90% on�dene intervals, (i) zones outside of the on�dene intervals are�lled in with red.Remark: We only onsider �basi� CI VPCs as desribed above. Severalauthors proposed di�erent orretions in order to take into aount a largevariability in doses or ovariates [6, 8, 9℄. As suggested in [7℄ and imple-mented in Monolix 4, the same methodology an also be used for a graph-ial representation of the (weighted) residuals and the normalized preditiondistribution error (npde). The proposed binning strategies desribed belowalso applies to these extensions.
5



2.3 Standard binning strategiesThere are various ways to implement binning. The two simplest are:
• equal-width binning: K bins of length (tmax − tmin)/K.
• equal-size binning: K bins, eah with n/K data points. If n is nota multiple of K, we an orret so that eah bin has either [n/K] or

[n/K] + 1 data points.
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Figure 2: (a) theophylline PK data, (b) equal-width binning, () equal-sizebinning.Figure 2 shows these two strategies applied to theophylline PK data.Equal-width binning (Fig. 2(b)) is learly not appropriate when time-pointsare inhomogenously distributed; some bins ontain many data points whereasothers are ompletely empty. Due to this inherent poor adaptability, we donot onsider this method in the following.In other situations, several observations are obtained from di�erent pa-tients at the same time points. This is the ase for example in the warfarinPK data shown in Figure 3(a). This poses obvious problems for equal-sizebinning. We may wonder if the equal-size binning proedure an be modi-�ed to deal with this ase of idential time points, but di�erent number ofmeasurements at eah time point? In Figure 3(b), we see that it is possibleto obtain bins with �similar� amounts of data in eah. Suh a onstrution6
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Figure 3: (a) the warfarin PK data, (b) �approximately� equal-size binning.is of ourse possible �by hand�. Our �rst objetive is to propose a proe-dure whih automatially gives bins with sizes as similar as possible. Let
t1 < t2 < . . . < tM be the M di�erent time points and m1, m2, . . . , mMthe number of measurements taken at eah of these time points. As before,
n =

∑

mj is the total number of data. For a given number K of bins, welook for the bins I = (I1, I2, . . . , IK) that minimize the following riteria:
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. (1)This minimization an be performed using dynami programming [12℄. Thesegmentation displayed Figure 3(b) was obtained by minimizing this riteria
Jsize with K = 8 bins.2.4 A new binning proedure2.4.1 Seletion of bin boundariesSo far, we have shown that as soon as time points are inhomogeneouslydistributed, equal-width binning breaks down, and that the equal-size methodan be relaxed to perform relatively well using similar-sized bins. Often how-ever, we have data where all time points are di�erent and the data is �lus-tered� around various time points (Fig. 4(a), simulated data). In this ase,7



the similar-size solution obtained by minimizing Jsize no longer provides aplausible binning (Fig. 4(b)) as it does not take into aount knowledge ofthe lusters.One way to resolve this more general problem is to interpret binning aslustering or 1D-segmentation, i.e., grouping the n time points t1 ≤ t2 ≤

. . . ≤ tn into K lusters or segments along the time axis. One possible wayto do this is by 1D K-means lustering [13℄. Let us de�ne
Jopt(I) =

K
∑

k=1

∑

j∈Ik

(

tj − tk
)2
, (2)where tk is the empirial mean of the tj's in bin Ik:

tk =
1

nk

∑

j∈Ik

tj ,with nk the number of points in bin k. Then, the K-means solution is foundby minimizing Jopt over all possible segmentations I = (I1, I2, . . . , IK) of thedata into K bins. In pratie, we do this using dynami programming [12℄.Fig. 4() shows the optimal binning obtained by minimizing Jopt.
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Figure 4: (a) simulated data, (b) equal-size binning, () optimal binningobtained by minimizing Jopt. 8



Jopt is a least-squares riteria that supposes that we are dealing with ahomosedasti model, i.e., the data spread (with respet to time) inside eahluster is similar. This is not always the ase, as for example in Fig. 5(a).Here the ombined variability of the �rst two lusters is similar to that ofeah of the third, fourth and �fth, whereas the variability of the sixth lusteris signi�antly greater than all the others. In this ase, the Jopt riteria maynot be optimal; Fig 5(b) shows that it groups the �rst two lusters together,and splits the sixth luster in two. In order to avoid this, we an generalize
Jopt to better take into aount heterosedaity:

Jopt,β(I) =

K
∑

k=1

nk(σ
2
k)

β, (3)where β ∈ (0, 1] and σ2
k is the empirial variane of the tj 's in bin Ik:

σ2
k =

1

nk

∑

j∈Ik

(

tj − tk
)2
.We see that Jopt = Jopt,β when β = 1. Fig. 5(b) shows the binning obtainedwhen β = 1. Then, as β is set loser and loser to 0, more emphasis ismade on seleting bins with di�ering variability. We refer the reader to [14℄for more details that motivate this approah. Fig. 5() shows an intuitivelyoptimal binning, obtained by minimizing Jopt,β when β = 0.2, whih is thedefault value proposed byMonolix 4. Exatly the same binning is obtainedwith any value of β in [0.05 , 0.35].Remark 1: Binning onsists in summarizing the probability distribution ofthe observations (yi) into K probability distributions, one for eah of the

K bins. In other words, if ti belongs to the k-th bin Bk, we approximatethe marginal distribution Pti of the observation yi measured at time ti withthe marginal distribution PBk
estimated using the set of observations foundin the k-th bin. After pooling the data, let us suppose that eah measure-ment yi an be written: yi = f(ti, ψi) + ǫi, where we suppose a ontinuousdata model with f the regression funtion, ψi a vetor of (random) parame-ters and ǫi some residual error. Then, we an approximately rewrite this as

yi ≃ f(tk, ψi) + ǫi + (ti − tk)f
′(tk, ψi) when ti is in bin k, and tk is de�ned asbefore. In order to minimize the distane between the true distribution Ptiand the approximation PBk

, the orretion term (ti − tk)f
′(tk, ψi) an then9
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Figure 5: (a) simulated data, (b) binning minimizing Jopt,β with β = 1, ()binning minimizing Jopt,β with β = 0.2.either be dealt with by taking more into aount the form of f (and thus f ′),or by trying to make (ti − tk) small on average. The latter option is the oneinvoked in our method, whereas supposing prior knowledge of f (the �rstoption) may in the future lead to alternative approahes.Remark 2: Perentiles of PBk
are estimated empirially. The variane ofthese empirial perentiles dereases as the number of observations in bin

Bk inreases. Minimizing simultaneously the bias and the variane of theestimated perentiles requires bins with small width and large size: this isexatly what our lustering approah does.2.4.2 Seletion of the number of binsFor any given number of bins K, the binning that minimizes the riteriaan be alulated. The question then arises as to whih K to hoose. Wehave seen in the previous setion that a small number of bins leads to a poorapproximation (large bias) but a good estimation (small variane) of the es-timated perentiles. On the other hand, a large number of bins will lead toa good approximation (small bias) but a poor estimation (large variane).In order to obtain a good ompromise between these two riteria, we pro-pose here to automatially selet the number of bins using a model seletion10



approah with the following penalized riteria:
U(I, λ) = log (Jopt,β(I))) + λβK(I), (4)where K(I) is the number of bins in binning I. We hoose the I (and thusthe K) that minimizes U(I, λ) for λ �xed. The larger λ is, fewer bins areseleted. Extensive numerial trials suggest the use of λ = 0.3. Modelers ansee for themselves whether this value of λ gives plausible binnings for theirown data, and if neessary, modify the value of λ to penalize to a higher orlesser degree. The β term is inluded in the penalty as it an be shown thatwhen the tj's are uniformly distributed, log (Jopt,β(I))) dereases as a linearfuntion of β.3 ResultsData was simulated under a PK model, then two VPCs were onstruted,one using the orret model that had generated the simulated data, the otherusing an inorret model. The true model is a 1-ompartment oral model with�rst-order absorption and a proportional residual error model. The inorretmodel assumes a zero-order absorption and a onstant residual error model.The data is presented in Fig. 6(a), along with the binning produed usingthe similar-size binning algorithm with 10 bins. We see that the visually-obvious lusters are split unnaturally; parts of several lusters end up in abin to the left, shared with the previous luster, and a bin to the right, sharedwith the next luster. Critially, this has an e�et on the VPCs, as shown inFig. 6(b)-(). In (b), the simulated CIs are generated from the true model forthe simulated data, yet several �red� areas exist where the data quantiles slipoutside the 90% CIs from data simulated from the true model. In partiular,the arti�ial splitting of the data luster just after t = 10h helps providethe largest area of red. Similarly, () shows simulated CIs from the wrongmodel. Again, several red areas exist, but not signi�antly more than in (b).This shows that poorly binned data does not lead to easily di�erentiatingthe right model from the wrong one.In Fig. 7(a), the same simulated data is binned using the proposed binningstrategy with the default β = 0.2 setting in MONOLIX 4.0, and model-seletion for K with λ = 0.3. Eah visually-obvious luster is now ontainedwithin its own bin. In (b), the simulated CIs were again generated from thetrue model. However, unlike before, the VPC indiates, orretly, that we11
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Figure 6: (a) simulated PK data with equal-size binning, (b) VPC obtainedfrom the orret model, () VPC obtained from the wrong model.
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Figure 7: (a) simulated PK data and optimal binning with β = 0.2, (b) VPCobtained from the orret model, () VPC obtained from the wrong model.12



should not rejet the suggested model. In (), it is now learer that we shouldrejet the proposed, inorret, model, due to how often the data quantilesslip outside the simulated 90% CIs.It should be pointed out that in this example, the result is relativelyinsensitive to the hoie of the parameters β and λ: the same binning with10 bins is obtained with any β in [0.01 , 1] and any λ in [0.26 0.53]. The two�rst bins are grouped with λ in [0.53 , 0.77] while a value of λ in [0.17 , 0.26]leads to split the sixth bin into two bins.4 DisussionVisual diagnosti methods are inreasingly used in pharmaometri mod-eling to help determine the quality of a model thought to represent a givenbiologial proess and its relationship to various ovariates. Typially, wehave measured time-ourse data from a ohort of patients undergoing a treat-ment, and we want to see if a given model ould have plausibly generated thereal data we obtain from these patients. One way to do this is to alulatepertinent statistis of the real data and of data simulated from the suggestedmodel, and ompare them visually in some way.Visual Preditive Cheks, or VPCs, are a lass of methods that do justthat, and various implementations and extensions are possible. In eah ofthese methods, the real data are typially binned into spei� time inter-vals, beause otherwise, predited CIs may exhibit overly �bumpy� patterns,making visual interpretation di�ult. Simple, automati binning strategiessuh as putting the same number of data points in eah bin, or having binsof equal length, are not adaptive enough to leanly summarize typial phar-maometri time-ourse data. This is a fundamental problem, and an leadto poor model diagnosis when performing VPCs. We have shown that whenusing suh binning strategies, it is easy to inorretly disard the true model,or aept the wrong model.We have introdued a binning algorithm that improves the �binned� rep-resentation of data before performing VPC diagnoses of a suggested phar-maometri model. It selets variable-width bins that better apture theluster of data around eah time point; lusters visible to the naked eye intu-itively end up in their own bins. The algorithm, implemented in MONOLIX4.0, automatially proposes a solution � no user input is initially required,greatly simplifying the modeler's task. We have shown with a typial PK13



example how this better �binned� summary of the data improves model di-agnosis, whether it be improved likelihood of disarding an inorret model,or orretly aepting the true model.Referenes[1℄ A. Hooker, M.O. Karlsson, and E.N. Jonsson.Visual Preditive Chek (VPC) using XPOSE.http://xpose.soureforge.net/generi_hm/xpose.VPC.html.[2℄ N. Holford. VPC, the visual preditive hek � superiority to stan-dard diagnosti (Rorshah) plots. In PAGE 2005 (http://www. page-meeting.org/?abstrat=738), 2005.[3℄ M.O. Karlsson and R. Savi. Diagnosing model diagnostis. ClinialPharmaology & Therapeutis, 82:17�20, 2007.[4℄ M.O. Karlsson and N. Holford. A tutorial on Visual PreditiveCheks. In PAGE 2008 (http://www.page-meeting.org/pdf_assets/8694-Karlsson_Holford_VPC_Tutorial_hires.pdf), 2008.[5℄ Y. Yano, S.L. Beal, and L.B. Sheiner. Evaluating pharmaoki-neti/pharmaodynami models using the Posterior Preditive Chek.J Pharmaokin Pharmaodynam, 28(2):171�192, 2001.[6℄ T.M. Post, J.I. Freijer, B.A. Ploeger, and M. Danhof. Extensions to theVisual Preditive Chek to failitate model performane evaluation. JPharmaokinet Pharmaodyn, 35:185�02, 2008.[7℄ E. Comets, K. Brendel, and F. Mentré. Model evaluation in nonlinearmixed e�et models, with appliations to pharmaokinetis. Journal dela SFdS, 151:106�128, 2010.[8℄ M. Bergstrand, A.C. Hooker, J.E. Wallin, and M.O. Karlsson.Predition-orreted visual preditive heks for diagnosing nonlinearmixed-e�ets models. AAPS J., 13(2):143�151, 2011.[9℄ D. Wang and S. Zhang. Standardized visual preditive hek versusvisual preditive hek for model evaluation. J. Clin. Pharmaol., 2011.14
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