
HAL Id: hal-00655485
https://hal.inria.fr/hal-00655485

Submitted on 29 Dec 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dealing with arithmetic overflows in the polyhedral
model

Bruno Cuervo Parrino, Julien Narboux, Eric Violard, Nicolas Magaud

To cite this version:
Bruno Cuervo Parrino, Julien Narboux, Eric Violard, Nicolas Magaud. Dealing with arithmetic over-
flows in the polyhedral model. IMPACT 2012 - 2nd International Workshop on Polyhedral Compilation
Techniques, Louis-Noel Pouchet, Jan 2012, Paris, France. �hal-00655485�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49933438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00655485
https://hal.archives-ouvertes.fr

Dealing with arithmetic overflows in the polyhedral model

Bruno Cuervo Parrino
INRIA Camus

Universidad de Buenos Aires
bcuervo@dc.uba.ar

Julien Narboux
INRIA Camus

Université de Strasbourg
CNRS UMR 7005

Julien.Narboux@inria.fr
Eric Violard
INRIA Camus

Université de Strasbourg
CNRS UMR 7005

Eric.Violard@inria.fr

Nicolas Magaud
INRIA Camus

Université de Strasbourg
CNRS UMR 7005

Nicolas.Magaud@inria.fr

ABSTRACT
The polyhedral model provides techniques to optimize Static
Control Programs (SCoP) using some complex transforma-
tions which improve data-locality and which can exhibit par-
allelism. These advanced transformations are now available
in both GCC and LLVM. In this paper, we focus on the cor-
rectness of these transformations and in particular on the
problem of integer overflows. Indeed, the strength of the
polyhedral model is to produce an abstract mathematical
representation of a loop nest which allows high-level trans-
formations. But this abstract representation is valid only
when we ignore the fact that our integers are only machine
integers. In this paper, we present a method to deal with
this problem of mismatch between the mathematical and
concrete representations of loop nests. We assume the exis-
tence of polyhedral optimization transformations which are
proved to be correct in a world without overflows and we
provide a self-verifying compilation function. Rather than
verifying the correctness of this function, we use an approach
based on a validator, which is a tool that is run by the com-
piler after the transformation itself and which confirms that
the code produced is equivalent to the original code. As we
aim at the formal proof of the validator we implement this
validator using the Coq proof assistant as a programming
language [4].

Keywords
polyhedral model, arithmetic overflows, validator

1. INTRODUCTION
The polyhedral model provides techniques to optimize pro-
grams using some complex transformations which improve
data-locality and which can exhibit parallelism. Thanks to
the Graphite [14] and Polly [5] projects, these advanced
transformations are now available in the GCC and LLVM

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

mainstreams compilers. These program transformations are
very complex and hence it is hard to guarantee their cor-
rectness.

Our goal in collaboration with Alexandre Pilkiwiecz, cur-
rently at INRIA Rocquencourt, is to prove formally the cor-
rectness of a compiler based on the polyhedral model and
to integrate it in the Compcert compiler [7, 8]. Compcert
is a compiler for a large subset of the C language which has
been proved to be correct using the Coq proof assistant [4].

As the polyhedral transformations apply to affine loop nests
in a mathematical framework where each loop variable is
considered to be a mathematical integer, and not a machine
integer, we must therefore warrant that no arithmetic over-
flow occurs when the considered loop nests are executed.

There are in fact two problems concerning arithmetic over-
flows and the polyhedral model:

1. The representation as a polyhedral is incorrect if the
original program is performing some overflows.

2. The representation of a polyhedral by a loop using
machine integers is incorrect if these integers are not
large enough.

In this paper, we focus on these two problems. We as-
sume the existence of an optimization pass in the polyhedral
model, which is proved correct in a world without arithmetic
overflows. First, we propose a solution to produce a compiler
which does not ignore the problem of overflows. Second, we
propose a validation algorithm for our transformation about
overflows. The validator is a function which after every run
of the compiler checks a posteriori that the transformation is
correct. As we aim at a formal proof using the Coq proof as-
sistant, we implemented our validation algorithm using Coq,
although the correctness of the validator is not yet proven.

The remainder of this paper is organized as follows: first
we describe the related work, then we propose a solution to
deal with the overflows in the polyhedral model, and before
describing our solution more precisely we provide a small
domain specific language. Then we describe our translation

validation algorithm. Finally we compare our approach to
another approach based on an extension of the polyhedral
model.

2. RELATED WORK

Arithmetic overflows in Polly. In [5], Tobias Grosser pre-
sents the solution he adopted in the implementation of Polly.
To solve the first problem, they only deal with loops using
signed integers for the array subscripts. This is correct be-
cause the C standard states that the behavior of the program
is undefined if an overflow occurs during a computation using
signed integers. But this fact about the C standard does not
correspond to the concrete usage of the language as shown
by the existence of the options -fwrapv and -no-strict-

overflow of GCC. In particular, having a defined semantics
can be useful when writing code to detect overflows. For this
reason, Xavier Leroy has chosen to give a precise semantics
to signed integer overflows in Compcert (two’s complement
wrapping). Hence we cannot use this assumption. To solve
the second problem “Polly uses always 64 bit induction vari-
ables and signed calculations. This is correct as long as [...],
these variables have at most 64 bit size and the schedules of
the statements do not produce any larger value”. Even if we
believe that “However, in practical programs we have not yet
seen such an overflow as most loops do not get close to the
maximal value possible in a 64 bit counter”, we cannot use
this argument in the context of Compcert because this would
require to change the statement of the correctness theorem
to restrict it to some class of “practical programs” and then
the user of the compiler would have to wonder if his program
is in this class or not. Moreover overflows are a source of
bugs in critical software, as shown for example by the well-
known bug of Ariane flight 501 [9]. Tobias Grosser states
that “we can conveniently derive the minimal type needed
to ensure that no unforeseen integer overflows occur”. We
believe that such type does not always exists as the original
program may be already using the largest integer type, and
hence we need to find another solution.

Translation validation. The idea of translation validation
was introduced by Pnueli et al. [11]. The use of a valida-
tor to check the correctness of the output of a compiler has
been applied to GCC [10] and SGI Pro-64 [6]. Jean-Baptiste
Tristan has proven some validation algorithms using Coq to
certify the output of some optimizations within the Com-
pcert compiler [15, 16, 17, 18]. A validator for the polyhe-
dral model has been proposed by Zuck et al. [21], but this
validator ignores the problem of arithmetic overflows.

3. A SOLUTION
We cannot use static analysis to detect the presence or ab-
sence of overflows because the SCoPs usually contains pa-
rameters whose values are unknown at compile time. Hence,
we propose to use a dynamic approach. For efficiency rea-
son we can neither perform computations using arbitrary
precision nor check the presence of overflows at every com-
putation step. Our solution consists in generating a formula
which captures the presence of overflows in the SCoP, then
asking to an external tool [19] for a condition about the pa-
rameters of SCoP which implies the absence of overflows.

Finally we check this condition dynamically. If the condi-
tion holds we can use the optimized version of the SCoP. If
it does not, in order to preserve the semantics of the SCoP
we keep the original version.

If b then opt else org

opt

org

compile

validator

oracle

polyhedral

optimizer

Figure 1: Overview of the approach

Figure 1 illustrates our solution for overcoming the problem
of arithmetic overflows and for ensuring the correctness of
polyhedral transformations. In addition to the polyhedral
optimizer, our compiler uses an oracle and a validator. On
the figure, we denote using a grayed-out box the Ocaml code.
The correctness of the approach does not depend on the
correctness of this piece of code.

The oracle returns a boolean expression (b) which denotes a
sufficient condition to ensure that both the original program
(org) and the optimized program (opt) do not produce any
overflow.

Our transformation then builds a program that we shall call
the resulting program in the rest of the paper. This resulting
program is of the shape “If b then opt else org”. It dynam-
ically evaluates the boolean expression b and executes org,
i.e. the original program, if the condition is not fulfilled or
opt, i.e. the optimized program, if the condition holds. The
resulting program is then transmitted to the validator.

The validator is a function which takes the original program
(org), the optimized program (opt) and the resulting pro-
gram, and returns a boolean: if it returns true, then the
resulting program is equivalent to the original one and our
compiler therefore produces the resulting program.

The compile function executes the polyhedral optimizer. If
the polyhedral optimizer does not fail (6= None) it executes
the oracle. Finally it runs the validator on the output and
returns the resulting program only if the validator confirms
the equivalence otherwise it returns None.

Definition compile org :=

match (polyhedral_optim org) with

None => None

| Some opt =>

let new := If (oracle org opt) opt org in

if validator org opt new then

Some new else None

end.

In this work we are interested in ensuring that no arithmetic
overflow occurs while transforming loops. Because of that,
we assume the existence of a polyhedral optimizer proven
correct using integers of arbitrary size, which is the focus of
Alexandre Pilkiewicz PhD. This polyhedral optimizer also
uses an approach based on a posteriori validation using off-
the-shelf polyhedral tools such as Pluto [3], CLooG [1], ISL
[19], PPL [13], PolyLib [12].

4. A DOMAIN SPECIFIC LANGUAGE
Here we introduce the language that we will consider. Pro-
grams in this language are affine loop nests to which the
polytope model is applicable. It is a “toy” language whose
main purpose is to reason about arithmetic overflows in poly-
hedral transformations. For the sake of simplicity we omit
some functions (modulo, min, max) which would be required
in a more realistic polyhedral language, but these functions
do not impact the problem of overflows. Moreover, we as-
sume that the lower bound of a loop is 0 and the loop counter
increment is always 1.

4.1 Syntax
Our base language has the following syntax:

l ::= n | x | n ∗ l | l + l | l − l
e ::= n | x | T [l] | e+ e | e− e | e ∗ e | e/e
i ::= skip | T [l] := e | i; i | Loop x from 0 to l do i done

In this language, l represents linear index expressions, e ex-
pressions with integer values, and i the instructions of the
language we consider. In this grammar x stands for variables
and n for integers.

We also add the possibility to enclose our SCoPs inside a
conditional instruction:

b ::= true | false | l ≤ l | b and b | b or b
j ::= If b then i else i

The construct“If b then i else i”allows to describe programs
which branch depending on a condition. This construction
only appears in the resulting program where the condition
is the one ensuring computations do not trigger overflows.

4.2 Semantics
In this section we present a structural operational semantics
for our language allowing formal analysis of the behaviour of
programs. We aim at proving that the original program and
the resulting one behave the same way. This operational
semantics has been formalized using Coq.

In fact, we give two semantics for our language: a “con-
crete” one where index variables are machine integers, i.e.,
32-bit signed integers represented using two’s complement,
and an “abstract” one where index variables are mathemat-
ical integers. For the sake of concision, our semantics is

parametrized by ι which can take two values o or no to refer
to the concrete (with overflows) or the abstract semantics
(without overflows) respectively.

Linear expressions. The semantics of linear expressions is
summarized in Fig. 3, where +o denotes the addition modulo
and +no denotes the standard addition over mathematical
integers. To evaluate a linear expression we must know what
values the variables stand for. Therefore the semantics is
defined using an environment which is a function denoted
by L from the set of variables to the set of values. The
judgment L `ι e −→ n means that the linear expression e
evaluates to the integer n in environment L.

Expressions. The semantics for arithmetic expressions is
described in Fig. 4. We assume that we have only the four
usual arithmetic expressions, in a more realistic language
we could add calls to some pure, side-effect free functions.
The semantics is defined using an environment E which is
a pair L,T , where T is a function which maps array names
to tuples of values. Note that as the polyhedral optimiza-
tion does not change the actual computations performed by
the code but only their order, the non linear arithmetic
expressions could contain any side-effect free function. The
absence or presence of overflow in the non linear arith-
metic expressions is not important for our study, hence in
our toy language, we just assume the standard arithmetic
expressions with overflows (+ - * /).

L `ι n −→ n
L(x) = n

L `ι x −→ n

L `ι l1 −→ n1 L `ι l2 −→ n2

L `ι l1 + l2 −→ n1 +ι n2

L `ι l1 −→ n1 L `ι l2 −→ n2

L `ι l1 − l2 −→ n1 −ι n2

L `ι l −→ m

L `ι n ∗ l −→ n ×ι m

Figure 3: Semantics for Index (linear) Expressions

Instructions. The semantics for instructions is defined as
usual (see Fig. 2). Note that we use two constructs for
loops. The constructor Loop defines loops in our language.
In order to express its semantics, we have an alternate in-
struction Loop’, which corresponds to the loop after its ini-
tialization. We assume that loops are always incremented by
one. To formalize the semantics we introduced some nota-
tion for modifying environments. For instance the notation
L[x 7→ v] stands for the environment mapping x to v and all
other variables y to L(y).

Additional constructs for dealing with overflows. Deal-
ing with overflows requires to add a conditional instruction
to our language. Indeed, depending on some preconditions

E = L, T L `ι l −→ i 0 ≤ i < n T (T) = v0v1 · · · vn−1 L, T `ι e −→ v

E `ι T [l] := e→ (skip , L, T [T 7→ v0v1 · · · vi−1vvi+1 · · · vn−1])

E `ι skip; i→ (i , E)
E `ι i1→ (i′1 , E

′)

E `ι i1; i2→ (i′1; i2 , E
′)

E = L, T L(x) = m m ≥ n
E `ι Loop’ x from 0 to n do i done→ (skip , E)

E = L, T L(x) = m m < n

E `ι Loop’ x from 0 to n do i done→ (i; Loop’ x from 0 to n do i done , L[x 7→ m+ 1], T)

E = L, T L `ι l −→ n

E `ι Loop x from 0 to l do i done→ (Loop’ x from 0 to n do i done , L[x 7→ −1], T)

Figure 2: Semantics for Instructions

E `ι n −→ n
E = L, T L(x) = n

E `ι x −→ n

E `ι e1 −→ n1 E `ι e2 −→ n2

E `ι e1 + e2 −→ n1 +o n2

E `ι e1 −→ n1 E `ι e2 −→ n2

E `ι e1 − e2 −→ n1 −o n2

E `ι e1 −→ n1 E `ι e2 −→ n2

E `ι e1 ∗ e2 −→ n1×on2

E `ι e1 −→ n1 E `ι e2 −→ n2 n2 6= 0

E `ι e1/e2 −→ n1/on2

E = L, T T (T) = v0 · · · vn−1 E `ι l −→ i 0 ≤ i < n

E `ι T [l] −→ vi

Figure 4: Semantics for Arithmetic Expressions

which can be statically determined but only dynamically
checked, we should use the optimized program or stick to
the original one. For the evaluation of these preconditions,
we use the concrete semantics which may produce overflows
(see Fig. 5). We will see in section 6 that for the correctness
of our approach we will need to refine this definition. The
semantics for conditional instructions is given in Fig. 6.

5. THE ORACLE
We also have an oracle that given the original and optimized
programs, returns a sufficient condition to ensure that no
overflow occurs. To build this oracle we first define a func-
tion which captures the presence of overflows in the SCoP.
We call this function cond_overflow and define it by induc-

L ` true −→ true L ` false −→ false

L `o l1 −→ n1 L `o l2 −→ n2 n1 ≤ n2

L ` l1 ≤ l2 −→ true

L `o l1 −→ n1 L `o l2 −→ n2 n1 > n2

L ` l1 ≤ l2 −→ false

L ` b −→ v L ` b′ −→ v′

L ` b and b′ −→ v ∧ v′

L ` b −→ v L ` b′ −→ v′

L ` b or b′ −→ v ∨ v′

Figure 5: Semantics for Boolean Expressions

E = L, T L ` b −→ true

E `o If b then i else i′→ (i , L, T)

E = L, T L ` b −→ false

E `o If b then i else i′→ (i′ , L, T)

Figure 6: Semantics for Conditional Instructions

tion on the structure of programs:

cond_overflow(skip) = true
cond_overflow(T (l) := e) =∧

expr∈subexpr(l)∪lsubexpr(e) (MININT ≤ expr ≤ MAXINT)

cond_overflow(i1; i2) =
cond_overflow(i1) ∧ cond_overflow(i2)

cond_overflow(Loop x from 0 to l do i done) =
0 ≤ x ≤ l⇒ cond_overflow(i) ∧∧
expr∈subexpr(l) (MININT ≤ expr ≤ MAXINT)

subexpr(l) denotes the set of all the sub-expressions of the
linear expression l. lsubexpr(e) denotes the set of all the
sub-expressions of the linear expression which appear in the

array accesses of e.

Note that in the context of certified compilers, we can anal-
yse the overflows in the source language. If the compiler per-
forms optimizations which do not preserve the structure of
subexpressions and the absence/presence of overflows, then
the analysis should be carried out on the machine code.

The oracle is implemented using Ocaml and it makes use of
the iscc calculator that offers an interface to the barvinok
library [20]. This library allows amongst other things to
simplify a set of linear inequalities and also to count the
number of elements in parametric affine sets.

Example. Let us consider the following program written in
our domain specific language:

p :: Loop i from 0 to n do

Loop j from 0 to m do

C[i+j] = C[i+j] + A[i]*B[j]

done

done

We look for a boolean expression involving only the param-
eters (i.e. n and m) and denoting a sufficient condition to
ensure that no overflow occurs during the execution of pro-
gram p. To construct this expression, first, we compute the
expression cond_overflow(p), which denotes the condition
of absence of overflow for this SCoP:

cond_overflow(p) = (0 ≤ i ≤ n =⇒ (0 ≤ j ≤ m =⇒
−231 ≤ i+ j ≤ 231 − 1)).

From this expression, we then build a query for the iscc

tool. The query expresses the set of values (n,m) for which
no overflow occurs:

{(n,m) | ∀i.∀j.(0 ≤ i ≤ n =⇒
(0 ≤ j ≤ m =⇒ −231 ≤ i+ j ≤ 231 − 1))}

This formula has to be rewritten in order to use only oper-
ations that are allowed by iscc. It is rewritten as:

{(n,m) | ¬(∃i.∃j.(0 ≤ i ≤ n ∧ (0 ≤ j ≤ m∧
(−231 > i+ j ∨ i+ j > 231 − 1))))} =

{(n,m) | true} − {(n,m) | ∃i.∃j.
(0 ≤ i ≤ n∧(0 ≤ j ≤ m∧(−231 > i+j∨i+j > 231−1)))}

Here is the query that we send to iscc:

{ [n,m] } - { [n,m] : exists i : exists j :

0 <= i <= n and 0 <= j <= m and

(-2147483648 > i+j or i+j > 2147483647) };

And here is the result of the query:

{ [n, m] : m <= -1 or (m >= 0 and n <= -1) or

(m >= 0 and n >= 0 and m <= 2147483647 - n) }

Finally, we obtain the boolean expression:

m ≤ −1 or (0 ≤ m and n ≤ −1) or

(0 ≤ m and 0 ≤ n and m ≤ 2147483647− n)

Note that this formula expresses the fact that there is no
overflow if we don’t even enter into the inner or outer loop
(m ≤ −1 or n ≤ −1). Note also that the formulas we
obtain from the iscc tool are linear expressions w.r.t the
parameters.

6. THE VALIDATOR
As we aim at a formal proof using the Coq proof assistant, we
implemented our validation algorithm using Coq and use the
Coq extraction mechanism to generate an Ocaml program.

Our validator takes three programs as input: the original
program (org), the optimized program (opt) which is ob-
tained from org by applying the polyhedral optimizer (as-
suming no overflow occurs in org) and the resulting program
(new). If the validator returns true, then it means that the
resulting program is equivalent to the original one. If the
validator returns false, then it means that we do not know.
Here is the definition of our validator in Coq:

Definition validator

(org: instr) (opt: instr) (new: instrgen) :=

match new with

If b p q =>

(instr_eq p opt) &&

(instr_eq q org) &&

disjoint_lists (loopvarlist p) (bvars b) &&

disjoint_lists (loopvarlist q) (bvars b) &&

overflow_checker p b &&

overflow_checker q b

| Instr st => false

end.

Our validation algorithm is the following one: we first look at
the shape of the resulting program. The resulting program
must have the shape “If b then p else q” where p is equal
to opt (instr_eq p opt) and q is equal to org (instr_eq
q org). Moreover, we verify that the boolean expression b
involves only parameters, i.e., it does not contain any loop
variable. Last, we check that b is a sufficient condition to
ensure that no overflow occurs during the execution of pro-
gram p and program q.

Remark Here we assume every variable is of type 32-bit
signed integer. Note that in a more realistic language, the
function cond_overflow should be parametrized by the real
type of the involved variables. The original program may use
signed and unsigned variables. The type of index variables
of the original program may be different from the ones of
the optimized version. Depending on the polyhedral trans-
formation the type of the index variables may (should) be
64-bit signed integers, in order to reduce the chance of over-
flows. Note also that the overflow conditions may reduce to
true if it can be determined statically that no overflow can
occur.

validator

optorg new

b => cond_overflow(p)

prf

witness_gen

micromega

(ZTautoChecker)

validator

Figure 7: Two nested validators

The function overflow_checker(p, b) calls the internal Coq
function of the tactic micromega [2] to check whether the
condition b⇒ cond_overflow(p) holds. Note that this Coq
tactic is also based on an approach using a validator. Thus
we have two nested validators as shown in Fig.7 which fo-
cuses on the validator box of Fig.1. As in Fig.1, we de-
note by a grayed-out box the Ocaml code which does not
belong to the trusted code base. The proof of the for-
mula b⇒ cond_overflow(p) is generated by an external tool
(witness_gen) and the Coq function ZTautoChecker checks
that the external proof is correct.

Definition overflow_checker p b :=

let f := Tauto.I (bformula_of_bexpr b)

(condOverflow_to_bformula p) in

let w := witness_gen f in

match w with

None => false

| Some prf => ZTautoChecker f prf end.

In this code written in Coq, the variable f represents the
formula b⇒ cond_overflow(p) in the internal datatype of
micromega.

Dealing with overflow in the evaluation of condition
for absence of overflow. The micromega checker also as-
sumes that expressions are considered in a mathematical
world. But during the evaluation of b an overflow may
also occur. In this case, we are not sure that b holds and
then we cannot conclude from b ⇒ cond_overflow(p) that
cond_overflow(p). To deal with this problem, we could as-
sume that b is evaluated in a world without arithmetic over-
flows using an arbitrary precision library. This assumption
could be implemented only using a library such as GNU
MP for example. In the context of a compiler, especially
Compcert this would require to prove formally an arbitrary
precision library within the compiler. We choose a simpler
solution which consists in checking if the evaluation of b
produces an overflow and executing the original program in

L `oc n −→ (n, true)
L(x) = n

L `oc x −→ (n, true)

L `oc l1 −→ (n1, e1) L `oc l2 −→ (n2, e2)

L `oc l1 + l2 −→ (n1 +o n2, (OK(n1 +no n2) ∧ e1 ∧ e2))

L `oc l1 −→ (n1, e1) L `oc l2 −→ (n2, e2)

L `oc l1 − l2 −→ (n1 −o n2, (OK(n1 −no n2) ∧ e1 ∧ e2))

L `oc l −→ (m, e)

L `oc n ∗ l −→ (n×o m, (OK(n×no m) ∧ e))

where OK(p) = −231 ≤ p ≤ 231 − 1

Figure 8: Semantics for Index (linear) Expressions
with Overflow Checking

this case. To state this we need to change the operational
semantics associated with boolean expressions of our lan-
guage. The new semantics is presented in Figure 9. We
introduce a judgment L `oc l −→ (n, e) for the evaluation
of linear expression with overflow checking (see Figure 8). In
this judgment, e is a boolean which is true if the evaluation
of the linear expression l does not produce any overflow and
false otherwise. To implement this judgment we would need
either inline assembly to obtain the processor flag if there is
one, or using small built-in functions to get the same effect.
We change the evaluation of the boolean expression: it re-
turns false if an overflow occurred during the evaluation and
returns the boolean value otherwise.

Soundness of the validation algorithm. To state the sound-
ness of the validation algorithm we need to define program
equivalence. As our SCoP denotes only programs which ter-
minate we can use the following definition using the reflexive-
transitive closure of the smallstep semantics:

Definition 6.1 (Program equivalence). p ≡ι p′ iff
for all environments E and E′,

E `ι p→∗ (skip , E′)⇔ E `ι p′→∗ (skip , E′).

Assuming that for any program p, p ≡no polyhedral optim(p)
we make the following conjecture which states the soundness
property of our validator:

Conjecture 6.2 (Validator soundness).
if p ≡no p′ and validate(p, p′, new) = true, then p ≡o
new

7. DISCUSSION
As pointed by Tobias Grosser and Sven Verdoolaege, there
are also some polyhedral libraries such as ISL which imple-
ment an extension of the polyhedral model which can deal

L ` true −→ true L ` false −→ false

L `oc l1 −→ (n1, true) L `oc l2 −→ (n2, true) n1 ≤ n2

L ` l1 ≤ l2 −→ true

L `oc l1 −→ (n1, e1) L `oc l2 −→ (n2, e2) ¬e1 ∨ ¬e2 ∨ (n1 > n2)

L ` l1 ≤ l2 −→ false

L ` b −→ v L ` b′ −→ v′

L ` b and b′ −→ v ∧ v′
L ` b −→ v L ` b′ −→ v′

L ` b or b′ −→ v ∨ v′

Figure 9: Semantics for Boolean Expressions with Overflow Checking

with piecewise affine functions. These extensions are suffi-
cient to model the overflow behavior of signed and unsigned
integer computations. Using such a library it is possible to
generate optimized versions of the original program which
are correct even in the presence of overflows. It means that
the semantics of the loop is defined even for the values of
the parameters which produce overflows. For the values of
the parameters which do not produce overflow we think this
approach would generate a code similar to our approach,
but it would also generate code for the value of parameters
which do produce overflows. It the optimizer tries to gen-
erate the same code for the two cases this may block some
optimizations.

8. CONCLUSION AND FUTURE WORK
We proposed a way to preserve the polyhedral representa-
tion of loop nests from correctness bugs involving arithmetic
overflows. We believe that our approach does not reduce the
efficiency of the polyhedral optimizations because it adds a
simple boolean test per SCoP. We also proposed a validator
to ensure after every run of the compilation pass that the
transformation is correct.

Our next goal is to prove formally using the Coq proof as-
sistant the correctness of the validator. In the future we
should extend our approach to dynamically check the ab-
sence of pointer alias.

Acknowledgments. We would like to thank our six review-
ers for their numerous remarks which helped improving this
paper. We also would like to thank Albert Cohen, Tobias
Grosser and Sven Vooderlaege for their very precise com-
ments about this work.

9. REFERENCES
[1] C. Bastoul. Generating loops for scanning polyhedra.

Technical Report 2002/23, PRiSM, Versailles
University, 2002. Related to the CLooG tool.

[2] F. Besson. Fast reflexive arithmetic tactics: the linear
case and beyond. In In Types for Proofs and Programs
(Types’06), volume 4502 of LNCS, pages 48–62.
Springer, 2007.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan. P.: Pluto: A practical and fully
automatic polyhedral program optimization system. In
In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and

Implementation (PLDI 08), pages 101–113, New York,
NY, USA, 2008. ACM.

[4] Coq development team, The. The Coq Proof Assistant
Reference Manual, Version 8.3. LogiCal Project, 2011.

[5] T. Grosser. Enabling polyhedral optimizations in llvm.
Master’s thesis, University of Passau, April 2011.

[6] A. Kanade, A. Sanyal, and U. P. Khedker. A PVS
Based Framework for Validating Compiler
Optimizations. In SEFM, pages 108–117. IEEE
Computer Society, 2006.

[7] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, July 2009.

[8] X. Leroy. The Compcert verified compiler, software
and commented proof. Available at
http://compcert.inria.fr/, Jan. 2010.

[9] J. L. Lions. Ariane 5 - flight 501 failure. Technical
report, 1996. http://en.wikisource.org/wiki/
Ariane_501_Inquiry_Board_report.

[10] G. C. Necula. Translation validation for an optimizing
compiler. SIGPLAN Not., 35:83–94, May 2000.

[11] A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In Proceedings of the 4th International
Conference on Tools and Algorithms for Construction
and Analysis of Systems, pages 151–166, London, UK,
1998. Springer-Verlag.

[12] Polylib. http://icps.u-strasbg.fr/PolyLib.

[13] PPL: The parma polyhedra library.
http://www.cs.unipr.it/ppl/.

[14] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li,
T. Grosser, H. Jagasia, R. Ladelsky, S. Pop, J. Sjödin,
and R. Upadrasta. GRAPHITE Two Years After:
First Lessons Learned From Real-World Polyhedral
Compilation. In GCC Research Opportunities
Workshop (GROW’10), Pisa, Italy, Jan. 2010.

[15] J.-B. Tristan. Formal verification of translation
validators. These, Université Paris-Diderot - Paris VII,
Nov. 2009.

[16] J.-B. Tristan and X. Leroy. Formal verification of
translation validators: A case study on instruction
scheduling optimizations. In 35th ACM Symposium on
Principles of Programming Languages (POPL 2008),
pages 17–27, San Francisco, United States, 2008.
ACM, ACM Press.

[17] J.-B. Tristan and X. Leroy. Verified Validation of Lazy
Code Motion. In ACM SIGPLAN conference on
Programming Language Design and Implementation

(PLDI), pages 316–326, Dublin, Ireland, June 2009.
ACM.

[18] J.-B. Tristan and X. Leroy. A simple, verified validator
for software pipelining. In ACM, editor, 37th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain,
Jan. 2010.

[19] S. Verdoolaege. barvinok: User Guide, Sept. 2011.
http://www.cs.kuleuven.be/cgi-bin/dtai/barvinok.cgi.

[20] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric
polytopes using Barvinok’s rational functions.
Algorithmica, 48(1):37–66, June 2007.

[21] L. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu.
Translation and run-time validation of optimized code.
In In 2nd Workshop on Runtime Verification, pages
180–201, 2002.

