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[1] This paper addresses the problem of calibrating an ensemble for uncertainty
estimation. The calibration method involves (1) a large, automatically generated ensemble,
(2) an ensemble score such as the variance of a rank histogram, and (3) the selection based
on a combinatorial algorithm of a sub-ensemble that minimizes the ensemble score.

The ensemble scores are the Brier score (for probabilistic forecasts), or derived from the
rank histogram or the reliability diagram. These scores allow us to measure the quality of
an uncertainty estimation, and the reliability and the resolution of an ensemble. The
ensemble is generated on the Polyphemus modeling platform so that the uncertainties in
the models’ formulation and their input data can be taken into account. A 101-member
ensemble of ground-ozone simulations is generated with full chemistry-transport models

run across Europe during the year 2001. This ensemble is evaluated with the
aforementioned scores. Several ensemble calibrations are carried out with the different
ensemble scores. The calibration makes it possible to build 20- to 30-member ensembles
which greatly improves the ensemble scores. The calibrations essentially improve the
reliability, while the resolution remains unchanged. The spatial validity of the uncertainty
maps is ensured by cross validation. The impact of the number of observations and
observation errors is also addressed. Finally, the calibrated ensembles are able to produce
accurate probabilistic forecasts and to forecast the uncertainties, even though these

uncertainties are found to be strongly time-dependent.

Citation: Garaud, D., and V. Mallet (2011), Automatic calibration of an ensemble for uncertainty estimation and probabilistic
forecast: Application to air quality, J. Geophys. Res., 116, D19304, doi:10.1029/2011JD015780.

1. Introduction

[2] Air quality simulation involves complex numerical
models that rely on large amounts of data from different
sources. Most of the input data is provided with high
uncertainties in their time evolution, spatial distribution and
even average values. Chemistry-transport models are
themselves subject to uncertainties in both their physical
formulation and their numerical formulation. The multi-
scale nature of the problem leads to the introduction of
subgrid parameterizations that are an important source of
errors. The dimensionality of the numerical system, involving
up to hundreds of pollutants in a three-dimensional mesh,
is much higher than the number of observations, which also
leads to high uncertainties in non-observed variables.

[3] Inorder to quantify the uncertainties, classical approaches
rely on Monte Carlo simulations. The input fields and
parameters of the chemistry-transport model are viewed as
random vectors or random variables. These are sampled
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Copyright 2011 by the American Geophysical Union.
0148-0227/11/2011JD015780

according to their assumed probability distribution, and a
model run is carried out with each element of the sample.
The set of model outputs constitutes a sample of the prob-
ability distribution function of the output concentrations.
Typically, the empirical standard deviation of the output
concentrations measures the simulations uncertainties. This
approach has been applied for air quality simulations
[Hanna et al., 1998, 2001; Beekmann and Derognat, 2003].

[4] Another approach is the use of models which differ by
their numerical formulation or physical formulation. The
models can originate from different research groups [e.g.,
van Loon et al., 2007; Delle Monache and Stull, 2003;
McKeen et al., 2005; Vautard et al., 2009] or from the same
modular platform [Mallet and Sportisse, 2006]. In addition
to this multimodel strategy, the input data can also be per-
turbed so that all uncertain sources are taken into account. It
is also possible to choose between different emission sce-
narios and meteorological forecasts as Delle Monache et al.
[2006a, 2006b] did. Pinder et al. [2009] split the uncertainty
into a structural uncertainty due to the weaknesses in the
physical formulation and a parametric uncertainty due to the
errors in the input data. Garaud and Mallet [2010] built
the ensemble with several models randomly generated within
the same platform and with perturbed input data.
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[s] Whatever the strategy for the generation of an
ensemble, several assumptions are made by the modelers.
One needs to associate probability density functions to every
input field or parameter to be perturbed. Under the usual
assumption that the distribution of a field or parameter is
either normal—or log-normal, one has to estimate a median
and a standard deviation. For a field, providing a standard
deviation is complex as it should take into account spatial
correlations, and possibly time correlations. As for multi-
model ensembles, one has little control over the composition
of the models when they are provided by different teams.
When the models are derived within the same platform, the
key points are the amount of choice in the generation of an
individual model, and the probability associated to each
choice. Once all the assumptions and choices have been
made, it is technically possible to generate an ensemble.
However, it is quite difficult to determine the proper medians
and standard deviations of the perturbed fields, and to design
a multimodel ensemble that properly takes into account all
formulation uncertainties.

[6] In order to evaluate the quality of an ensemble, several
a posteriori scores compare the ensemble simulations with
observations. These scores, such as rank histograms, reli-
ability diagrams or Brier scores, assess the reliability, the
resolution or the sharpness of an ensemble. For instance, a
reliable ensemble gives a well estimated probability for a
given event in comparison to the frequency of occurrence of
this event, whereas the resolution describes the capacity of
an ensemble to give different probabilities for a given event.

[7] Improving the quality of an ensemble should lead to
improved scores, e.g., to a flat rank diagram or low Brier
score. One strategy could be tuning the perturbations of the
input fields or optimizing the design of the multimodel
ensemble (that is, choosing or developing physical para-
meterizations or numerical schemes, and better weighting
each design option), so as to minimize or maximize some
score. This is a complex and computationally expensive task
that would require the generation of many ensembles.

[8] In this paper, we adopt a strategy based on a single,
but large, ensemble. Out of a large ensemble, a combina-
torial optimization algorithm extracts a sub-ensemble that
minimizes (or maximizes) a given score such as the variance
of a rank diagram. This process is referred to as (a posteriori)
calibration of the ensemble. Section 2 describes it in detail.
It is applied in Section 3 to a 101-member ensemble of
ground-ozone simulations with full chemistry-transport
models run across Europe during the year 2001. The scores
of the full ensemble and the optimized sub-ensemble (i.c.,
the calibrated ensemble) are studied, based on observations
at ground stations. In Section 4, the uncertainty estimation
given by the calibrated ensemble is analyzed. In Section 5,
probabilistic forecasts for threshold exceedance are studied.

2. Calibration Method

[o] Hamill and Colucci [1997] use rank histograms to
calibrate precipitation probabilistic forecasts. When the
ensemble is not reliable enough, the probabilistic forecasts
cannot be derived directly from the ensemble relative fre-
quencies. Assuming the shape of the rank histogram remains
the same in the forecast period, the authors propose to rely
on the past rank distribution to compute the probabilistic

GARAUD AND MALLET: AIR QUALITY ENSEMBLE CALIBRATION

D19304

forecasts. Hopson and Webster [2010] calibrate an ensemble
prediction to improve floods forecasting. An empirical
cumulative distribution function is provided by ensemble
predictions of precipitation. Then, it is calibrated with observa-
tions, using a quantile-to-quantile mapping technique.

[10] In this paper, by “ensemble calibration” we mean
extracting a sub-ensemble from a large ensemble so that a
certain criterion is satisfied. A preliminary step is therefore
to generate a large ensemble, composed of simulations that
are sufficiently different from each other to provide sub-
stantial information. A criterion is defined to assess the
quality of an ensemble, and a corresponding score measures
how well the criterion is satisfied. An automatic selection of
a sub-ensemble is finally carried out to minimize the score.
The criterion usually assesses the uncertainty representation
of an ensemble, based on the additional information brought
by the observations. This section details the method employed
to generate a large ensemble and to carry out an automatic
calibration.

2.1.

[11] The method employed for the automatic generation
of a large ensemble is described by Garaud and Mallet
[2010]. A wide range of options should be available for
the design of a single model: several physical para-
meterizations, several numerical discretizations, different
sources for the input data and random perturbations in the
input fields. In the paper referred to, thirty alternatives are
available for the generation of a single model. Each member
of the ensemble is defined after the random selection of one
option per alternative.

[12] In this paper, we rely on the same ensemble as
Garaud and Mallet [2010]. It includes 101 members run
throughout the year 2001 over Europe. This ensemble will
be used and calibrated in Section 3.

Generation of a Large Ensemble

2.2. Automatic Selection
[13] Suppose a base ensemble with N members. There are

Z],Ll(],\f ) possible sub-ensembles. If N = 100, there are over
10%° sub-ensembles. It is obviously impossible to consider
all possible combinations in order to select the best com-
bination with respect to the given criterion. Consequently a
combinatorial optimization algorithm is required to mini-
mize the score associated with the criterion.

[14] Let £ be the full ensemble and S be a sub-ensemble
of £. § C £ is supposed to be non-empty. Let J(S) be the
score of S. The following sections describe different
scores and algorithms which may be used in the ensemble
calibration.

2.2.1. Criterion and Score

[15] The main reasons for generating an ensemble are to
improve forecasts with the so-called ensemble forecasts, and
to estimate the uncertainty in the model’s output. In this
paper, we focus on the second objective. The criterion
typically measures the quality of an uncertainty estimation
or of the prediction of exceeding a threshold. It can be based
on two desirable features of an ensemble:

[16] 1. Reliability: an ensemble has high reliability when
its probabilistic forecasts for a given event match, on aver-
age, the observed frequency of this event.
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[17] 2. Resolution: the capacity of the prediction system to
distinguish the outcomes for a given event.
2.2.1.1. Rank Histogram

[18] A rank histogram measures the reliability of an
ensemble. Let {xi,... x;,..., x5} be the output of a N-member
ensemble at a given time, sorted in increasing order. This
ensemble is considered as a sample of a random variable X
with some probability distribution, which means that all x;
are supposed to follow the same probability distribution. Let
Y be a random variable representing the true state. At a
given point, if Y has the same probability distribution as X,
then Ex[Pry < x)] = 35 ‘7> where E[.] denotes the expec-
tation related to X, Py the probability associated with ¥ and y
a realization of the true state, i.e., an exact measured ozone
concentration for instance. The rank histogram, developed
by Anderson [1996], Talagrand et al. [1999], and Hamill
and Colucci [1997], is computed by counting the rank of
the true state to an actual sorted ensemble of forecasts. A
perfect diagram is flat, whereas a U-shaped rank histogram
means a lack of variability in the ensemble.

[19] Let r; be the number of observations of rank j. An
observation of rank j is an observation which is higher than
the concentrations of exactly j members of the ensemble.
Suppose we have M observations. The expectation of 7; is
7= E[YM 1Pylx; < ym < xj+1)] N *7- The score related to
the rank histogram flatness is based on the squared error

S= Z (r—7)". (1)

[20] The score S gets lower as the histogram gets flatter,
since 7 corresponds to the height of a flat histogram.
Obviously, this measure depends on the number of members
It can be normalized by Sy =E[S]= N+] M because E[(r; — 7=

Finally the following score is used to measure the

(N+ )
flatness of the rank histogram:

N

=Tty (-7, @

J=0

which should ideally be close to 1.
2.2.1.2. Reliability Diagram

[21] Instead of simply predicting whether an event will
occur or not, an ensemble can provide a probabilistic fore-
cast. This is especially useful for the prediction of a
threshold exceedance. A basic probabilistic forecast may be
given by the number of models which exceed the threshold
over the total number of models [Anderson, 1996]. In order
to construct a reliability diagram, the range of forecast
probabilities, [0, 1], is divided into K + 1 bins [po, p1l,...,
[Px> Pie1)s o5 [Px—15 px] where pg = 0, px = 1, and the
sequence (py)y is increasing. Let Oy be the (observed) rela-
tive occurrence frequency of the event when the ensemble
predicts in [py, pi+1]- A reliable ensemble should give O, €
[Pr> Pi+1]- The reliability diagram [Wilks, 2005] plots Oy
against p; or %(pk + pr+1)- A perfect reliability diagram
should follow the diagonal.
2.2.1.3. Brier Score

[22] The Brier score measures the mean squared proba-
bility error for a specific event [Brier, 1950; Wilks, 2005].
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Let M be the total number of observations. Let p; be the
forecast probability and o; be the observed probability at a
date i. The observed probability o; is equal to 1 if the event
occurred, and 0 otherwise. The Brier score is given by:

= (o) G)
i=1

[23] A Brier score for an ensemble can be compared with
the Brier score of the climatological forecast. The climato-
logical forecast is given by a single occurrence frequency o,
observed in the past. If o; follows the Bernoulli distribution
and is equal to 1 with the frequency o, and to 0 with the
frequency 1 — o, the expectation of the Brier score B, of
the climatological forecast is given by

1 M

B = MZ [oc(oc — 1)2+(1 — oc)og}

i=1

=o(1—-0). (4

The so-called Brier skill score is defined by

B

S D R
5 oc(1 —o0.)

(5)

It ranges between [—1, 1] and is greater than 0 when the
ensemble prediction gives a better forecast than the clima-
tological forecast.
2.2.1.4. Discrete Ranked Probability Score

[24] Suppose a set of L events, and let p;; be the forecast
probability for the /-th event at the date i. The total number
of observations M is the same for each event. The discrete
ranked probability score (DRPS), which is a variant of RPS
(ranked probability score) [Epstein, 1969; Murphy, 1971], is
given by:

1 M L
DRPS = WZ ; 4 — o)’

i=1

DRPS = %; B(&). (6)

[25] This score is a generalization of the Brier score from
a single event to a set of events.

[26] While the rank histogram and the reliability diagram
measure the reliability of a prediction system, the Brier
score, and thus the DRPS, can measure the reliability and
the resolution of an ensemble as shown in [Murphy, 1973].
The latter scores can be broken down into three terms:
reliability, resolution and uncertainty. For instance, the Brier
score is an estimation of E[(p — 0)7]. Let po be the specific
probability for a given event £ and O, be the occurrence
frequency of £ when py is provided. The occurrence of &£
denoted o follows Bernoulli’s distribution. Thus, o takes
value 1 with frequency O, and takes value 0 with frequency
1 — Oy. The expected value of (py — 0)* is

E[(po — 0)?] = (po — 1700 +p}(1 - 00)
= (o = 00)*+0o(1 = Op) . (7)
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[27] Then, we compute (7) for many probabilities. In our
case, the prediction system provides discrete probabilities
for a given event. Suppose the system provides K + 1 dif-
ferent probabilities denoted py, ranging in [0, 1]. Let n; be
the number times py is computed with the ensemble. Thus,
the frequency distribution of p; is given by 7% with M the
total number of considered dates, i.e., the total number of
observations. We have All YKo np = 1. Let Oy be the
observed occurrence frequency of the event when the
ensemble predicts p;. The climatological occurrence fre-

. K
quency is o, = ﬁ Y=o nx Oy.

B E[(p - 0)2]

K
= _an(pk Ok +Z}’lk0k 1_Ok

1

K
= —Z n(px — Ox)’ an Ok —0.)" + 0.(1 —0,) .
M = ———
uncertainty
reliability resolution
(8)

[28] The first term is a reliability term since it compares
the probability provided by the forecast system with the
occurrence frequency of the event. The second term is called
“resolution” and is equivalent to the variance of O,. The
third one is the “uncertainty” term which corresponds to the
score of the climatological forecast. It is constant for a
specific event and is maximum when the climatological
forecast is equal to 0.5. This means that the climatological
forecast has the worst Brier score when it provides the most
uncertain occurrence probability, ie., 0.5. The same
decomposition can be carried out for the Brier skill score
and the DRPS (9).

1 L K ; ,
DRPS = WZ Z nk (pw — O)

K
E i (Oy — o)’

1 k=0

[\‘
slr
Ml\

/

L
Z OIL 1 - Olc (9)

=1

+

l\l'—‘

[29] The choice of a criterion, i.e., an ensemble score, is
the first step of the ensemble calibration. The second step is
the choice of a combinatorial optimization algorithm.
2.2.2. Combinatorial Optimization Algorithm

[30] Two combinatorial optimizations are employed in
order to minimize the scores previously introduced: a
genetic algorithm and simulated annealing.
2.2.2.1. Genetic Algorithm

[31] The genetic algorithm, described by Fraser and
Burnell [1970] and Crosby [1973], takes evolutionary
biology as its basis, with the selection, crossover and muta-
tion of a population of individuals. Let S; be an individual,
that is, a sub-ensemble, and let P = {S;,..., Si,..., Sy} bea
population of N,,, individuals. The first step of the genetic
algorithm i is the random generation of the first population
(denoted P°). Each S, randomly collects an arbitrary number
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of models of the ensemble 5 Then, three important steps
generate the population P**! based on P

[32] 1. Selection: a few individuals are selected according
to some method. In practice, we select half the best
individuals with respect to the score.

[33] 2. Crossover: among the selected individuals, a
crossover is carried out. Two parents S, and S, create two
new children S, and S,. All the models of S, and S, are
randomly dispatched into S, and S,;. The list of models in an
individual can be seen as its genetic print. A new population
denoted P! is generated with N,,,/2 parents and N,,,,/2
children.

[34] 3 Mutatron each individual of the previous popula-
tion P**! can mutate. In our case, a model can be replaced
by another one, removed from an individual or added to an
1n1(\1r1¥1dua1 These mutations constitute the new population
P

[35] The operation is repeated until some stopping crite-
rion has been satisfied, e.g., when a given number of
iterations is reached. The final population contains many
individuals that are better (with respect to the cost function)
than those of the initial population. It is the best individual
of the final population that is considered as the calibrated
ensemble.
2.2.2.2. Simulated Annealing

[36] Simulated annealing, described by Kirkpatrick et al.
[1983], is a basic optimization method inspired by a ther-
modynamic process. Each sub-ensemble of the search space
is analogous to a state of some physical system.

[37] In our case, the first state is just a random generation
of a sub-ensemble. The current state has a lot of neighbor
states which correspond to the current state with a unit
change, that is, a removed, added or replaced model in the
sub-ensemble. Let S be the current sub-ensemble and S’ be
a neighbor sub-ensemble. S’ is a new sub-ensemble which
is randomly built from the current sub-ensemble with one
removed, added or replaced model. In order to minimize
(resp. maximize) a score J, two transitions to the neighbor
are possible:

[38] 1. If the score J(S') is lower (resp. higher) than S),
then the current sub-ensemble moves to the neighbor sub-
ensemble. &’ becomes the current sub-ensemble and another
neighbor is generated.

[39] 2. If the J(S') is greater (resp. lower) than J(S),
moving to &' is allowed to occur with an acceptance prob-
ability. This acceptance probability is equal to exp

g
(—‘L) (resp. exp(J )) where T is called tem-
perature and is decreased after each iteration. A state move-

ment is carried out if u < exp(fj(LTJ(S)) where u is a random
number uniformly drawn from [0, 1]. At the beginning of the
algorithm, the acceptance probability is high. Thus, the
probability of switching to neighbor is higher than at the end
of the algorithm.

[40] At the end of the process, the best state encountered
in all the iterations, i.e., the best sub-ensemble, is taken as
the calibrated ensemble.

3. Application to a 101-Member Ensemble

[41] We consider the 101-member ensemble, launched
throughout the year 2001 over Europe and described in
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Figure 1. Taylor plots of ozone peak averaged over sta-
tions. The radial coordinate is the standard deviation nor-
malized by the standard deviation of observations. The
angles between the abscissa axis and the lines correspond
to the arccosine of the correlation p between each simulation
and observations.

detail by Garaud and Mallet [2010]. The ensemble was
automatically generated for the simulation of ground-level
ozone, with a horizontal resolution of half a degree. Each
member of the ensemble is a unique combination of physical
parameterizations, numerical schemes and input data. For
instance, the members can differ in the chemical mechanism
(RACM or RADM?2), the computation of the vertical dif-
fusion coefficient (Louis’ or Troen&Mahrt’s parameteriza-
tions), the wvertical resolution (5 or 9 levels) or the
perturbation of the meteorological fields (wind, temperature,
etc.) and emission sources. About 30 alternatives are
available for the generation of a member. The generated
ensemble contains very different members and has a wide
spread. The following subsections deal with the assessment
of this ensemble and its calibration according to ensemble
scores previously mentioned.

3.1.

[42] In this sub-section, we quickly review the perfor-
mance of the models and then of the ensemble.

[43] The ensemble evaluation is carried out using the
observation network Airbase (http://air-climate.eionet.europa.
eu/databases/airbase/airbasexml/index _html). This database,
managed by the European Environment Agency, provides
ground-level ozone observations at 210 rural background,
702 rural, 647 suburban and 1324 urban stations across
Europe.

[44] Stations that fail to provide observations at over 10%
of all the dates considered are discarded as the scores at
these stations may not reliable. In order to have stations
which are representative of the ozone peak concentration at
the model scale (half a degree in the horizontal), only rural
and background stations are kept. There are about 123,000
observations for ozone peaks during the year 2001. Fol-
lowing usual recommendations [Russell and Dennis, 2000;
Hogrefe et al., 2001; U.S. Environmental Protection Agency,
1991], a cut-off is applied to the observations. Observations

Evaluation of the Ensemble
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below 40 pg m > are discarded so as to focus on the most
harmful concentrations.
3.1.1. Models Skills

[45] The different models show quite different skills and
performances. The spatio-temporal mean of ground-level
ozone peaks ranges from 60 to 130 ug m . Their vari-
ability is also quite different because the global standard
deviation of ozone peak simulations ranges between 17 and
44 pg m>.

[46] Figure 1 shows the performance, compared to the
observations, of the 101 simulations in a single diagram. This
Taylor diagram [Taylor, 2001] takes into account the standard
deviation of the observations and the correlation between
each simulation and the observations. The radial coordinate
of the Taylor diagram corresponds to = where o, is the

gy

2
empirical standard deviation \/ LS (x,» —w i xj)
of the simulated sequence (x;);=1,.. .., and o, is the empirical
standard deviation of the observed sequence (y;)i=1,.._». The
azimuth is the arccosine of the correlation between (x,)i=1,...,
and (3;)=1,..-,»- The lower azimuth, the higher correlation
between a simulation and the observations. A Taylor diagram
shows the performance of an ensemble of simulations in term
of correlation, the variability of each simulation compared
with the observed variability, and the spread of these per-
formances. Although a large number of simulations show less
variability than the observations, a number of members still
show good variability. The correlations range between 0.3
and 0.77.

[47] This shows that the ensemble has a strong variety and
that the models can have very different statistical measures
and performance. A few models have weak skill, i.e., a high
RMSE (up to 29.6 ug m ) and a low correlation (down to
0.3). However these models should not be discarded
because they can bring useful information. Figure 2 shows
the number of times each model is closer to an observation
than any other model. Most of the bars are close to the mean
(1091 observations). Figure 2 shows that all the members
give the closest concentrations to the observations for a

Number of observations

0 20 40 60 80
Member

100

Figure 2. Best models count for ozone peaks on the network
Airbase. A model is counted “best” when the discrepancy
between the simulated concentration and the observation is
minimal. The count is carried out for all observations.
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Figure 3. Reliability diagram of the ensemble for ozone
peaks. The ozone concentration threshold is 120 pug m ™.
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Figure 4. Sharpness histograms for two ozone concentra-
tion thresholds: (a) 120 g m > and (b) 180 pug m>.
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significant number of times. In the worst case, the count is
about half the mean count. The worst model in terms of
RMSE and correlation gives the closest concentrations to
1061 observations, which is about the average performance.
This means that even if a member shows a bad performance
on average, it still brings useful information in some regions
and at some dates.
3.1.2. Ensemble Scores
3.1.2.1. Reliability Diagram

[48] Figure 3 shows the reliability diagram for the event
[03] = 120 ug m >. The ensemble shows a reasonable
performance since the diagram roughly follows the diago-
nal. Below the forecast probability 0.4, the ensemble over-
forecasts the event occurrence since the reliability curve is
below the diagonal. On the other hand, the ensemble under
forecasts the event occurrence when the forecast probabili-
ties are greater than 0.4. The diagram shows that the
ensemble has an acceptable resolution. An ensemble with
lower resolution would have a flatter reliability diagram
which would be close to the climatological forecast.
Unfortunately, for an event based on a higher concentration,
such as [O5] > 180 ug m >, the ensemble leads to a poor
reliability diagram. This can be explained by the very low
occurrence of the event — about 0.6% of all cases — and by
the sharpness histogram. Two sharpness histograms are
shown in Figure 4 and represent the frequency of the fore-
cast probabilities for the two previous events. The sharpness
indicates the tendency of an ensemble to provide probabil-
ities near 0 or 1. The forecast probabilities provided for the
first event (120 pg m>) are quite frequent and close to 0.
Thus, most of the time, no simulation exceeds the threshold,
so that the ensemble gives a null probability of event occur-
ring. For the threshold 180 zig m >, the sharpness histogram is
even worse since over 98% of forecast probabilities are less
than 0.1. As the number of forecast probabilities greater than
0.1 is so low, it seems difficult to correctly build a reliability
diagram. Hence for the threshold 180 ;g m ™, the calibration
cannot be carried out using the reliability diagram.

le3

Number of observations

0 20 40 60 80
Rank

100

Figure 5. Rank histogram of the 101-member ensemble on
network Airbase for ozone peaks. The horizontal dashed
line corresponds to the ideal value for a flat rank histogram
with respect to the number of members. The large number of
observations on the left means there are many observations
below the lower envelope of the ensemble.
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Table 1. Brier Scores and Brier Skill Scores for the Event [O3] >
120 pg m > for the Ensemble, the “Best” Model, With Respect to
the Score, and the Climatological Forecast®

Full Ensemble Best Model Climatology
Brier 76 1073 951073 113 1073
Brier skill 32.7 1072 15.6 1072 0.0
DRPS 90.3 103 124 1073 130 1073

“The DRPS is computed with the threshold exceedances for 80, 100, 120,
140 and 160 pug m .

3.1.2.2. Rank Histogram

[49] Figure 5 is the rank histogram of the 101-member
ensemble for ozone peaks. The histogram does not show
any extremely low or extremely high bar, but several bars
have half the height they should have and several others are
significantly higher than expected. The first bar, which
corresponds to the number of observations below the lower
envelope of ensemble, is especially high. It means that, at
certain locations and dates, the spread of the ensemble is
insufficient to cover the observations. The measure of the
flatness described in the section 2.2.1.1 is 148.
3.1.2.3. Brier Score and DRPS

[50] The Brier score, Brier skill score and discrete ranked
probability score are computed with the full ensemble, with
the “best” model alone and with the climatological forecast.
The “best” model will be the member from the full ensemble
that minimizes or maximizes the given score. The climato-
logical forecast is given by the all-year relative (observed)
occurrence frequency of the event. These different scores
are reported in Table 1. The DRPS is computed with the
threshold exceedances for 80, 100,120, 140 and 160 ug m>.

[s1] It is interesting to notice that the “best” model is
always the same for all scores and corresponds to the model
which has the smallest RMSE (20.5 pg m ). This “best”
model is always better than the climatological forecast. It
should, however, be noted that, first, one model can only
provide probabilities equal to 0 or 1 and secondly, a large
majority of the models have worse scores than the clima-
tological forecast. For instance, over 77% of the models

3 1.0 :
S @-@oFull
3 @@®Genetic
o 0.8( @@Anneal
L
()
S 0.6
g
3 0.4}
O
o
202
= Y 7/
§o]
z 0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

Forecast Probability

Figure 6. Calibrated reliability diagrams for the event
[05] > 120 pug m > from the simulated annealing and the
genetic algorithm. The dashed line corresponds to the value
of the climatological forecast.
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Figure 7. Rank histogram of the calibrated ensemble on net-
work Airbase for ozone peaks. The horizontal dotted line cor-
responds to the ideal value for a flat rank histogram according
to the number of members.

have a negative Brier skill score for the 120 ug m>
threshold exceedance. Whatever the score, the full ensemble
always performs better than the “best” model. Consequently
it seems that an ensemble is necessary to provide forecast
probabilities which are more accurate than probabilities
provided by a single model.

3.2. Calibration

3.2.1. Reliability Diagram

[52] We introduce the average probability p, of all fore-
cast probabilities lying in the interval [py—;, pi]- As
described in the section 2.2.1.2, a perfect reliability leads to
Px = Oy. In order to have an optimized reliability diagram,
the calibration method is therefore carried out with the mean
squared error of the diagram. The score to minimize can be
written as

1 K
Crel = EZ (ﬁk - Ok)z'

k=1

(10)

[s3] We consider the event [O5] > 120 pug m >, and we
apply the genetic algorithm and the simulated annealing.

.| 25.50

23.25
50
21.00

45| 18.75

16.50
40

14.25

35k
-10

12.00

Figure 8. Monthly average of ozone uncertainty from a cal-
ibrated sub-ensemble for June 2001 across Europe (g m ).
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55}

50|

45}

40

35k
-10
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Figure 9. The two random sets of stations over Europe.
These two sub-networks are used to assess the spatial
robustness of the ensemble calibration method. The
two sub-networks are a partition of the full network: each
station of the full network belongs to one and only one

sub-network.

Figure 6 shows the two resulting reliability diagrams. The
calibrated diagrams are better than the reliability diagram of
the full ensemble since they are closer to the diagonal. The
35-member calibrated ensemble from the genetic algorithm
is very reliable and has a mean squared error lower than
107°. As the reliability is improved, the Brier skill score of
the two calibrated sub-ensembles are equal to 34 10% and

GARAUD AND MALLET: AIR QUALITY ENSEMBLE CALIBRATION

D19304

35 1072, which represents slight improvements compared
with the full ensemble. The Brier score decomposition
shows that the reliability term is better after calibration
whereas the resolution term is slightly worse. For the best
calibrated sub-ensemble (genetic algorithm), the reliability
term decreases by about 93% while the resolution term
decreases by about 1%. Candille and Talagrand [2005]
show that there is a compromise between reliability and
resolution. Thus, resolution can be degraded when reliability
is improved. Nevertheless, this calibration dedicated to
improving reliability degrades resolution very slightly.
3.2.2. Rank Histogram

[s4] We now apply the calibration with criterion (2) so as
to get a flat rank histogram. Note that it is desirable to obtain
a sub-ensemble with the largest number of models so that an
accurate uncertainty estimation can be produced. It is pos-
sible to obtain a perfectly flat diagram with just one model,
providing half the observations are below the model con-
centrations and half the observations are above; but one
model cannot help in providing an uncertainty estimation.

[55] The calibration results depend on the height of the
highest bar (here, the left bar) of the full-ensemble histo-
gram. All observations with rank 0 (left bar) are below the
lower envelope of the ensemble. For any sub-ensemble, the
height of the left bar cannot be lower than the number ry of
observations below the lower envelope. In a flat histogram,
at best, the height of the left bar is still 7y, and all the bars
have the same height. In this case, there cannot be more than
34 members (which is deduced from the total number of
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Figure 10. Rank histograms of the calibrated sub-ensembles on the two random sub-networks. The
calibrated rank histograms of the (a) cyan and (b) yellow sub-ensembles. The rank histograms computed
(c) from the yellow sub-ensemble on the cyan sub-network and (d) from the cyan sub-ensemble on the

yellow sub-network.
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Figure 11. Temporal average of uncertainty estimation in
pg m > from two sub-ensembles which were calibrated with
two random sub-networks over Europe. Uncertainty map
from (a) the cyan network and (b) the yellow network for
June 2001.

observations divided by rg). Figure 7 is the rank histogram
of the calibrated sub-ensemble using simulating anneal.
There are 33 members and the flatness score is about 6
instead of 148 for the full ensemble score.

[s6] This calibrated sub-ensemble also improves the Brier
scores and the DRPS. For the same events as before, the
Brier skill score and DRPS respectively give 36 102 and
90 107>, It is interesting to notice that the reliability (from
the DRPS decomposition (9)) is decreased by 90%, while
the resolution remains unchanged. This is consistent with the
fact that the rank histogram is an ensemble score which
measures reliability.

3.2.3. DRPS

[57] The -calibration according to the DRPS gives
DRPS,i» = 66 1072. The DRPS of the full ensemble is
reduced by 15%. The reliability part (see (9)) is reduced by
47% and the resolution part by 10%.

[s8] For all ensemble scores, the calibration provides well
balanced sub-ensembles. They always are better than the
full ensemble, the best model or the climatology. The
calibrated sub-ensembles also improve the reliability. How-
ever, the resolution essentially remains the same. As for the
Brier score decomposition (8), the resolution term does not
depend directly on the agreement between the forecast
probability and the event occurrences. The improvement in
the resolution depends on the definition of forecast proba-
bilities bins described in paragraph 2.2.1.2 and [Candille and
Talagrand, 2005]. The ensemble -calibration essentially
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improves the quality of forecast probabilities, i.e., the reli-
ability, rather than the variance of frequency occurrence O;.

4. Uncertainty Estimation

[s59] We now analyze the uncertainty estimation based on
the sub-ensemble calibrated for the rank histogram. This
calibration is chosen because it is related to the probability
distribution of ozone concentrations, whereas the other
scores are used to assess an ensemble for specific events.

0.270
0.225
0.180
0.135
0.090
0.045

10 5 0 5 10 15 20 0.000
Sub-ensemble calibrated on the cyan sub-network

0.270
0.225
0.180
0.135
0.090
0.045

0.000

-10 -5 0 5 10 15 20
Sub-ensemble calibrated on the yellow sub-network

ss 0.270

0.225
50}
0.180

45 0.135

0.090
40k

0.045

35

10 0.000

Full ensemble

Figure 12. Relative discrepancy on uncertainty fields (aver-
aged over June) between the sub-ensemble calibrated with all
observations and (a) the sub-ensemble calibrated on the cyan
sub-network, (b) the sub-ensemble calibrated on the yellow
sub-network, and (c) the full ensemble. For example, the rel-
ative discrepancy (Figure 12¢) is defined (pointwise) as the
difference between the averaged uncertainty obtained with
the full ensemble and the averaged uncertainty obtained with
the calibrated sub-ensemble, divided by the latter.
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Figure 13. Rank histograms with a different number of
observations: (a) about 32,500 and (b) 10,100 observations.

[60] The uncertainty can be estimated with the (empirical)
standard deviation of the ensemble. A monthly average of
the standard deviation of the calibrated ensemble is com-
puted in each cell of the domain studied. Figure 8 shows the
corresponding uncertainty map over Europe, averaged over
June 2001. A higher ozone uncertainty appears along the
south-coasts of Europe. This is consistent with a well-
known difficulty of predicting ozone along the coasts,
mainly because of poor representation of winds and turbu-
lence in these areas.

[61] Before presenting further results, it is important to
assess the robustness of the calibration method. One ques-
tion is the spatial robustness. A calibrated sub-ensemble is
spatially robust if it is still reliable at non-observed loca-
tions. In order to check this robustness, we randomly
exclude stations from the calibration, and assess the cali-
bration on the remaining stations.

[62] Figure 9 shows all observation stations previously
used to compute the ensemble scores and to calibrate the
ensemble. This network is randomly split into two sub-
networks (cyan and yellow). The rank histogram calibration
is then carried out on each sub-network, that is, using only
the observations of the sub-network. Figure 10 shows four
rank histograms for the two calibrated sub-ensembles. At
the top of the figure, the calibrated rank histograms are
shown, each computed with the observations used for their
calibration. At the bottom, the rank histograms are com-
puted using the observations of the other sub-network. The
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rank histograms are almost flat, which shows that the cali-
bration is robust. It is noteworthy that the two sub-ensembles
have a similar number of members (27 and 28 members for
the “cyan” and “yellow” sub-ensembles, respectively).

[63] We can now compare the uncertainty estimation maps
from the two previous calibrated sub-ensembles. Figure 11
shows the uncertainty estimation of the two calibrated sub-
ensembles from the two previous random sub-networks. The
spatial structures are similar. The high and low uncertainty
values are located at the same places. In Figure 12, these
uncertainty maps are also compared with the uncertainty
map obtained after calibration with all observations. The rel-
ative difference between these maps is about 3% on average,
and marginally exceeds 10%. For reference, the figure also
shows the relative difference with the uncertainty derived
from the full ensemble.

[64] Besides spatial robustness, the previous results also
show that here, half observations are sufficient to calibrate
an ensemble and estimate uncertainties. This raises the
question of how many observations are needed for the cal-
ibration. An experiment was carried out to estimate this
number. First, a rank histogram is computed for the full
ensemble with about 30,000 hourly observations. These
observations are selected arbitrarily. Then, observations are
randomly removed and the rank histogram is computed again.
After a few iterations, we can compare several rank histo-
grams with a different number of observations. Figure 13
shows two rank histograms of the full ensemble with about
32,500 observations and about 10,100 observations. Their

55},

50t
45t

40}

35k

Figure 14. Uncertainty estimations at stations (a) for the
reference calibration and (b) for the calibration with per-
turbed simulations (¢ = 0.13).
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Figure 15. Comparison of ozone uncertainty maps aver-
aged over one week in ug m °. (a) The uncertainty estima-
tion during the learning period (from 3rd to 9th April 2001),
(b) the uncertainty forecast (10th to 16th April 2001), and
(c) the a posteriori uncertainty.

shapes are very similar. Below 8000 observations, the shape
of the rank histogram starts changing. So we conclude that
8000-10,000 observations are required to assess the quality
of the 101-member ensemble.

[65] A similar experiment was carried out to determine the
number of observations needed for the calibration to be
reliable. The full ensemble is calibrated a few times with a
total number of observations (initially 32,500) divided by 2,
3, 5, 8 and 13. The calibrated ensembles contain a similar
number of members, ranging from 22 to 27. The rank his-
tograms for the calibrated ensembles are then computed,
each time with the observations used in the calibration. The
rank histograms remain flat in every case. The uncertainty
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estimations starts depending on the number of observations
when there are fewer than 8000-10,000 observations.

[66] Another question is the impact of observational errors
on the calibration and on the uncertainty estimation
[Anderson, 1996; Hamill, 2001]. The rank histogram checks
whether two random variables sample the same distribution.
Noise in the observations should therefore be added to
ensemble so that we can check the ensemble samples the
real uncertainty without observation noise. Let x7'(f) be the
simulated concentration at station i and date ¢ for the model
m. We assume that observational errors do not depend on
the station and date. We introduce the perturbed con-
centrations 7'(f) = x"(f)(1 + «}") where «;" follows a uni-
form distribution on the interval [—¢, €]. This form allows us
to introduce a noise relative to the concentration, which is a
usual feature for ozone observations. Based on work by
Airparif [2007], € ~ 0.13 for ozone peak concentrations
measured over the year 2009 at about 30 stations from the
Airparif monitoring network (in the Paris region). This noise
is introduced before the calibration. The calibrated ensemble
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Figure 16. Reliability diagrams for [O5]> 100 g m > of the
calibrated sub-ensembles and the full ensemble. (a) The reli-
ability diagrams are computed on the cyan sub-network.
(b) The reliability diagrams are computed on the yellow
sub-network.

11 of 13



D19304

Table 2. Brier Skill Scores of the Full Ensemble and the
Calibrated Sub-ensembles®

[03] 2 [0s] 2 [0s] =

Threshold Exceedance 80 ugm> 100 ugm> 120 pug m>
Full ensemble 0.35 0.37 0.34
Cyan calibrated sub-ensemble 0.40 0.46 0.44
Yellow calibrated sub-ensemble 0.40 0.46 0.44

“The scores are computed using the observations of cyan sub-network.

with perturbation (¢ = 0.13) shows a flat rank histogram, and
the resulting uncertainty estimations are plotted in Figure 14.
The values and spatial patterns of the standard deviation are
very similar to those of the calibration without perturbations.
The observation errors therefore seem to have a limited
impact on the calibration.

[67] Finally, we investigate the robustness of the calibra-
tion over time. A calibration is carried out during a learning
period, and the relevance of this calibration is evaluated for
a forecast period. The sub-ensemble selected based on the
learning period is referred to as an a priori sub-ensemble.
The quality of the forecast is measured by comparing the a
priori sub-ensemble and the a posteriori sub-ensemble that
is calibrated over the forecast period.

[68] The learning period is a week, from April 3rd to
April 9th, with 50,000 hourly ozone observations. It is an
arbitrary chosen period. The forecast period ranges from
April 10th to April 16th. Figure 15 shows the uncertainty
map computed during the learning period and the forecast
uncertainty map. These maps clearly show different pat-
terns, e.g., with higher forecast uncertainties over the North
Sea, over France and Germany, and with lower forecast
uncertainties over several parts of the Mediterranean Sea.
This, and tests not reported here, show that the uncertainty
estimations can vary strongly over time. Figure 15 also
shows the a posteriori uncertainty map. The forecast and a
posteriori maps essentially show the same patterns and
uncertainty levels. This means that, despite the significant
variation in time, the calibration seems robust over time.
Here the calibration can be used to forecast the uncertainties
for a few days. The root mean square error between the
forecast and a posteriori maps (daily averages), divided by
the mean of the a posteriori map, is equal to about 5% over
each of the next six days. It is noteworthy that the learning
period should be long enough—two-day or four-day periods
do not appear to be long enough to ensure a good forecast.

5. Risk Assessment and Probabilistic Forecast

[69] In order to check that the calibration can help in risk
assessment and in forecasting a given event, the same tests
as in the previous section are carried out with the Brier
skill score and the reliability diagram instead of the rank
histogram.

[70] Figure 16 shows, for each sub-network, reliability
diagrams for calibrated sub-ensembles and the full ensem-
ble. Any sub-ensemble calibrated on one sub-network per-
forms well on the other sub-network.

[71] The same conclusion can be drawn from the Brier
skill score calibration. Table 2 shows the Brier skill scores
of the full ensemble and calibrated sub-ensembles computed
on the cyan sub-network for three different thresholds —
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80, 100 and 120 ;g m . Whatever the threshold exceedance,
the calibrated sub-ensembles perform significantly better
than the full ensemble. The sub-network over which the
calibration was carried out does not impact the results.

[72] According to these results, the calibrations based on
the reliability diagram and the Brier skill score seem spa-
tially robust.

[73] In order to assess the temporal robustness, we select
arbitrarily the learning period from May 31th to June 6th
and rely on the corresponding calibrated sub-ensemble to
forecast the period from June 7th to June 13th. Figure 17
shows the reliability diagrams of the full ensemble, the a
priori calibrated sub-ensemble and the a posteriori calibrated
sub-ensemble, for the threshold exceedance [05] > 100 ugm .
The a priori sub-ensemble performs better than the full
ensemble, but its reliability diagram is deteriorated compared
to the a posteriori sub-ensemble. Note that the forecast period
is long (7 days) because the reliability diagram requires a
significant amount of data to be computed. It is possible that
the results would be better if the diagram could be computed
with the observations of the very first forecast days only.

[74] The Brier skill scores in the same forecast period are
0.18, 0.27 and 0.25 for the full ensemble, the a posteriori
sub-ensemble and the a priori sub-ensemble, respectively.
It shows that the calibration can be relevant in the context
of probabilistic forecast.

6. Conclusion

[75] The work presented in this paper relies on a 101-
member ensemble that was automatically generated on the
Polyphemus platform. This large ensemble is evaluated for
uncertainty estimation and for probabilistic forecasts. The
tests show that about 10,000 observations are required to
properly evaluate the 101-member ensemble. A calibration
method is designed to select a sub-ensemble from the full
ensemble that better estimates the uncertainties.

[76] Several calibrations for different ensemble scores are
carried out and show significant improvements in the
ensemble scores. An almost perfect reliability diagram and a
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Figure 17. Reliability diagrams for [Os] > 100 ug m > of
the full ensemble (cyan), the a posteriori calibrated sub-
ensemble (red) and the a priori calibrated sub-ensemble
(green). This is based on observations from June 7th to
June 13th.
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very flat rank histogram can result from the calibration. We
note that observation errors have a slight impact on cali-
bration, since uncertainty maps with and without observa-
tion errors have the same pattern. The quality of the spatial
distribution of the uncertainty estimation is assessed by a
cross validation. Again, the calibration seems robust as the
uncertainty maps are reasonably sensitive to the observation
network. Finally, we show that the method can be applied in
a forecasting context. The calibration can be carried out on a
learning period, and the resulting sub-ensemble is able to
estimate the uncertainties in the subsequent period almost as
well as the sub-ensemble calibrated on this subsequent
period.

[77] It would therefore be a natural next step to apply the
method proposed here in operational conditions, including
for aerosols for which the number of available observations
may be significantly lower. A question is how much the
proposed approach can help forecast threshold exceedances.
The results show that the scores associated with such fore-
casts are improved, but the impact in an operational platform
for decision making has yet to be assessed.

[78] The complexity of the method mainly lies in the
automatic generation of a large ensemble in which many
sources of uncertainties are taken into account. An open
question is what ensemble design should be considered for
uncertainty estimation and probabilistic forecasting. This
question is especially important when considering forecasts
because the sub-ensemble selected over one period should
still represent the right uncertainty sources in another period.
Monte Carlo simulations, for instance, are easier to carry
out, but they might miss important uncertainty sources
coming from the model formulation itself.

[79] Further work should address the partition of the
uncertainty sources in order to better identify modeling
errors, representativeness errors and measurement errors.
Also the spatial and temporal correlations in the errors should
be evaluated.

[80] Acknowledgments. We would like to thank to Héléne Marfaing
and Christophe Debert from Airparif for their very useful studies and their
data about measurement uncertainties. We thank Richard James for proof-
reading the paper.
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