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Abstract 

Landscape spatial organization (LSO) strongly impacts many environmental issues. Modelling 

agricultural landscapes and describing meaningful landscape patterns are thus regarded as key-

issues for designing sustainable landscapes. Agricultural landscapes are mostly designed by 

farmers. Their decisions dealing with crop choices and crop allocation to land can be generic and 

result in landscape regularities, which determine LSO. This paper comes within the emerging 

discipline called “landscape agronomy”, aiming at studying the organization of farming practices 

at the landscape scale. We here aim at articulating the farm and the landscape scales for landscape 

modelling. To do so, we develop an original approach consisting in the combination of two 

methods used separately so far: the identification of explicit farmer decision rules through on-

farm surveys methods and the identification of landscape stochastic regularities through data-

mining. We applied this approach to the Niort plain landscape in France. Results show that 

generic farmer decision rules dealing with sunflower or maize area and location within 

landscapes are consistent with spatiotemporal regularities identified at the landscape scale. It 

results in a segmentation of the landscape, based on both its spatial and temporal organization and 

partly explained by generic farmer decision rules. This consistency between results points out that 

the two modelling methods aid one another for land-use modelling at landscape scale and for 

understanding the driving forces of its spatial organization. Despite some remaining challenges, 

our study in landscape agronomy accounts for both spatial and temporal dimensions of crop 

allocation: it allows the drawing of new spatial patterns coherent with land-use dynamics at the 

landscape scale, which improves the links to the scale of ecological processes and therefore 

contributes to landscape ecology. 

Key words 
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Introduction 

Agriculture is the most important land use across Europe (Rounsevell et al 2003) and its impacts 

on the environment are no longer to be demonstrated (Donald et al 2001; Stoate et al 2001). 

Depending on market conditions, access to technology and public policies, subsequent 

intensification or abandonment can have contrasting effects from one region to another and even 5 

within regions (Stoate et al 2009). Considering the landscape scale of agroecosystems is thus 

necessary to address many ecological processes.  

Landscape spatial organization (LSO) strongly impacts many environmental issues. 

Agricultural landscapes in Europe are composed of a crop mosaic and of semi-natural areas 

(Burel and Baudry 2010). We focus here on the crop mosaic, directly influenced by agricultural 10 

practices and we define the LSO as the spatial structure and arrangement of the agricultural plots 

within the landscape. Several studies have shown that modifying the LSO can orientate 

environmental processes like biodiversity preservation (Benton et al 2003; Joannon et al 2008), 

soil erosion by water and tillage (van Oost et al 2000), erosive runoff (Joannon et al 2006), water 

pollution (Benoît et al 1997; Beaujouan et al 2001) and gene fluxes (Le Bail et al 2010).  15 

In order to understand the interactions between LSO and ecological processes, it is 

necessary to identify and describe meaningful landscape patterns (Turner 1990), both for 

scientists and planners. The identification and description of such landscape patterns could 

improve the understanding of environmental processes in relation with agricultural dynamics, 

which may facilitate the exploration of the future and political decision making (Lazrak et al 20 

2010a). Modelling agricultural landscapes is thus a key-step in exploring land-use dynamics and 

helping design sustainable and environmentally-friendly landscapes (Veldkamp and Lambin, 

2001; Gaucherel and Houet, 2009). 
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Agricultural landscapes are primarily designed by farmer practices (Benoît, 1990; Le Ber 

et Benoît 1998; Thenail et al, 2009). Farmer decisions dealing with crop choices and crop 25 

allocation to land at farm scale impact LSO (Thenail and Baudry, 2004). As a consequence, there 

is a spatial mismatch between the landscape scale, where environmental processes occur and 

should be managed, and the farm scale, where landscape units are managed through farmer 

practices (Rindfuss et al 2004; Cumming et al 2006; Pelosi et al 2010). This mismatch calls for a 

better articulation between the farm and the landscape scales. 30 

 As agronomists, we usually focus on farmer practices and soil-crops-climate interactions 

at the farm scale. Our research here focuses on the role of farmers in the landscape design process 

and is thus part of an emerging branch of agronomy called “landscape agronomy” (Benoît et al 

2007). This discipline focuses on the landscape scale and aims at studying the organization of 

farming practices on a small geographical scale (Mignolet et al., 2007). The scale generally 35 

ranges from 100 km² to a few thousand km² and is thus intermediate between the farm scale (0.1 

to 10 km²) and coarser scales (>100 000 km²). Landscape agronomy has recently developed due 

to the increased attention given to localised environmental problems resulting from farming 

activity (Benoît et al 2007). It combines concepts and methods from geographers and 

agronomists: multi-scale modelling approaches for land-use changes (Veldkamp and Fresco 40 

1996; De Koning et al 1999; Lambin et al 2003) and analytical methods to describe the 

underlying reasoning of regional agricultural systems organization. It relies mostly on the 

spatialization of farming system classifications (Landais 1998; Leisz et al 2005; Mignolet et al 

2007). 

Farmer decisions dealing with crop choices, crop successions and crop allocation to land 45 

have already been modelled at farm scale (Maxime et al 1995; Aubry et al, 1998a ; Navarrete and 

Le Bail, 2007; Mawois et al, 2011). Besides, some authors have shown that farmers organize their 
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crops in the farming territory according to spatial constraints (Morlon and Benoît 1990; Morlon 

and Trouche 2005), especially on mixed crop-livestock farms (Brunschwig et al 2006; Marie et al 

2009). It is now accepted that the way a farmer organizes his farming territory is related to his 50 

cropping plan and is both a time and a spatial process (Dury et al 2011). 

 Even if taken at the individual level, some decisions can be generic (i.e. shared by a set of 

farmers) and may result in landscape spatiotemporal regularities. Such regularities have already 

been stochastically modelled at the landscape scale (Lazrak et al 2010a). These authors consider 

that land-uses are heterogeneously distributed among different polygons (agricultural plots) 55 

across landscapes and these land-uses display dynamic patterns as a result of crop successions 

and other driving forces of land-use changes. These patterns can be modelled both in their spatial 

and temporal dimensions using a Markovian framework (Le Ber et al 2006; Mignolet et al 2007; 

Castellazzi et al 2008; Lazrak et al 2010a) or stochastic decision trees (Sorel et al 2010). 

 In short, there are methods for identifying (i) farmer decisions at farm scale and (ii) 60 

regularities in spatial and temporal landscape patterns at landscape scale, but very few studies aim 

at articulating the farm and the landscape scales by linking the two methods (Pocewicz et al 

2008). Agent-based models have been widely used to simulate land-use changes as a result of 

human decisions, but these approaches do not account for technical factors: they rather focus on 

the impact of economic factors (e.g. agricultural and development policies, land ownership) on 65 

farm structure or land cover changes (Freeman et al 2009; Happe et al 2009; Robinson and 

Brown 2009). Upscaling to the regional scale is even possible thanks to probabilistic approaches 

(Valbuena et al 2010), but disregarding the diversity of farmer practices. Following these authors, 

we now hypothesize that combining methods for identifying farmer logics and landscape 

regularities could bridge the gap between crop patterns generated by farmers and agricultural 70 

landscape modelling. The aim of the paper is thus to model farmer decisions and landscape 
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regularities, as well as the links between them, in order to improve the articulation of the farm 

and the landscape scales for regional land use modelling. To do so, we used a French case study, 

where researchers more widely aim at understanding (i) how farmers make their crop allocation 

choices at farm scale and the associated determinants (ii) what landscape regularities can be 75 

identified at landscape scale in relation to farmer decisions, and (iii) how the landscape is finally 

designed and spatially organized over time. Once we have presented each of the two modelling 

methods, we will show how they mutually benefit one another before discussing advances, future 

challenges and perspectives for landscape modelling. 

 80 

Methods 

 

Study area 

 

We applied our approach to the case of the Niort plain landscape in France. This area is located in 85 

the South of Deux-Sèvres in the Poitou-Charentes region (46.2°N, 0.4°W). Its extent is about 350 

km² (Lazrak et al 2010a), the average plot area being about 4-5 ha1. This agricultural landscape 

comprises woods and villages (4% of the total area) and is mainly composed of cereals, maize, 

sunflower, rapeseed and of a minority of grasslands (15%). The number of mixed crop-livestock 

farms (cattle and goats) has indeed been reduced in favour of arable farms. The Niort plain is a 90 

European Natura 2000 area where LSO particularly matters for biodiversity preservation and both 

water quality and quantity issues.  

 

Methods at farm scale 
                                                
1 http://www.zaplainevaldesevre.fr/index.php 
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 95 

On-farm surveys and farmer decision rules 

 

In order to model farmer decisions, we combined farmer decision rules (Sebillotte and Soler 

1990; Aubry et al 1998b; Merot et al 2008) and the conceptual modelling framework of the on-

farm resource use model (Aubry et al 1998a and 2006; Navarrete and Le Bail 2007). The model 100 

of on-farm resource use describes the content and the determinants of such decision rules. We 

thus built a generic conceptual framework to model farmer decisions through (i) decisional 

variables, (ii) determinants and (iii) decision rules.  

(i) Decisional variables describe the content of the decision and give an answer to the question: 

“what is the decision about?” For allocating crops to land at farm scale, decisional variables have 105 

been identified as: suitable cultivation area for each crop (all suitable plots for the considered 

species), crop area (total area of a considered crop on the farming territory), crop return time 

(acceptable time to replant the same crop on the same plot) and preceding-following crop pairs 

(acceptable temporal crop sequences) (Maxime et al 1995; Aubry et al 1998a; Navarrete and Le 

Bail 2007).  110 

(ii) Determinants are all elements influencing the decisional variables: they can be of different 

natures (quantitative or qualitative) and internal (e.g. farm resources) or external to the farm (e.g. 

market conditions, climate). For example, on-farm labour force and market prices can determine 

the crop areas.  

(iii) Decision rules are the rules each farmer defines and follows, depending on the determinants, 115 

to make his choice for each decisional variable. For example, a rule could be “if the price of this 

crop is lower than [a threshold], then I will decrease this crop area”. 
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 In this study, we applied this rule-based model to analyse decisions dealing with crop 

choices and crop allocation to land. The necessary data for such a model requires specific on-

farm surveys (Merot et al 2008). Between 2006 and 2010, we carried out 67 surveys in the Niort 120 

plain landscape. We sampled 67 farms out of the 185 farms having the whole farming territory 

inside the study area. The sample was built in order to account for the diversity in farming 

systems and not to be representative of all farms. All on-farm surveys aimed at understanding the 

global functioning of the farm. In addition, we distinguished four specific goals, which were 

achieved through four successive sessions of on-farm surveys: 22 surveys in 2006 and 19 surveys 125 

in 2007 focused respectively on breeder and arable farmer strategies to cope with summer 

droughts and irrigation bans (Martin et al 2009; Havet et al 2010); 12 surveys in 2009 focused on 

farmer decisions dealing with crop spatial allocation and plot splitting (Schaller et al 2010); 14 

surveys in 2010 focused on the evolution over time of farmers' annual cropping plans. The 67 on-

farm surveys were semi-structured to encourage farmers to specify the reasons for their choices 130 

and how these choices could evolve over time, especially regarding the way they allocated crops 

to land.  

The on-farm understanding of such rotational principles and land allocation are now 

considered as the driving factors of landscape patterns (Thenail et al 2009). Such patterns can be 

detectable by statistical methods (Castellazzi et al 2007) and data mining methods (Mignolet et al 135 

2007; Lazrak et al 2010a). 

 

Methods at landscape scale 

 

The land-use data-base 140 
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To identify landscape stochastic regularities, we used a data-base providing information about the 

land-use in the Niort plain. This data-base was built by the Chizé Centre for Biological Studies, 

based on biannual land-use surveys covering an extent of 350 km² and going back to 1996 

(Lazrak et al 2010a). The two surveys in April and June made it possible to account for both 145 

early-harvested and late-planted crops. Each year, surveyors distinguished 47 land-uses (42 

agricultural, 3 urban and 2 forest land-uses) and updated the plot limits when necessary (Lazrak 

et al 2010a). The land-use surveys resulted in a GIS geodatabase in vector format. 

 

Theoretical background for modelling landscape regularities 150 

 

In order to model temporal and spatial landscape regularities, we used a stochastic data-mining 

approach based on a Markovian framework. Stochastic modelling for data mining is a convenient 

way of building statistical and probabilistic models for capturing the spatiotemporal data 

variability that is not yet fully understood. This Markovian framework is based on two 155 

assumptions in spatial and temporal domains respectively: (i) the Markov random field (MRF) 

assumption assumes that the land-use of a given field depends only on the land-use of the 

neighbouring fields; (ii) the Markov chain assumption assumes that the land-use of a given field 

in a year depends only on the land-use of the recent previous years in the same field. We used 

second order Hidden Markov Models (HMM2) to approximate the Markov assumptions, 160 

assuming that the distribution observations (land-uses) in an area at time t – the cropping plan – 

depend on the cropping plan observed at time t-1 or t-2. Hidden Markov Models (HMM) 

generalize Markov chains (Castellazzi et al 2008) through the presence of a supplementary 

hidden layer of states that models data structure and captures the variability of the observations. 

HMMs have been successfully used in speech recognition (Jelinek 1976), image processing 165 
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(Benmiloud and Pieczynski 1995), ecology (Le Ber et al 2006) and landscape agronomy (Lazrak 

et al 2010a). 

   

 An HMM2 is defined by 3 elements: 

(i) A set S = s1, s2, …, sN of N states. The states are the outcomes of the variables Xt, where t = 1, 170 

…, T.  

(ii) A transition matrix A = (aijk) over S3, where aijk is the a priori transition probability P(Xt = sk / 

Xt-2 = si, Xt-1 = sj) for the hidden Markov chain to be in state sk at index t assuming it was in state 

sj at index t-1 and si at index t-2. The Markov assumptions state that these a priori transition 

probabilities are constant. 175 

(iii) A set of N distributions over a set of observations: bi(.) is the distribution of the observations 

associated with state si. The observations may be of different types: single land-use of a plot, 

several land-uses – called n-uplet – corresponding to the plot occupations during n successive 

years, or corresponding to the occupations of the n neighbouring plots. These distributions may 

be parametric: for example implemented in specific tables that store the observation probabilities, 180 

or represented by other HMMs that analyze an observation sequence at a whole and compute its 

probability. In this case, the HMM is called a hierarchical HMM. In our landscape clustering 

study based on land-use successions, we used a master HMM2 having 6 states, each of them 

being a 12 state HMM2. This latter analyzes the 12 year land-uses of a plot and computes the 

time-sequence probability. The master HMM has an ergodic topology: all the states are 185 

interconnected. The states describe the homogeneous areas (called patches) in the landscape. The 

transition probabilities account for the neighbourhood relations between patches. The master 

HMM models the spatial structure whereas the state HMM models the temporal structure. Such a 

model is capable of clustering a landscape into 6 patches whose evolution in terms of land-use 
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successions is represented by a 12 state HMM. A more extended presentation of HMM2s, 190 

together with their performances in several data mining studies in agronomy and ecology can be 

found in Le Ber et al (2006), Lazrak et al (2010a). 

Two separate and complementary data-mining analyses were conducted. In the first one, 

the observations are the land-uses of a plot. The regularities are revealed by a hierarchical HMM2 

through the segmentation of the landscape into homogeneous patches, each of them having its 195 

land-use evolution described by a temporal state HMM2. In the second one, the observations are 

n-uplets elaborated from the land-uses of the neighbourhood plots. The regularities are revealed 

through the evolution of land-use neighbourhoods over time represented by a simple linear 6 state 

HMM2 that processes the n-uplets. 

 200 

Data-mining software for identifying landscape regularities 

 

ARPENTAGE2 (Analyse de Régularités dans les Paysages: Environnement, Territoires, Agronomie 

= Landscape Regularities Analysis: Environment, Territories and Agronomy) is a software based 

on HMM2 for analyzing spatiotemporal data-bases (Lazrak et al 2010a). ARPENTAGE takes as 205 

input an array of discrete data in which the columns contain the annual land-uses and the rows are 

regularly spaced locations of the studied landscape. The data-mining process starts with the data 

preparation, which consists of three stages: (i) defining land-use categories to reduce the great 

number of land-use modalities, (ii) defining the elementary observation (single category vs. n-

uplet made of several land-use categories) and (iii) choosing the spatial resolution to sample the 210 

studied landscape (Lazrak et al 2010a) because ARPENTAGE runs on raster data. 

                                                
2 http://www.loria.fr/~jfmari/App/ 
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 We simplified the 47 initial land-uses into 10 land-use categories as described by Lazrak 

et al (2010a), with the slight difference that winter barley has been assigned to the “Wheat” 

category and the “Grassland and Alfalfa” category has been divided into two categories: 

“Grasslands” and “Alfalfa” (Table 1). 215 

#Table 1 approximately here# 

We sampled the landscape with regular spaced grids ranging from 10m x 10m up to 640m 

x 640m. Using each grid, we computed a feature: the number of different 12-year land-use 

successions. With a coarse resolution, small fields are omitted so that their land-use successions 

are lost. On the other hand, with a fine resolution, the huge matrix of sampled points does not 220 

allow tractable computations. We chose the method described in Lazrak et al (2010a) to 

determine the grid resolution. A study of the variation of this feature as a function of the 

resolution showed that a 80m grid resolution was a satisfying trade-off to avoid both long 

calculation times and the omission of small plot characteristics: only 6% of the 12-year land-use 

successions were lost. 225 

  

 

Land-use evolution data mining: clustering the Niort plain landscape into homogeneous patches  
 

To perform the first data-mining analysis, we modelled the time-spatial structure of the landscape 230 

by a 6 state hierarchical HMM2 whose master HMM2 models the spatial structure, whereas the 

land-use evolution is modelled by the 12 state linear HMM2s (Figure 1). The purpose of a linear 

HMM2 is to segment the study period in as many temporal segments as states (Mari and Le Ber 

2006). In our case, each state was associated with one year. We located the land-use evolution by 

partitioning the study area into 6 homogeneous classes of patches in terms of land-use evolution. 235 
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This value was obtained from previous studies on the same data (Lazrak et al 2010a) and 

appeared to be a trade-off between heavy computations and useful clustering. 

 

  

#Figure 1 approximately here# 240 

 

Land-use neighbourhood data mining: analyzing the time evolution of neighbourhoods  

In this second data-mining analysis, we aimed at representing more precisely the evolution of 

sunflower and maize neighbourhoods over time, since these crops are in jeopardy in the region 

due to their sensitivity to summer droughts. To do so, we explicitly considered their 245 

neighbourhood relationships in the studied landscape.  

 The elementary observation was a 5-uplet of land-uses, also called quintuplet. A 80m 

resolution gave too many neighbourhoods (approximately 40 000 different land-use quintuplets, 

more than the computer can process). We reduced this number by replacing land-use quintuplets 

by land-use cliques. A clique is a 2-uplet made of the land-uses of 2 neighbouring plots, 250 

regardless to their directions (Lazrak et al 2010b). This replacement requires prior verification of 

the hypothesis that the land-use mosaic is isotropic (i.e. the direction does not hold any 

information). We studied the distribution of the 5-uplets occurring in the 12-year study period and 

calculated the marginal joint probability P(S, N) in each direction (North, South, East, West), 

where S and N are random variables of land-use categories respectively in a site and in its 255 

neighbour site. For the studied landscape, we found that P(S, N) were equal whatever the 

direction of neighbourhoods, which confirms that land-use mosaic is isotropic and allows us to 

use the land-use cliques as elementary observations.   
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 In order to assess the co-location of two land-use categories (x and y), we used Pointwise 

Mutual Information (PMI). PMI is usually used in text-mining (Novovičová et al 2004) to find 260 

pairs of co-located words. It is defined as follows: 

PMI(x, y) = log(P(N = x, S = y) / P(N = x) * P(S = y)) 

 PMI compares the probability of observing x and y: together (joint probability) and 

independently (chance). If there is an attraction between x and y, the joint probability P(x,y) is 

larger than P(x)*P(y) and then PMI>0 (Church and Hanks 1989). Inversely, if there is a repulsion 265 

between x and y, P(x,y) is lower than P(x)*P(y) and then PMI<0. A zero value means that 

allocation to land of x is independent of the allocation of y since P(x,y)=P(x)*P(y). Through on-

farm surveys, agronomists may seek the decision rules explaining the data-mined attraction or 

repulsion regularities between land-use categories.  

 We here calculated the PMI on the basis of the cliques, regardless of their orientation. We 270 

then analysed the evolution of the neighbouring relationships of sunflower and maize by 

clustering the study period with a linear HMM2 of 6 states. This linear HMM2 defines six 

disjoint periods. In order to draw a global overview on neighbouring land-use evolution, we 

chose the periods 1998-2000 and 2004-2006 corresponding to states 2 and 5 of the 6-state linear 

HMM2.  275 

By confronting the results of on-farm surveys about farmer decisions and the results of 

data-mining about landscape stochastic regularities, we now assess the coherence of the two 

approaches and how they can aid one another for landscape modelling.  

 

Results 280 
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Farmer decision rules can be assessed at the landscape scale thanks to landscape stochastic 

regularities: example of sunflower 

 

Through on-farm surveys from 2006 to 2010, we identified common farmer decision rules 285 

regarding sunflower. After 2005, farmers generally chose to decrease the total area dedicated to 

sunflower on their farming territory (39 out of 67; Table 2). This decision was explained by two 

factors. The first one was the frequent summer droughts occurring in the region and particularly 

affecting sunflower yields, since this crop is planted in spring and needs water during summer. 

Farmers tended to replace sunflower by a less risky crop like rapeseed. The second factor was the 290 

European Common Agricultural Policy (CAP) reform of 2003 applied since 2006 in France. This 

factor specifically concerned mixed crop-livestock farms. Before the CAP reform, farmers got 

compensatory payments on the basis of the amount produced (product based subsidies): they had 

a specific amount of money for each cash crop, but no subsidy for grasslands. After the reform 

and the decoupling, they got single payments only depending on the eligible farm area (land 295 

based subsidies) and regardless of their cropping plans and production (Bougherara and Latruffe 

2010). As a consequence, before the reform, most breeders tended to grow rye-grass until May to 

cut it once for hay, but they planted sunflower just thereafter in order to get the annual subsidy. 

On the contrary, they now more frequently keep the planted rye-grass until fall to cut it several 

times in the year and get the subsidy even without sunflower. The decision of decreasing the 300 

sunflower area implied another decision at farm scale: some farmers reduced the suitable crop 

area of sunflower on their farming territories and they concentrated it on the best places for 

sunflower. They stopped growing it close to the forests due to frequent damage of rabbits and 

crows in the vicinity of forests. In table 2, we give the number of farmers having explicitly 

enunciated this rule (9 out of 26 asked farmers). One should however note that, unlike the 9 305 



 17 

farmers having enunciatedthe rule, 10 farmers out of 26 did not have several patches of forests 

within a 500m-distance of the plots or did not grow sunflower on their farms, and were thus not 

concerned by this rule.  

#Table 2 approximately here# 

 We sought landscape stochastic regularities involving sunflower in order to see if the 310 

farmer decision rules identified at farm scale were consistent with observed landscape dynamics. 

First, the sunflower frequency substantially fell in the late 2000’s at the landscape scale: the 

frequency was approximately divided by a factor of 2 between 1996 and 2007 (Figure 2). 

Furthermore, figure 3(a) shows the evolution of the PMI between sunflower and other land-uses 

over the period and at landscape scale. It suggests that sunflower was in a relation of spatial 315 

repulsion with forests and grasslands over the whole period, while it was in a relation of spatial 

attraction with rapeseed and wheat. Besides, sunflower became less frequently close to forests 

and maize over the studied period. This landscape spatiotemporal regularity is thus consistent 

with individual farmer decision rules identified by on-farm surveys, which could explain the 

regularity at the landscape scale.  320 

#Figures 2 and 3 approximately here# 

 

Farmer decision rules contribute to explaining landscape stochastic regularities: example of maize 

 

In parallel with the first example, figure 3(b) shows the evolution between the beginning (1998-325 

2000) and the end (2004-2006) of the period of the PMI between maize and other land-uses at 

landscape scale. It clearly suggests that maize was more frequently close to grasslands (stronger 

attraction) and less frequently close to wheat (weaker attraction). It also shows that maize and 
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respectively forests, sunflower and especially rapeseed were increasingly repulsed over the 

period. 330 

 We sought to identify generic farmer decision rules that would give explanatory elements 

to this time evolution of the neighbourhoods. Through on-farm surveys, we found that the maize 

area tended to decrease and to be mostly maintained in the vicinity of grasslands for several 

reasons. In fact, farmers had to adapt to a context of frequent summer droughts in the Niort plain 

landscape, leading to temporary irrigation bans (Martin et al 2009). Maize (grain or silage) is only 335 

grown in deep humid soils, which are rather scarce in the Niort plain landscape (17% of arable 

soils) and/or in irrigated plots. Consequently, the adaptation strategies to water shortage mainly 

depend on the access to deep soils and the farming system. A common decision rule regarding the 

suitable cultivation area is that farmers only grow maize in deep and humid soils when they have 

no access to irrigation (40 out of 67; Table 2). They grow maize as a monoculture in the vicinity 340 

of grasslands traditionally well adapted to be located in deep and humid soils. 16 out of the 67 

surveyed farmers were not concerned by the rule though, since they only grow corn in irrigated 

plots. Then, the crop allocation choices also depend on the farming system and the irrigation 

capacity, modulated by a risk of restriction. On arable farms, grain maize is not a priority crop 

and too risky due to irrigation bans, so that arable farmers decide to decrease the maize area 345 

(Table 2). On mixed crop-livestock farms, maize is a priority crop for feeding herds. Maize is 

thus mainly maintained as silage when they have access to irrigation. At the same time, maize 

production becomes increasingly risky due to climate variability and irrigation restrictions, so that 

breeders tend to expand grasslands area to complement and secure fodder production (Table 2). 

This approach results in maize being mainly maintained on mixed crop-livestock farms with 350 

significant grasslands area on farms. Finally, all these decisions appear to be generic and 
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consistent with the fact that maize became more frequently close to grasslands over the period at 

landscape scale. 

 

Links between time evolution of land-use neighbourhoods and clustering of the Niort plain 355 

landscape 

 

 After having commented the results concerning the analysis of the time evolution of land-

use neighbourhoods, we now present the map resulting from the segmentation of the landscape 

using a Markovian framework (Figure 4) and the possible consistency with previous results. This 360 

map consists of patches characterized by homogeneous evolution of land-use areas summarized 

in small associated graphs. The map thus gives the possibility to locate, inside the landscape, the 

places where a certain land-use area decreased or increased and to compare the patches regarding 

their land-use area evolutions over time. The map unit (a) refers to patches where maize is the 

most frequent land-use. In these patches, grasslands seem to have increased since 2004 365 

simultaneously to maize decrease. As a consequence, these patches may represent breeder 

practices, as described above. The map units (b) and (c) represent crop areas where maize has 

been partially replaced by grasslands. The map unit (d) refers to patches where grasslands are the 

most frequent land-use, which may correspond to areas with deep and humid soils. Despite a 

global decreasing trend, maize appears to be more frequent in this grassland patch than in crop 370 

areas, which is consistent with the rule consisting in growing maize only in deep and humid soils. 

Map unit (e) represents patches were forests are the most important land-use and where sunflower 

is very scarce and decreasing over the period.  

#Figure 4 approximately here# 

 375 
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Discussion 

 

A new framework for landscape modelling 

 

We have here pointed out that the two modelling methods (farmer decision rules analysis and 380 

landscape stochastic regularities computation) aid one another for land-use modelling at the 

landscape scale and understanding the driving forces of its spatial organization. In line with 

Thenail et al. (2009) and Sorel et al. (2010), we argue that spatiotemporal crop allocation to field 

patterns is designed at the farm scale.  

 We managed to create a map of spatiotemporal regularities, partly explained by generic 385 

farmer decision rules (Figure 4). The combination of an ergodic HMM and a Markov chain made 

it possible to account for both spatial and temporal changes, despite the difficulties of handling 

both these dimensions (Verburg 2006). Following the work of Lazrak et al. (2010a), this map 

constitutes a partitioning of the landscape, based on both its spatial and temporal organization and 

maximizing the probability that the model fits the data. This drawing of new spatial patterns 390 

coherent with land-use dynamics at the landscape scale may improve the links to the scale of 

ecological processes (Pelosi et al 2010). We could in addition account for possible changes in 

crop proportions whereas simple transition matrices in Markov chains (Castellazzi et al 2008) 

induce stationary crop proportions when used to simulate crop successions. 

 Moreover, in contrast to a time-invariance of the socioeconomic context and of the driving 395 

factors of landscape changes (Sorel et al 2010), an originality of our approach relies on 

accounting for a changing context. The modification of socioeconomic and climatic driving 

factors induced in our case changes in crop proportions over the studied period. In the Niort plain 

region, the EU Common Agricultural Policy reform contributed to decreasing the total sunflower 
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area, while the frequent drought risk contributed to reducing the maize area. These crop 400 

proportion changes resulted in changes in the landscape patterns, which can in turn impact 

environmental issues. Hence, our approach seems to be useful for landscape modelling and thus 

for a better knowledge of the interactions between ecological processes and landscape dynamics. 

 

Remaining challenges 405 

 

One limit of our approach is that not all farmer decisions are generic enough to be assessed at 

landscape scale. For example, through on-farm surveys, we identified two different management 

strategies for alfalfa. On arable farms, a common rule was to implant alfalfa all at the same time 

in order to simplify the cropping system and only in marginal areas. It was also a mean for 410 

farmers to get specific subsidies within the framework of the CAP Territorial Agroenvironmental 

Measures implemented in France. On the contrary, on mixed crop-livestock farms, a common 

rule was to grow alfalfa of different ages (1 to 5 years). The gradual implantation aims at securing 

the fodder production considering that alfalfa yields depend on the age of the implanted alfalfa. 

And yet, it was not possible to identify a spatiotemporal regularity about alfalfa. The fact that 415 

alfalfa concerns a marginal area (<4%) compared to commercial crops can explain the difficulty 

in identifying landscape regularity and assessing the associated rule at landscape scale. Sorel et al 

(2010) also noted that marginal crops (the ones with small proportions of the landscape area) 

were the least well predicted concerning crop spatiotemporal allocation compared to major crops. 

This observation confirms that stochastic modelling, either Markov models or stochastic decision 420 

trees, is difficult to carry out for marginal areas. Nevertheless, even if not all generic, we think 

that it is still important to identify these decisions because they give the possibility of identifying 

innovative and potential future farmer adaptations to a changing context. 
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 Moreover, as mentioned by Thenail and Baudry (2004), many decisions for 

spatiotemporal crop allocation to landscape patterns are specific to certain farm types (e.g. arable 425 

vs. mixed crop-livestock farms). Given that the different farm types can be spread over 

discontinuous landscape units within the landscape, it is difficult to assess specific rules at the 

landscape scale. This is again consistent with the results of Sorel et al (2010): they appear to get 

less success in predicting spatiotemporal crop allocation when using generic Markov models than 

when using farm type specific ones. In our approach, we did not identify stochastic regularities at 430 

the level of a discontinuous landscape composed by only a certain farm type: our interest was to 

link the farm and the landscape scales when farmer rules are generic enough to impact landscape 

patterns. One must however notice that the choice of considering continuous or discontinuous 

landscapes is of variable interest depending on the ecological process studied and the objective to 

be achieved (Pelosi et al 2010). 435 

 A second limit of our approach is due to the difficulty in determining the part of each rule 

explaining a regularity when several farmer decision rules are possible. For example, we 

identified a strong regularity of neighbourhood between grasslands and built-up areas (not 

shown). Two possible farmer rules could explain this regularity. The first one is that most farmers 

allocate permanent grass or set-asides instead of commercial crops next to houses in order to 440 

avoid agrochemical spraying in small plots close to citizens’ houses. The second rule is that most 

dairy breeders put grasslands just next to the milking room so that dairy cows can graze in the 

vicinity of the dairy barn, which is in accordance with several authors (Benoît 1990; Marie et al 

2009). Our difficulty is to determine the part of each rule in explaining the regularity of the 

neighbourhood between grasslands and built-up areas, which is also related to the scarcity of 445 

available data: there is indeed no data-base about buildings in rural landscapes with a distinction 

between urban and agricultural buildings (and among them, with the specific use of each 
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building). To overcome the difficulty of determining the explaining part of different rules, one 

interesting perspective of our work could be the complementary use of landscape simulation 

software. We could generate landscape patterns according to different farmer rules and compare 450 

them to random landscapes vs. real landscapes.  

 

Conclusion: contribution of landscape agronomy to landscape ecology 

 

As a conclusion, the two modelling methods of farmer decisions and landscape regularities have 455 

been respectively used for a long time now. Our paper suggests that a new approach consisting in 

a combination of the two methods helps in articulating the farm and the landscape scales for land-

use modelling and improving our understanding of land-use processes. The originalities rely on 

(i) the combination of two methods used separately so far and (ii) the accounting for both the 

spatial and the temporal dimensions of crop allocation to landscape patterns in a changing 460 

context. Thanks to more on-farm surveys and to remote sensing improvements and developing 

spatial land-use data-bases (e.g. CAP declarations in Europe) for data-mining, such an approach 

could be applied in the future in other landscapes for upscaling. 

 As landscape agronomists, we consider that the crop mosaic inside agricultural landscapes 

is organized by farmers. On the other hand, landscape ecologists view the landscape as a random-465 

like phenomenon influenced by natural factors (Burel and Baudry 2010). Our study therefore 

seeks to contribute to landscape ecology through a deeper insight into the relationships between 

landscape spatial organization, its driving forces and its impacts on ecological processes.  
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Tables 

Table 1: Land-use categories used for data-mining analysis (time period: 1996-2007) 

LAND-USE CATEGORY LAND-USE FREQUENCY CUMUL. FREQUENCY 
Wheat (W) wheat, bearded wheat, winter barley, 

cereal(*) 
0.372 0.372 

Sunflower (S) sunflower, ryegrass followed by sunflower 0.139 0.511 
Rapeseed (R) rapeseed 0.124 0.635 
Urban (U) built area, peri-village, road 0.095 0.730 
Maize (M) maize, rye grass followed by maize 0.076 0.806 
Grasslands (G) permanent grassland, grassland first year, 

temporary grassland (2-3 years), grassland 
of unknown age 

0.055 0.861 

Forest and wasteland (F) forest or hedge, wasteland (uncultivated) 0.035 0.896 
Alfalfa (A) alfalfa 1st year, alfalfa 2nd year, alfalfa 3rd 

year, alfalfa more than 3 years 
0.026 0.922 

Ryegrass (Y) ryegrass, ryegrass followed by ryegrass 0.024 0.946 
Pea (P) pea 0.022 0.968 
Others (O) spring barley, grape vine, spontaneous 

fallow in June, foxtail millet, flax, oat, 
clover, field bean, rye grass followed by 
tillage, rye grass followed by unknown, 
spontaneous fallow followed by tillage, 
rye, cereal-legume mixture, spring crop, 
mustard, garden/market gardening, 
sorghum/millet, sorghum, millet, tillage, 
tobacco, other crop 

0.032 1.000 

(*) cereal is used when the species cannot be identified by the surveyor (it can be wheat, barley, ryegrass or other) 

 480 
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Table 2: Farmer decision rules regarding sunflower and maize allocation to land (identified through on-farm 
surveys) 

Number of farmers applying the rule Decisional 
variable 

Determinants Decision rule 
2006 2007 2009 2010 Total 

Crop area for 
sunflower 

Climatic risk 
affecting yields; 
CAP reform and 
decoupling 
 

Reduce the 
sunflower area 

12 (/22) 9 (/19) 7 (/12) 11 (/14) 39 (/67) 

Suitable 
cultivation area 
for sunflower 

Forests in the 
neighbourhood 
and associated 
crop damage 
 

Plots close to 
forests (<500m) 
not suitable for 
sunflower 

- - 3 (/12) 6 (/14) 9 (/26) 

Suitable 
cultivation area 
for maize 
without 
irrigation 
 

Type of soil 
(depth and 
humidity of soil) 

Only plots with 
deep and humid 
soils suitable for 
maize without 
irrigation 

9 (/22) 10 (/19) 9 (/12) 12 (/14) 40 (/67) 

Crop area for 
maize on arable 
farms 

Climatic risk 
affecting yield; 
only cash crop 
function (sold) 
 

Reduce the 
maize area on 
arable farms 

5 (/5) 8 (/10) 3 (/5) 3 (/6) 19 (/26) 

Crop area for 
maize on mixed 
crop livestock 
farms 
 

Maize is used to 
feed herds 

Maintain maize 
production on 
mixed crop 
livestock farms 

16 (/17) 8 (/9) 5 (/7) 6 (/8) 35 (/41) 

Crop area for 
grasslands on 
mixed crop 
livestock farms 

Climatic risk 
affecting maize 
yields: need to 
secure fodder 
production 

Increase the 
grasslands area 
on mixed crop 
livestock farms 

16 (/17) 9 (/9) 5 (/7) 5 (/8) 35 (/41) 

 
 

485 
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Figure captions 485 

Figure 1: Example of hierarchical HMM2. Each spatial state a, b, c, d of the master HMM2 

(ergodic model) is a temporal HMM2 (linear model) the states of which are 1, 2, 3. In our study, 

the ergodic model has 6 states, each of them being associated to a spatial area (patch), whereas 

the linear HMM2 have 12 states, each of them being associated to one year. 

 490 

Figure 2: Frequency evolution of sunflower at the landscape scale over the study period 

 

Figure 3: PMI between sunflower and other land-uses (a) and between maize and other land-uses 

(b). For each land-use, two confidence intervals show the evolution of the neighbourhood starting 

in 1998-2000 (1) and ending in 2004-2005 (2). When the confidence intervals overlap 495 

themselves, only their union is shown. The interval shift shows the spatial attraction or repulsion 

process. The confidence intervals are computed using a 40m resolution and a 5% risk. See Table 

1 for land-use category details.  

 

Figure 4: Segmentation of the Niort Plain landscape in patches characterized by homogeneous 500 

evolution of land-use areas over the studied period. White areas are unclassified because there 

was insufficiently surveyed land-use over the 1996-2007 period. The location of the Niort Plain 

in France is depicted in the upper left-hand box. The map legend (evolution of land-use areas in 

each patch) is illustrated in small graphs in the frame. There are 6 map units: (a) to (f). Each map 

unit is described by 2 diagrams: (i) a left-hand diagram showing the evolution of all land-use 505 

categories in patches belonging to the considered map unit and (ii) a right-hand diagram showing 

a zoom on interesting land-use categories. The map unit (a) refers to patches where maize is the 

most frequent land-use. The map units (b) and (c) represent crop areas where maize has been 
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partially replaced by grasslands. The map unit (d) refers to patches where grasslands are the most 

frequent land-use. Map unit (e) represents patches were forests are the most important land-use. 510 

Map unit (f) represents urban areas. 
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