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Abstract. Flexible querying of information systems allows expressing
complex preferences in user queries. Such preferences can be modeled by
fuzzy bipolar conditions which are made of constraints c and wishes w
and interpreted as ”to satisfy c and if possible to satisfy w”.We define
in this article the main elements of the Bipolar SQLf language, which
is an SQL-like querying language based on a bipolar relational algebra
[11, 3]. This language is an extension of the SQLf language [2, 1]. Ba-
sic statements (projection, selection, etc.) are firstly defined in terms of
syntax, evaluation and calibration. Then, complex statements, such as
bipolar queries based on nesting operators are studied in terms of ex-
pression, evaluation, query equivalence and backward compatibility with
the SQLf language.

Keywords: Flexible Querying, Fuzzy Bipolar Conditions, Fuzzy Bipo-
lar Algebra, SQLf Language, Bipolar SQLf Language.

1 Introduction

Flexible querying of databases allows users to express preferences in their queries.
Within this framework, numerous tools have been proposed such as Preference
SQL [5], SQLf language [2, 1], Top-k queries [9], the winnow operator [8], etc.
which are based on diverse mathematic foundations.

In the context of fuzzy querying, user preferences are expressed by fuzzy
predicates (such as high, fast, expensive, etc.) which are defined by fuzzy sets
[13]. The SQLf language is an extension of the SQL language to fuzzy conditions,
which allows expressing queries addressed to relational databases. Such queries
deliver a set of tuples attached with degrees used to rank them from the most to
the least preferred. In this context, it is also possible to consider fuzzy bipolar
conditions to model preferences.

A bipolar condition is a compound condition made of negative and positive
conditions. Several interpretations have been introduced for the evaluation of
queries involving such conditions (see [6, 7, 12, 14, 15]). In this paper, we rely
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on the interpretation introduced by Dubois and Prade [6, 7], in which a bipolar
condition is made of a constraint c and a wish w. It is noted (c, w) and means
”to satisfy c and if possible to satisfy w”. More precisely, for the expression of
user preferences, we rely on fuzzy bipolar conditions in which the constraint and
the wish are defined by fuzzy sets. Furthermore, we define a fuzzy bipolar query
as a query that involves fuzzy bipolar conditions. More precisely, when querying
a relation R with a fuzzy bipolar condition, each tuple t from R is then attached
with a couple of grades (µc(t), µw(t)) that expresses the degree of its satisfaction
to c and w and a so-called fuzzy bipolar relation is obtained.

In order to define a bipolar relational algebra, the algebraic operators (selec-
tion, projection, join, union, intersection) have been extended to fuzzy bipolar
conditions [11, 3]. These operators allow the expression of fuzzy bipolar queries.

We are aimed in this article to define the Bipolar SQLf language which is an
SQL-like language based on a bipolar relational algebra. Since fuzzy bipolar con-
ditions generalize fuzzy conditions, we consider the enrichment to fuzzy bipolar
conditions of the SQLf language [2, 1] which is devoted to flexible querying with
fuzzy sets. At the first step basic Bipolar SQLf queries are defined in terms of
expression, evaluation and calibration. Then, complex bipolar queries based on
nesting (in=, in≈, exists, θany) and partitioning operators are defined.

The remainder of this paper is as follows. In section 2, both fuzzy sets theory
and the SQLf language are described. Section 3 introduces respectively fuzzy
bipolar conditions, the bipolar relational algebra defined in [11, 3] and the basis
of the Bipolar SQLf language. In section 4, the extension of advanced Bipolar
SQLf statements to fuzzy bipolar conditions is studied. Section 5 sums up our
contribution and draws some lines for future works.

2 Flexible Querying Within the SQLf Language

We introduce in this section the fuzzy sets theory and the SQLf language.

2.1 The Fuzzy Sets Theory

The fuzzy sets theory is introduced by Zadeh [13] to express the gradual member-
ship of an element to a set. Formally, a fuzzy set F is defined on a referential U by
a membership function µF : U 7→ [0, 1] such that µF (x) denotes the membership
grade of x in F . In particular, µF (x) = 1 denotes the full membership of x in F ,
µF (x) = 0 expresses the absolute non-membership and when 0 < µF (x) < 1, it
reflects a partial membership (the closer to 1 µF (x), the more x belongs to F ).

A fuzzy set generalizes an ordinary (crisp) set in which membership grades
are in {0, 1}. If a fuzzy set is a discrete set then it is denoted F = {µF (x1)/x1,
..., µF (xn)/xn}, otherwise, it is characterized by its membership function, gen-
erally a trapezoidal function.

The union ∪ and the intersection ∩ operators are defined with a couple of
(t-norm, t-conorm) such as (min, max). Let F , G be two fuzzy sets, µF∪G(x) =
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max(µF (x), µG(x)), µF∩G(x) = min(µF (x), µG(x)), and the complement of F ,
noted F c, is defined by µF c(x) = 1− µF (x).

The logical counterparts of ∩, ∪ and the complement are resp. ∧,∨ and ¬.
Other operators have also been defined such as fuzzy implications [4].

2.2 The SQLf Language

The SQLf language [2, 1] is an extension of the SQL language to flexible querying
based on fuzzy conditions. An SQLf query delivers a fuzzy relation r where the
grade of membership of tuple t expresses its level of satisfaction.

The SQLf language is based on the fuzzy relational algebra, in which rela-
tional algebra operators have been extended to fuzzy predicates as follows: let
r, s be two fuzzy relations such that the schema of r (resp. s) is X (resp. Y ):
Fuzzy projection: µπ(r,V )(v) = maxwµr(vw), where V ⊆ X, v ∈ V and
w ∈ (X − V ).
Fuzzy selection: µσ(r,p)(x) = min(µr(x), µp(x)), where p is a fuzzy predicate.
Fuzzy join: µ./(r, s, θ, A,B) = min(µr(x), µs(y), µθ(x.A, y.B)), where A and B
are compatible sets of attributes such that A (resp. B) is a subset of X (resp.
Y ) and x.A (resp. y.B) is the value of A in x (resp. B in y), and θ is either a
crisp or a fuzzy binary operator (θ ∈ {=,≈, <,>,much larger than, ...}).

The basic form of an SQLf query is a fuzzy restriction defined as follows:
Select [ distinct ] [n|t|n,t] attributes From relations Where fuzzy cond;
This query returns a set of ranked tuples with their attached degree, where

n specifies an n-top query and t ∈]0, 1] is a minimal threshold of satisfaction.
Example 1: Let fast be a fuzzy predicate defined on R+ → [0, 1]: µfast(d) =

1, if d ∈ [0, 2]; −d3 + 5
3 , if d ∈ [2, 5] and 0, otherwise. The query ”find the 2 fastest

journeys from Brussels to Paris” can be expressed in SQLf by:
Select 2 #journey From Journey Where

source=’Brussels’ and destination=’Paris’ and fast (duration);
The fuzzy condition fast delivers the fuzzy relation FastJourney, where

µFastJourney(t) = µFast(t.duration). Table 1 is an example of the fuzzy relation

fastJourney and journey #12 and either journey #13 or #10 are delivered. p

Table 1. Extension of the fuzzy relation fastJourney.

#Journey cost ($) duration (h) ... µFastJourney

12 70 2 ... 1

13 50 3 ... 0.66

10 50 4 ... 0.66

The SQLf language allows the expression of more complex statements such
as partitioning, nesting and division involving fuzzy relations. For example, the
query ”find journeys for which most of their steps are comfortable” corresponds
to a partitioning based on fuzzy quantified propositions.
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3 Flexible Querying and Bipolarity

In this section, we introduce fuzzy bipolar conditions, a bipolar relational algebra
[11, 3] and the basis of Bipolar SQLf language.

3.1 Fuzzy Bipolar Conditions

A bipolar condition is a compound condition which is made of two conditions
defined on the same universe: i) a constraint c, which describes the set of accept-
able elements, and ii) a wish w which defines the set of desired elements. Since it
is incoherent to wish a rejected element, the property of coherence w ⊆ c holds.

It is worth mentioning that the linguistic expression of a fuzzy condition
may not follows the coherence property. As an example, a user may think of
”a japanese car and if possible a red car”, however, such a condition should be
clearly be rewritten ”a japanese car, and if possible a japanese and red car”.

In addition, condition c is mandatory in the sense that an element which does
not satisfy it is rejected. Condition w is optional in the sense that an element
which does not satisfy it is not necessarily rejected.

If c and w are boolean conditions, the satisfaction with respect to (c, w) is
a couple from {0, 1}2. When querying a database with such a condition, tuples
satisfying the constraint and the wish are returned in priority to the user. If such
answers do not exist, tuples satisfying only the constraint are delivered.

If c and w are fuzzy conditions (defined on the universe U), the property of
coherence becomes: ∀u ∈ U, µw(u) ≤ µc(u) and the satisfaction with respect to
(c, w) is a couple of degrees from [0, 1] × [0, 1]. Each element u from U is then
attached with a pair of grades (µc(u), µw(u)) that expresses the degree of its
satisfaction respectively to the constraint c and to the wish w.

In the context of bipolar relations, a tuple t is then denoted (µc, µw)/t. We
assume that any tuple u such that µc(u) = 0 does not belong to the fuzzy
bipolar relation. In addition, tuples cannot be ranked from the most to the least
preferred using an aggregation of µc and µw because constraints and wishes are
not commensurable. However they can be ranked using the lexicographical order:
t1 is preferred to t2, denoted t1 > t2 or (µc(t1), µw(t1)) > (µc(t2), µw(t2)), iif
µc(t1) > µc(t2) or (µc(t1) = µc(t2) ∧ µw(t1) > µw(t2)). Since the constraint is
mandatory, its satisfaction is firstly used to discriminate among answers. The
satisfaction with respect to the wish being not mandatory, it can only be used
to discriminate among answers having the same evaluation with respect to the
constraint. A total order is then obtained on c and w (with (1, 1) as the greatest
element and (0, 0) as the least element).

Based on the lexicographical order, the lmin and lmax operators [10, 3] are
used to define the conjunction (resp. intersection) and the disjunction (resp.
union) of bipolar conditions (resp. relations).

They are defined on ([0, 1]× [0, 1])2 → [0, 1]× [0, 1] as follows:

((µ, η), (µ′, η′)) 7→ lmin((µ, η), (µ′, η′)) =

{
(µ, η) if µ < µ′ ∨ (µ = µ′ ∧ η < η′),

(µ′, η′) otherwise.
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((µ, η), (µ′, η′)) 7→ lmax((µ, η), (µ′, η′)) =

{
(µ, η) if µ > µ′ ∨ (µ = µ′ ∧ η > η′),

(µ′, η′) otherwise.

The lmin (resp. lmax) operator is commutative, associative, idempotent and
monotonic. The couple of grades (1, 1) is the neutral (resp. absorbing) element
of the operator lmin (resp. lmax) and the couple (0, 0) is the absorbing (resp.
neutral) element of the operator lmin (resp. lmax).

It can be noticed that a fuzzy predicate is a fuzzy bipolar predicate such
that ∀x, (µc(x) = µw(x)), which means that a fuzzy condition is a fuzzy bipolar
condition in which the wish is equal to the constraint. In other words, fuzzy
bipolar conditions generalize fuzzy condition and it has been proven [10, 3] that
lmin (resp. lmax) generalizes the t-norm min (resp. the t-conorm max).

3.2 Basis of the Bipolar Relational Algebra

We introduce the bipolar relational algebra proposed in [11, 3]. It is based on
the couple (lmin, lmax). Let r and s be two fuzzy bipolar relations defined
respectively by the fuzzy bipolar conditions (c1, w1) and (c2, w2).

The intersection: r ∩ s is a fuzzy bipolar relation defined as follows:
r ∩ s = {(µc, µw)/t|(µc1 , µw1

)/t ∈ r ∧ (µc2 , µw2
)/t ∈ s∧

(µc, µw) = lmin((µc1(t), µw1
(t)), (µc2(t), µw2

(t)))}.
The union: r ∪ s is a fuzzy bipolar relation defined as follows:
r ∪ s = {(µc, µw)/t|(µc1 , µw1

)/t ∈ r ∧ (µc2 , µw2
)/t ∈ s∧

(µc, µw) = lmax((µc1(t), µw1
(t)), (µc2(t), µw2

(t)))}.
The cartesian product: r⊗ s is a fuzzy bipolar relation defined as follows:
r ⊗ s = {(µc, µw)/t⊕ t′|(µc1 , µw1

)/t ∈ r ∧ (µc2 , µw2
)/t′ ∈ s

∧(µc, µw) = lmin((µc1(t), µw1
(t)), (µc2(t′), µw2

(t′)))},
where ⊕ is the operator of concatenation of tuples.

The projection π: the projection of distinct tuples of r on attributes
a1, ..., ak is a fuzzy bipolar relation of tuples 〈a1, ..., ak〉 defined by:

πa1,...,ak(r) = {(µ′c1 , µ
′
w1

)/ 〈a1, ..., ak〉 |
(µ′c1 , µ

′
w1

) = lmaxt∈r∧t[a1,...,ak]=〈a1,...,ak〉((µc1(t), µw1(t))),
where t[a1, ..., ak] is the value of the tuple t on the attributes a1, ..., ak.

The selection σ: the selection of tuples from r, based on the fuzzy bipolar
condition (c′, w′) is defined as:

σ(r, (c′, w′)) = {(µc, µw)/t|(µc1 , µw1
)/t ∈ r∧

(µc, µw) = lmin((µc′(t), µw′(t)), (µc1(t), µw1
(t)))}.

The join operator ./: as in the SQL and SQLf languages, the join opera-
tor is defined by the bipolar selection operator applied over a bipolar cartesian
product. This operator is studied in Section 4.

3.3 Bipolar SQLf Basic Statements

A Bipolar SQLf basic statement is a fuzzy bipolar selection applied over a bipolar
projection operator. It has the following form:
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Select [distinct] [n|t|(t1, t2)|n, t|n, (t1, t2)] attributes From

relations [as alias] Where (c, w);

The parameters intended to calibration of the result are also extended to
bipolarity. A bipolar top k query is obtained by positioning the optional integer
n, which delivers the n best tuples attached with the n greatest couples of
degrees in the sense of the lexicographical order. The qualitative calibration can
be specified by either a threshold t ∈ [0, 1], which delivers tuples u such that
(µc(u), µw(u)) ≥ (t, 0), or a couple of thresholds (t1, t2) ∈ [0, 1]2, such that
t2 ≤ t1, which delivers tuples u such that (µc(u), µw(u)) ≥ (t1, t2).

Example 2: The query ”find the 2 best journeys which are fast and if
possible not expensive”, can be expressed in Bipolar SQLf as:

Select 2 #Journey From Journey as J Where

(fast(J.duration), notexpensive(J.cost));

Due to the coherence property of fuzzy bipolar conditions, the fuzzy bipolar
condition ”fast and if possible and not expensive” is interpreted as ”fast and
if possible (fast and not expensive)”.

The fuzzy predicate expensive can be defined as ∀x ∈ R+: µExpensive(x) = x
80 ,

if x ∈ [0, 80]; 1, otherwise; where x expresses the cost of a journey. Its negation
is defined as follows: ∀x ∈ R+, µnotExpensive(x) = 1− µExpensive(x).

Based on the definition of fuzzy predicates fast (example 1) and not expensive,
the query is evaluated over the relation Journey and delivers the fuzzy bipolar
relation Journey(Fast, notExpensive) (see Table 2). The returned tuples are ranked
using the lexicographical order : (1, 0.13)/12, (0.66, 0.38)/13. The tuple #12 is
the best one with regard to the constraint (total satisfaction), and tuples #13
and #10 have the same satisfaction with respect to the constraint but #13 is
better than #10 on the wish. p

Table 2. Fuzzy bipolar relation Journey(Fast, notExpensive).

#Journey cost ($) duration (h) µFast µFast ∧µnotExpensive

12 70 2 1 0.13

13 50 3 0.66 0.38

10 50 4 0.66 0.33

4 Extension of Complex SQLf Statements to Bipolarity

In this section, we define the bipolar join operator. Then, the extension to bipo-
larity of nesting operators (in=, in≈, exists, θany) and aggregate functions are
defined in the scope of their equivalence to the bipolar join operator. Since fuzzy
bipolar conditions generalize fuzzy conditions, the bipolar definition of these
operators is based on the extension to bipolarity of the SQLf statements.
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4.1 Extension of the Join Operator to Bipolarity

The basic form of an SQLf join query is as follows:
Q1: Select R.A, R′.B From R, R′ Where c1(R) and c2(R′) and R.att1 = R′.att2;
where c1 and c2 are two fuzzy conditions applied resp. on relations R and R′.

Tuples u = (a, b) delivered from Q1 are attached with degrees processed by
the following formula (1):

µQ1(u) = max
t∈R∧t′∈R′∧t.A=a∧t′.B=b

min(µR(t), µc1(t), µR′(t′),

µc2(t′), µ=(t.att1, t
′.att2)) (1)

The formula (1) can be rewritten as follows:

µQ1(u) = max
t∈R∧t′∈R′∧t.A=a∧t′.B=b∧t.att1=t′.att2

min(µR(t), µc1(t),

µR′(t′), µc2(t′)) (2)

In the context of bipolarity, the basic form of a join query is as follows:
Q2: Select R.A, R′.B From R, R′ Where

(c1(R), w1(R)) and (c2(R′), w2(R′)) and R.att1 = R′.att2;
The definition of the join operator based on the formula (1) is as follows:

(µcQ2
(u), µwQ2

(u)) = lmax
t∈R∧t′∈R′∧t.A=a∧t′.B=b

lmin((µRc
(t), µRw

(t)),

(µc1(t), µw1
(t)), (µR′

c
(t′), µR′

w
(t′)), (µc2(t′), µw2

(t′)),

(µ=(t′.att2, t.att1), µ=(t′.att2, t.att1))) (3)

Based on the formula (2), tuples u = (a, b) delivered from Q2 are attached
with couples of degrees processed by the following formula (4):

(µcQ2
(u), µwQ2

(u)) = lmax
t∈R∧t′∈R′∧t.A=a∧t′.B=b∧t.att1=t′.att2

lmin(

(µRc
(t), µRw

(t)), (µc1(t), µw1
(t)), (µR′

c
(t′), µR′

w
(t′)), (µc2(t′), µw2

(t′))) (4)

It is easy to prove that formulas (4) and (3) are equivalent.
Remark: A bipolar θ-join operator, where θ is either a boolean or a fuzzy

relational operator (θ ∈ {<,>,≤,≥,=, 6=, around ,much greater than, ...}), can
straightforwardly be defined from formula (3) by substituting
(µ=(t′.att2, t.att1), µ=(t′.att2, t.att1)) by (µθ(t

′.att2, t.att1), µθ(t
′.att2, t.att1).

4.2 Bipolar (θc, θw)-join operator

We define a new bipolar join operator denoted (θc, θw)-join made of two relational
operators: θc and θw which are in {<,>,≤,≥,=, 6=, around ,greater than, ...}.This
bipolar operator permits us to express queries such as ”find salespersons who get
a turnover much greater and if possible very much greater than 10 times their
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own salary”. The main form of such queries is:
Q′2: Select R.A, R′.B From R, R′ Where (c1(R), w1(R)) and

(c2(R′), w2(R′)) and (R.att1 θc R
′.att2, R.att3 θw R′.att4);

Based on the formula (3), couples of degrees associated to tuples delivered
from Q′2 are processed by the following formula (5):

(µcQ′
2
(u), µwQ′

2
(u)) = lmax

t∈R∧t′∈R′∧t.A=a∧t′.B=b
lmin((µRc

(t), µRw
(t)),

(µc1(t), µw1
(t)), (µR′

c
(t′), µR′

w
(t′)), (µc2(t′), µw2

(t′)),

(µθc(t′.att2, t.att1), µθw(t′.att3, t.att4))) (5)

Example 3: In order to select the best young sellers, a manager based on
the monthly balance sheets can express the following query ”find young and if
possible very young salespersons with turnovers of their low and if possible
very low monthly balance sheets, are much greater and if possible very much
greater than 5 times their salary”. It can be written in Bipolar SQLf as:
Select #Seller From Seller as S, MonthBalance as MB Where
S.#Seller = MB.#Seller and (young (S.age), very young (S.age)) and
(low (MB.turnover), very low (MB.turnover)) and (much greater (S.salary*5,
MB.turnover), very much greater (S.salary*5, MB.turnover));

Due to the space limitation, we only describe the derived fuzzy bipolar re-
lations: Seller(Young,veryYoung) (see Table 3) and Balance(low,veryLow), in which
we show the couples of degrees of satisfaction to the bipolar join condition (much
greater(S.salary*5,MB.turnover),very much greater(S.salary*5, MB.turnover))).

The predicate low is defined on R+ → [0, 1] as: µlow(x) = 1 if x ∈ [0, 25000],
µlow(x) = −x

5000 + 6 if x ∈ [25000, 30000], µlow(x) = 0 otherwise.
The predicate very low is defined as ∀x ∈ R+ : µveryLow(x) = (µlow(x))2.
We define the predicate much greater on (R2

+ → [0, 1]): µmuchGreater(x, y) =
1 − y

x if x > y; 0, otherwise; and the predicate very much greater is defined:
∀(x, y) ∈ R2

+ : µvMGreater(x, y) = (µmGreater(x, y))2.

Table 3. The fuzzy bipolar relation Seller (young,veryY oung).

#Seller salary µyoung µveryY oung

5 2000 1 1

1 2500 0.8 0.64

3 2800 0.2 0.04

The couple of degrees associated to the seller #1 is:
(µc(#1), µw(#1)) = lmax(lmin((0.8, 0.64), (0.5, 0.25), (0.55, 0.33)),

lmin((0.8, 0.64), (0.7, 0.49), (0.53, 0.28))) = lmax((0.5, 0.25), (0.53, 0.28)) = (0.53, 0.28).
For sellers #3 and #5, the couples of degrees are respectively:

(µc(#3), µw(#3)) = (0.2, 0.04) and (µc(#5), µw(#5)) = (0.6, 0.36).

Sellers are delivered as follows: (0.6, 0.36)/#5, (0.53, 0.28)/#1, (0.2, 0.04)/#3.p
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Table 4. The fuzzy bipolar relation Balance(low,veryLow).

#Balance #Seller turnover µlow µveryLow µmGreater µvMGreater

1 1 27500 0.5 0.25 0.55 0.30

2 1 26500 0.7 0.49 0.53 0.28

5 3 28500 0.3 0.09 0.56 0.32

6 3 28000 0.4 0.16 0.55 0.31

9 5 29500 0.1 0.01 0.66 0.44

10 5 25000 1 1 0.60 0.36

4.3 Extension of in= and in≈ Operators to Bipolarity

In the SQLf language, the in= (resp. in≈) operator expresses at what level a
value of an attribute is equal (resp. is close) to a value from the fuzzy set delivered
by the nested subquery. The main format of an inθ query, where θ ∈ {=,≈}, in
the SQLf language is:
Q3: Select A From R Where c1 and att1 inθ (Select att2 From R′ Where c2);

The query Q3 is equivalent to the following join query [2]:
Q4: Select R.A From R,R′ Where R.att1θR

′.att2 and c1(R) and c2(R′);
Based on this equivalence, the evaluation of the condition v1 such that:

v1 = att1 inθ (Select att2 From R′ Where c2) is as follows:

µv1 = max
t′∈R′

min(µR′(t′), µc2(t′), µθ(t
′.att2, t.att1)) (6)

This equivalence holds in the case of bipolarity. The condition v1 is written
v′1 = att1 inθ (Select att2 From R′ Where (c2, w2)).

The evaluation of the condition v′1 is based on the extension of the formula
(6) to bipolarity as follows:

(µc v′1 , µw v′1
) = lmax

t′∈R′
lmin((µR′

c
(t′), µR′

w
(t′)), (µc2(t′), µw2

(t′)),

(µθ(t
′.att2, t.att1), µθ(t

′.att2, t.att1))) (7)

4.4 Bipolar in(≈,=) Operator

It is possible to define a bipolar in operator denoted in(≈,=) which expresses
conditions v2 of the following form:

v2 = att1 in(≈,=) (Select att2 From R′ Where (c2, w2)), which expresses at
what level att1 is close and if possible is equal to a value among those delivered
from the bipolar SQLf subquery (Select att2 From R′ Where (c2, w2)). From the
syntactic point of view the bipolar operator in(≈,=) is expressed (approx, equal).

The evaluation of the condition v2 is based on the following formula (8),
which is an extension to bipolarity in the formula (6):

(µc v2 , µw v2) = lmax
t′∈R′

lmin((µR′
c
(t′), µR′

w
(t′)), (µc2(t′), µw2(t′)),

(µ≈(t′.att2, t.att1), µ=(t′.att2, t.att1))) (8)
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It is worth noticing that a query defined with the bipolar in(≈,=) operator is
equivalent to a (θc, θw)-join query where θc corresponds to the ≈ operator and
θw corresponds to the = operator.

Example 4: We consider the following query ”find villas which are small,
and if possible not far from the downtown and having a price similar, and if
possible equal to the price of apartments which are spacious, and if possible
located near to the downtown”. It can be expressed in the Bipolar SQLf as follows:
Select #villa From Villa as V Where (small(V.surface), not far town(V.address))

and V.price (approx, equal) (Select #apart From Apartment as A Where

(spacious (A.surface), near town (A.address))); p

4.5 Extension of the exists Operator to Bipolarity

In the scope of the SQLf language, the exists operator indicates a non emptiness
of a fuzzy set. It is defined by the formula µexists(E) = supx∈support(E)µE(x)
which expresses at what extent an element belongs to the returned fuzzy set.

The main form of an exists query in the SQLf language is:
Q5: Select A From R Where c1 and exists

(Select * From R′ Where c2 and R.att1θR
′.att2);

where θ is a relational operator which can be either boolean or fuzzy.
This query is equivalent to the following join query:
Q6: Select A From R,R′ Where c1(R) and c2(R′) and R.att1 θ R

′.att2;
The condition v3 defined by the exists operator:
v3 = exists (Select * From R′ Where c2 and R.att1 θ R

′.att2) is evaluated
by the following formula (9):

µv3 = max
t′∈R′

min(µR′(t′), µc2(t′), µθ(t.att1, t
′.att2)) (9)

This interpretation preserves the equivalence between the exists operator
and the in= and in≈ operators, when θ ∈ {≈,=} and with the join operator.

In the context of bipolarity, these equivalences hold, and the condition v3 is
rewritten as v′3 = exists (Select * From R′ Where (c2, s2) and R.att1θR

′.att2).
The condition v′3 is evaluated by the following formula (10):

(µc v′3 , µw v′3
) = lmax

t′∈R′
lmin((µR′

c
(t′), µR′

w
(t′)), (µc2(t′), µw2

(t′)),

(µθ(t.att1, t
′.att2), µθ(t.att1, t

′.att2))) (10)

From the formula (10), we can define the exist operator as the retrieval of
the greatest couple of grades which satisfies the imbricated query.

4.6 The Extension of the θany Operator to Bipolarity

In the SQLf language, a query involving θany can be rewritten as a query in-
volving the exists operator. This equivalence is also valid in the Bipolar SQLf
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language. As consequence, the two following queries are equivalent:
Q7: Select A From R Where (c1, w1) and att1 θ any

(Select att2 From R′ Where (c2, w2));
Q8: Select A From R Where (c1, w1) and exists

(Select att2 From R′ Where (c2, w2) and R.att1θR
′.att2);

The evaluation of a θany query relies then on the formula (10).

4.7 Extension of Aggregate Functions Based Query to Bipolarity

Aggregate functions such as sum, count, avg, min, max are used to perform
arithmetic operations over a set of tuples. The following query expresses the
main form of an SQLf query based on aggregate functions:

Q9: Select A From R Where c Group By A Having
cf1(agg1(att1)) cnt... cnt cfn(aggn(attn));

where c is a boolean condition, agg1, ..., aggn are aggregate functions which are
applied resp. on attributes att1, ..., attn. The returned values are, then, used as
parameters for fuzzy conditions cf1 , ..., cfn to determine their grades of satisfac-
tion. Finally, the obtained grade are combined depending on connectors cnt.

The same principal of partitioning is used in the case of fuzzy bipolar condi-
tions. The following query is the main form of such a partitioning:

Q′9: Select A From R Where c Group By A Having
(c1(agg1(att1), w1(agg1(att1)) cnt ... cnt (cn(aggn(attn), wn(aggn(attn));

where cnt can be either an and or an or operator. The combination of the couples
of grades returned by (ci, wi), i = 1...n is based on lmin and/or lmax operators.

5 Conclusion

This article has considered the definition of an SQL-like language to express
preferences defined by fuzzy bipolar conditions. Such fuzzy bipolar conditions
are extension of fuzzy conditions. This language (namely Bipolar SQLf language)
is an extension of the SQLf language to bipolarity. It is based on a relational
bipolar algebra that defines basis operators and provides a well appropriate
interpretation for each language statement. In this article, we have defined basic
statements (projection, selection, join, etc.) and nesting operators such as in=,
in≈, exists and θany.

As future works, we aim at extending the language to fuzzy bipolar quan-
tified propositions, to be able to express queries based on linguistic quantifiers
such as ”find stores that have most of their sellers are young and if possi-
ble well paid”, and to study queries corresponding to divisions involving fuzzy
bipolar relations, such as ”find students who are well scored and if possible
very well scored in all difficult and if possible in all very difficult courses”.
An implementation of a prototype for query evaluation is in progress, and in
order to provide users with personalized services, this language is intended to be
integrated into a platform of flexible querying of heterogeneous and distributed
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information systems developed in the field of multimodal transportation net-
works, in which complex queries could be expressed such as: ”find journeys from
Lannion to Brussels which are fast and having early departures, and if possible
not expensive and having steps which go through stations in which are located
good restaurants which serve health foods and if possible not expensive”.
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