
HAL Id: hal-00658060
https://hal.inria.fr/hal-00658060v2

Submitted on 10 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporally coherent mesh sequence segmentations
Romain Arcila, Cédric Cagniart, Franck Hétroy, Edmond Boyer, Florent

Dupont

To cite this version:
Romain Arcila, Cédric Cagniart, Franck Hétroy, Edmond Boyer, Florent Dupont. Temporally coherent
mesh sequence segmentations. [Research Report] RR-7856, INRIA. 2012, pp.20. �hal-00658060v2�

https://hal.inria.fr/hal-00658060v2
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
78

56
--

FR
+E

N
G

RESEARCH
REPORT
N° 7856
January 2012

Project-Team Morpheo

Temporally coherent
mesh sequence
segmentations
Romain Arcila, Cédric Cagniart, Franck Hétroy, Edmond Boyer,
Florent Dupont

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Temporally coherent mesh sequence

segmentations

Romain Arcila∗†, Cédric Cagniart‡, Franck Hétroy∗, Edmond

Boyer∗, Florent Dupont†

Project-Team Morpheo

Research Report n° 7856 � January 2012 � 17 pages

Abstract: In this report, we consider the problem of fully automatic segmentation of mesh
sequences, with or without temporal coherence. More precisely, our goal is to identify model parts
that consistently move rigidly over time. We propose a novel framework that incrementally adapts
segments along a sequence based on the coherence of motion information within each segment.
In contrast to existing approaches, this framework handles meshes independently reconstructed at
each time instant, provided that motion cues are available. It allows therefore for meshes with
varying connectivity as well as varying topology. Experiments on various data sets in addition to
a quantitative evaluation demonstrate the e�ectiveness and robustness of the approach.

Key-words: mesh sequence, segmentation, mesh tracking, spectral clustering

∗ Laboratoire Jean Kuntzmann, Inria, Université de Grenoble
† LIRIS, CNRS, Université de Lyon
‡ Technische Universität München

Segmentations temporellement cohérentes de

séquences de maillages

Résumé : Nous considérons dans ce rapport le problème de la segmentation
entièrement automatique de séquences de maillages, avec ou sans cohérence tem-
porelle. Plus précisément, notre but est d'identi�er les parties d'un modèle qui se
déplacent rigidement de manière cohérente au cours du temps. Nous proposons
un canevas nouveau pour adapter ces régions de manière incrémentale le long de
la séquence, en se basant sur la cohérence de l'information de mouvement dans
chaque région. Contrairement aux approches existantes, ce canevas permet de
traiter les séquences de maillages reconstruits indépendamment à chaque pas de
temps, pourvu que des indicateurs de mouvement soient disponibles. Il permet
donc de segmenter des maillages avec changement de connectivité et/ou change-
ment de topologie. Des expériences sur plusieurs jeux de données ainsi qu'une
évaluation quantitative démontrent l'e�cacité ainsi que la robustesse de cette
approche.

Mots-clés : séquence de maillages, segmentation, suivi de maillage, regroupe-
ment spectral

Temporally coherent mesh sequence segmentations 3

1 Introduction

Shape segmentation is the process of partitioning shapes into segments or regions
that are semantically consistent with respect to a given criterion. Segmenta-
tion interest appears in several application domains where semantic informa-
tion on shapes, e.g. body parts, are required for interpretation purposes, for
instance motion analysis and recognition applications. When considering static
3D models, such process is faced with the issue of �nding appropriate criteria
to de�ne segments [Sha08]. On the other hand, dynamic or temporal sequences
of evolving 3D models overcome this limitation by providing motion informa-
tion that naturally yield criteria, including rigidity, enabling the identi�cation
of segments. This is particularly relevant with multi-view acquisition systems,
e.g. [SH07], or animation software, e.g. Blender [ble] for example, that can
build temporal mesh sequences of dynamic scenes usually composed of rigid,
sometimes articulated, moving parts.

Segmenting mesh sequences is anyway a challenging task. The main reason
lies in the inconsistency of the produced meshes that may result from various
factors. First, multi-view reconstructions are usually performed independently
over time, hence providing meshes with di�erent connectivities and even, occa-
sionally, di�erent topologies. Second, meshes are perturbed by the noise accu-
mulated in the acquisition pipeline. Approaches have been proposed to recover
temporally consistent meshes from inconsistent ones, e.g. [VBMP08]. While
providing rich information for segmentation over time sequences, they usually
require a reference model that introduces an additional step in the acquisition
pipeline, hence increasing the noise level. Moreover, the reference model strongly
constrains shape evolution to a limited domain.

In light of this, we propose an iterative scheme that clusters vertices into rigid
segments along sequences using motion information between successive frames.
In each frame, rigid segments can be re�ned by separating parts that present
inconsistent motions or, on the contrary, merged when neighboring segments
present similar motion. Motion information are estimated by matching meshes
at successive instants. The contribution of the approach is threefold:

� it is fully automatic and does not require prior knowledge on the observed
shape;

� it handles arbitrary shape evolutions, including changes in topology;

� segmentation can be computed on the �y.

This method can provide two kinds of segmentations: either one segmen-
tation for the whole sequence, or a segmentation which evolves during the se-
quence, representing the currently displayed motion.

The remainder of the paper is as follows. Section 2 discusses related work.
Section 3 outlines the proposed scheme. Sections 4 and 5 presents the matching
between two successive time instants and the segmentation algorithm respec-
tively. Section 6 shows comparisons with previous works and an evaluation
proposal. Finally, we conclude in section 7.

RR n° 7856

4 Arcila et al.

2 Related Work

Spatio-temporal mesh sequences can be split into two categories:

� dynamic meshes, or temporally coherent mesh sequences: all meshes of
the sequence have the same number of vertices and connectivity. This
means that only Euclidean coordinates of the mesh vertices change over
time;

� unconstrained mesh sequences: each mesh of the sequence has its own
numbers of vertices and faces and its own connectivity. Moreover, global
topology changes can happen. Such sequences are sometimes called 3D
videos, or time-varying meshes. Figure 1 shows some frames of the Balloon
sequence which is a multi-camera reconstructed sequence.

Dynamic meshes are generally created by deforming a reference mesh, us-
ing skeleton driven animation system. While di�erent in nature from meshes
generated from real images, a signi�cant e�ort has been devoted to their tem-
poral segmentation. Unconstrained mesh sequences are generally captured from
videos and have been a subject of interest over the last years in the computer vi-
sion domain. This kind of sequences now tends to be used by both communities
[SH07, VBMP08].

Segmentation of a static shape is a common problem in several areas, i.e.
texture mapping among others and many solutions have been proposed, see
Shamir [Sha08] for a survey. Conversely, segmentation of temporal mesh se-
quences has received less attention. Several methods have been proposed to
compute motion based segmentation of dynamic meshes. Among them, [LWC06,
dATTS08] segment a dynamic mesh into rigid components. In particular, de
Aguiar [dATTS08] proposes a spectral approach which relies on the fact that
the distance between two points is invariant under rigid transformation. In this
paper, we consider unconstrained mesh sequences and hence cannot use the
invariant proposed by de Aguiar et al.

In contrast to [VBMP08, CBI10] which transform an unconstrained mesh
sequence into a consistent mesh sequence, we only use the motion information
available between two frames.

A main issue of unconstrained mesh sequences is that there is no direct
matching between vertices of consecutive frames. This matching needs to be
explicitly computed. This can be done using one of the numerous methods
proposed in the literature [KSMH09] for example.

Cuzzolin et al. [CMK∗08] compute protrusions (extremities) segmentation on
point cloud sequences. Lee et al. [LTA08] propose a segmentation method for
unconstrained mesh sequences using an additional skeleton as input. Arcila et
al. [AKH∗10] propose a framework to segment mesh sequences, but they cannot
handle large reconstructed mesh sequences, such as mesh sequences built from
multi-camera systems. Franco et al. [FB11] propose such a method for mesh
sequences, but it requires as input the desired number of clusters.

In this paper, we propose a fully automatic approach to segment meshes with
arbitrary evolution, including topology changes. To the best of our knowledge,
no similar method exist in 3d. Interestingly, our approach shares similarities
with the recent work of Brox and Malik [BM10] in the case of image segmen-
tation. It should be noted that even if our method aims at segmenting mesh

Inria

Temporally coherent mesh sequence segmentations 5

Figure 1: Frame examples from a multi-cam unconstrained mesh sequence (bal-
loon sequence [Bal11].

sequences where meshes have di�erent connectivities, it still performs well on
dynamic meshes (see Section 6).

3 Method Outline

Our method takes as input a mesh sequence, where each mesh can have its own
connectivity, and with potentially global topology changes. It uses an iterative
approach and is designed to work on a small time window, containing a few
(typically, 5) meshes. Working on only a few meshes at the same time allows to
handle long sequences composed of meshes with a high number of vertices.

Our algorithm alternates between two steps at iteration k:

� Matching between 2 consecutive frames and displacement vectors compu-
tation within a time window from frame k.

� Segmentation of frame k and mapping to frame k + 1.

This method relies on e�cient matching and segmentation algorithms, that we
describe in section 4 and 5.

We create a motion-based segmentation by clustering vertices into rigid com-
ponents. Using a simple boolean parameter, we can generate two di�erent types
of segmentations:

� global segmentations: a single segmentation is sought over the full se-
quence;

� time-varying segmentations: the segmentation of a given frame represents
the current motion around this frame. Clusters can appear and disappear
along the sequence.

The notations used throughout the article are the following:

� N : number of frames;

� Fk: kth frame that can be composed of several meshes;

� F ′
k: kth frame Fk registered to Fk+1;

� nv(Fk): number of vertices in Fk;

� v
(k)
i : vertex with index i in Fk;

� Ng(v(k)
i): 1-ring neighbors of vertex v

(k)
i .

Note that we always use k as the index for a frame, and i, j as the indices for
vertices in a frame.

RR n° 7856

6 Arcila et al.

4 Vertex Matching

The objective of this step is, given meshes at frames Fk, k ∈ [0..N − 1], to pro-

vide a mapping from vertices v
(k)
i to vertices v

(k+1)
j for 1 ≤ k < N , and a

possibly di�erent mapping from vertices v
(k+1)
j to vertices v

(k)
i . This mapping

is further used to propagate segment labels over the sequence. We proceed it-
eratively according to the following successive stages: �rst, meshes at frames
k and k + 1 are registered, then displacement vectors and correspondences are
estimated. The following subsections detail these stages. Please note that the
segmentation algorithm presented further is independent of the matching per-
formed and mainly requires displacement vectors. Thus, an approach based on
3D scene �ow (e.g., [SAL∗08]) could also be considered.

4.1 Mesh Registration

The matching stage of our approach aims at establishing a dense cross parametriza-
tion between pairs of adjacent meshes of the sequence. Among the many avail-
able algorithms for this task, we chose to favor generality by casting the problem
as the registration of two sets of points and normals. This means that we exclu-
sively use geometric cues to align the two meshes, even when photometric infor-
mation is available like in the case of meshes reconstructed from multi-camera
systems. Thus, our approach also handles the case of software generated mesh
sequences.

We implemented the method of Cagniart et al. [CBI10] that iteratively de-
forms the mesh Fk to �t the mesh Fk+1. This approach decouples the dimen-
sionality of the deformation from the complexity of the input geometry by arbi-
trarily dividing the surface into elements called patches. Each of these patches
is associated to a rigid frame that encodes for a local deformation with respect
to the reference pose Fk. The optimization procedure is inspired by ICP as it
iteratively re-estimates point correspondences between the deformed mesh and
the target point set and then minimizes the distance between the two point sets
while penalizing non rigid deformations of a patch with respect to its neighbors.
Running this algorithm in a coarse-to-�ne manner by varying the radii of the
patches has proven in our experiments to robustly converge, and to be faster
than using a single patch-subdivision level.

4.2 Mapping and Displacement Vectors Extraction

By using the previous step, we get the registered mesh F ′
k of the frame Fk on

frame Fk+1. To create a mapping from Fk to Fk+1, we �nd for each vertex
in F ′

k the closest vertex in Fk+1 using Euclidean distance. We also create a
mapping from Fk+1 to Fk by �nding for each vertex in Fk+1 the closest vertex
in F ′

k. Both mappings are necessary for the subsequent stage of our algorithm
(see Section 5.3).

The displacement vector of each vertex v
(k)
i in Fk such that 0 6 i < nv(Fk)

is given as
−−→
DVi

(k) = v
′(k)
i − v

(k)
i ,

with v
′(k)
i the corresponding vertex in F ′

k.

Inria

Temporally coherent mesh sequence segmentations 7

Figure 2: Matching process.

At the end of this stage, we get the mappings and displacement vectors
between each pair of successive frames (see Figure 2).

5 Motion-based Segmentation

Our algorithm proceeds iteratively over a time sequence. First, in the case of a
time-varying segmentation, neighboring clusters, in the current segmentation at
time k, that present similar motions are merged (Section 5.2). Then, the current
segmentation is re�ned using the displacement vectors at time k (Section 5.1).
Finally, the segmentation is remapped onto the mesh at k + 1 (Section 5.3).

Features of the approach are:

� it can process a sequence with numerous frames, where each frame can
have a huge number of vertices. It only requires few frames in memory at
a time. For instance, results shown on Figure 3 correspond to a sequence
of 300 frames with approximately 15,000 vertices per frame;

� it can control cluster creation and keep track of the transformations.

In the case of a global segmentation (Section 5.4), for which no cluster merg-
ing is allowed, the segmentation computed on the last frame is the �nest one.
This segmentation is then mapped back onto the whole sequence.

Note that we use a time window, 5 frames from k to k+4 in our experiments,
to compute displacements at each frame k. The segmentation of a frame is
performed using a spectral clustering approach applied on the graph of vertices
of the frame. Edges in this graph correspond to edges on the mesh. An edge
is weighted by the distance between the transformations of its 2 vertices. This
is in contrast to [dATTS08] where Euclidean distances between vertices are
considered. Intuitively transformation distances better constrain rigidity than
Euclidean distances and our experiments con�rm this fact.

Our segmentation algorithm produces, by construction, connected clusters
since the atomic operations over clusters are: splitting a cluster in connected
clusters through spectral clustering, and merging neighboring clusters.

RR n° 7856

8 Arcila et al.

Figure 3: First row: time-varying segmentation generated by our algorithm on
the dancer sequence [SH07]. First frames are decomposed into 6 segments, then
the right arm and right hand clusters are merged since they move the same
way. Finally, this cluster is split again. Note that we can handle topology
changes (in the last frames, the left arm is connected to the body). Second row
: time-varying segmentation of a sequence with 15,000 vertices per mesh.

5.1 Spectral Clustering

Using mappings and displacement vectors computed as previously explained,
we build a graph whose edges are weighted according to rigid transformation
similitude between their two endpoints. The normalized Laplacian matrix as-
sociated with this graph is computed and the clustering is performed on this
matrix.

5.1.1 Graph Construction

To compute the spectral clustering, the weighted adjacency matrix of the graph
associated to the vertex transformations between two consecutive frames is
build. The nodes of this graph are the vertices of the frame at time k. To
construct this graph, we �rst compute the rigid transformation which maps

each vertex v
(k)
i of the frame Fk, and its one-ring neighborhood Ng(v(k)

i), onto
the frame F ′

k . This transformation is computed using Horn's method that es-
timates a 4 × 4 matrix representing the best rigid transformation between 2
point clouds. A transformation matrix T

(k)
i is therefore associated to each ver-

tex v
(k)
i . To compute the weights of the graph W (k) edges, we use the following

expression [MSZ94]:

w
(k)
ij =

{
1

‖log(T
(k)
i

−1
T

(k)
j)‖2

if i 6= j,

0 if i = j.
(1)

As demonstrated in [MSZ94], this distance is the most meaningful one between
rigid transformations in the sense that it corresponds to distances on the man-

Inria

Temporally coherent mesh sequence segmentations 9

ifold of rigid transformations SE(3). We comment on the consequences of this
choice in section 6.3.2.

5.1.2 Laplacian Matrix and Clustering

Using the weighted adjacency matrix W (k), we build the normalized Laplacian

matrix L
(k)
rw as follows and use the well-known Shi-Malik normalized spectral

clustering algorithm [SM00] to segment the graph.

D
(k)
ii =

∑
j∈Ng(v(k)

i)

wij(k) . (2)

L(k) = D(k) −W (k). (3)

L(k)
rw = D(k)−1L(k) = I(k) −D(k)−1W (k). (4)

This method assumes the number K of clusters to be known. We compute
K using the eigen gap method (see section 6.3.1 for a discussion on the eigen
gap method).

5.2 Merging

In the case of a time-varying segmentation, we merge at each time step neigh-
boring clusters with similar motions before applying the spectral clustering. To
this aim, the distance between the transformations of neighboring clusters is
thresholded using Tmerge, where the transformation of a cluster is estimated
over all its vertex displacements using the Horn's method.

The merging starts with the cluster with the minimal residual error, and
stops when this process cannot be applied anymore. The residual error for a

cluster corresponds to the average distance, for all points v
(k)
i of the cluster,

between the point v
(k+1)
i and the location of v

(k)
i after the rigid transformation

computed for the cluster is applied. An issue that arises from having two dif-
ferent thresholds for the cluster merging and splitting operations is that two
clusters which are merged can then be split right afterwards. To avoid this situ-
ation, we apply spectral clustering on the set of the two clusters before merging
them in practice. If they are split during clustering, then we do not e�ectively
merge them.

5.3 Mapping onto the next frame

The segmentation is computed at each time step on the current frame Fk. Labels
are then mapped onto the frame Fk+1 using the bi-directional mapping de�ned
in Section 4.2. Clusters are �rst transferred using the mapping from frame Fk

to Fk+1. Then for all unmatched vertices in Fk+1, we use the mapping from
Fk+1 to Fk. Clusters which are mapped on 2 di�erent meshes are split.

5.4 Global Segmentation

In order to get a time-coherent global segmentation over the whole sequence, the
segmentation obtained for the last frame need to be transferred to all previous

RR n° 7856

10 Arcila et al.

(a) (b)

Figure 4: Result of vertex matching. (a) Full display. (b) Partial display.

[LWC06]. [dATTS08]. [AKH∗10]. With our method.

Figure 5: Segmentation results on a dynamic mesh.

frames. To this purpose, we apply the mapping process described in the previous
section in reverse order, from last to �rst frame. For each pair of successive
frames (Fk, Fk+1) we �rst remap using the vertex matching from Fk+1 to Fk,
then for all remaining points, we use the vertex matching from Fk to Fk+1.

6 Experiments and Discussion

6.1 Results and Comparisons with Previous Works

6.1.1 Vertex Matching

The vertex matching computation is an important step since our segmenta-
tion algorithm relies on it. Figure 4 shows the result of vertex matching be-
tween two successive frames of an unconstrained mesh sequence. Computation
time is about 30 seconds for two frames with approximately 7000 vertices each.
[AKH∗10] used another matching method which provides similar results, but
the proposed method outperforms their matching algorithm which takes about
13 minutes to complete computation with the same data. Note that outliers in
the matching are not explicitly taken into account in the segmentation, however
their in�uence is limited by the threshold on the cluster size that tends to force
their merges with neighboring clusters.

6.1.2 Segmentation of Dynamic Meshes

As shown in Figure 5, our method yields visually similar results to previous
methods dedicated to dynamic meshes, i.e. temporally coherent sequences. Note

Inria

Temporally coherent mesh sequence segmentations 11

Figure 6: Global segmentation result on the balloon sequence.

that each cluster is connected: even if some clusters in Figure 5 share the same
color, they represent di�erent clusters.

6.1.3 Global Segmentation of Unconstrained Mesh Sequences

To the best of our knowledge, [AKH∗10] is the only previous method which
computes global segmentation of unconstrained mesh sequences. Our method
shares some similarities with their framework; however, our segmentation al-
gorithm allows for better cluster evolutions by enabling both merge and split
operations and by using a spectral clustering method for that purpose. On
dynamic meshes such as the horse sequence (see Figure 5), our segmentation
results are closer to the presented results in [dATTS08] and in [LWC06]. The
improvement over [AKH∗10] illustrates the bene�t of the spectral clustering.

6.1.4 Time-Varying vs. Global Segmentations

Figures 3 shows time-varying segmentations computed on the Balloon and Dancer
sequences. Figure 6 shows a global segmentation computed on the Dancer
sequence. By construction, global segmentations contains more clusters than
time-varying segmentations since no merging process is applied. Thresholds for
both time varying and global segmentation of the Dancer sequence share the
same value, except for the eigen gap threshold which is slightly lower in the
time varying segmentation case. In general, threshold values for a sequence are
easily found in a few trials. The computation time of the segmentation between
2 frames of the Dancer sequence is approximately 3 minutes with a (not opti-
mized) Matlab implementation. Additional results appear in the accompanying
video.

6.2 Quantitative Evaluation

A quantitative and objective comparison of segmentation methods is an ill-posed
problem since there is no common de�nition of what an optimal segmentation
should be in the general case. The segmentation evaluation has been recently
addressed in the static case using ground truth (i.e. segmentations de�ned by
humans) [BVLD09]. In the dynamic mesh case, none of the previously cited

RR n° 7856

12 Arcila et al.

articles proposes an evaluation of the obtained segmentations. We propose the
following framework to evaluate a mesh sequence segmentation method.

6.2.1 Optimal Segmentation

The optimal segmentation of a mesh animation (dynamic mesh or unconstrained
mesh sequence) into rigid components can be guessed when the motion is known.
This is, for instance, the case with skeleton-based mesh animations, as created in
the computer graphics industry. In this case, each mesh vertex of the sequence
is attached to at least one (usually, no more than 4) �joints� of the animation
skeleton, with given weights called skinning weights. These joints are organized
in a hierarchy, which is represented by the �bones� of the skeleton that are,
therefore, directed. For our evaluation, we attach each vertex to only one joint
among the related joints, the furthest in the hierarchy from the root joint. If
this joint is not unique, we keep the one with the greatest skinning weight. Each
joint has its own motion, but several joints can move together in a rigid manner.
For a given frame, we can therefore cluster joints of the animation skeleton into
joint sets, each joint set representing a di�erent motion. We now de�ne as an
optimal cluster the set of vertices related to joints in the same joint set. Since
we know the motion of each joint, we exactly know, for each frame, what are
the optimal clusters.

This de�nition can be applied in the general case of unconstrained mesh
sequences, provided that each vertex of each frame can be attached to a joint.
However, we only tested it in the more convenient case of a dynamic mesh.

6.2.2 Error Criteria

We propose the following criteria in order to evaluate a given segmentation with
respect to the previously de�ned optimal segmentation:

� Frame Assignment Error (FAE): for a given frame, the ratio of vertices
which are not assigned to the correct cluster. This includes the case of
clusters which are not created, or which are wrongly created;

� Vertex Assignment Error (VAE, in the case of dynamic meshes): for a
given vertex, the ratio of frames in which the vertex is not assigned to the
correct cluster.

6.2.3 Results

We tested our algorithm on a walking cat skeleton-based animation (see Figure 7
and the accompanying video). We get a time-varying segmentation with a FAE
up to 17%, for the worst frame. Wrongly assigned vertices correspond to the
cat skin around joints and to a wrong subdivision in cat paw, i.e. in the less
rigid areas.

In the case of global segmentations, and if we do not take into account
matching issues, the FAE is the same for all frames. For the cat sequence, the
FAE is also 17%. The VAE varies between 0% and 100%, and is only relevant as
a relative criterion to compare vertices. On the cat sequence vertices in highly
rigid areas (paws, tail, body) are always assigned to the correct cluster, while
some vertices around joints can be assigned to the same neighboring cluster for
all frames.

Inria

Temporally coherent mesh sequence segmentations 13

(a) (b)

Figure 7: Result on a skeleton-based synthetic animation. (a) Computed time-
varying segmentation. (b) Optimal time-varying segmentation, for the same
frame.

6.3 Discussion

6.3.1 User De�ned Parameters

We use three parameters to drive the segmentation: the number of clusters,
the minimum cluster size and the merge threshold. The eigen gap method
is used for each frame to determine the number of clusters to create, but is
not always reliable. To overcome this problem and to avoid the creation of
many subclusters, we use the minimum cluster size parameter. In all of our
experiments, we have arbitrarily set this parameter to 5%. This value works
well enough for reconstructed mesh sequence as meshes in these sequences are
uniform. This threshold is used for instance on the balloon sequence to ensure
that the ball is not split into many subclusters as it is hard to �nd a rigid
transformation on the ball. It improves computation time but also avoids small
cluster creation around articulations, which are usually not rigid. Finally, the
merge threshold is used to decide if two clusters represent the same motion (see
section 5.2). It is closely related to the eigen gap value, since if these thresholds
are not set correctly, the algorithm can merge two clusters which are split by
the spectral clustering right afterwards.

6.3.2 Distance Function

We have tried our algorithm with three distance functions to compute distances
between rigid transformations:

1. Residual errors between clusters;

2. Frobenius norm;

3. Logarithm of matrices (see Equation 1).

In our experiments, the residual errors between clusters are really di�cult
to set correctly. The logarithm of matrices provides the best result but if the
computation time is a hard constraint, then the Frobenius norm yields also quite
good results. Actually on dynamic meshes, both yield the same results. How-
ever, on unconstrained mesh sequences logarithm based distance yields better
results, i.e. more regular clusters, than the Frobenius distance.

RR n° 7856

14 Arcila et al.

6.3.3 Current Limitations

We are currently aware of three limitations in the proposed algorithm:

� our method clearly depends on the the quality of the matching process.
Important errors in matching computation can lead to wrong results;

� clusters which are wrongly subdivided are transferred to the following
frames, meaning that errors on an early frame in the sequence can a�ect
the whole segmentation. This issue is less important on time-varying
segmentation since clusters will be merged later. Nevertheless, on global
segmentations, it can lead to wrong results. Such errors are generally due
to error in the matching process;

� segmentation can slightly drift: this is due to the fact that we only consider
2 frames when matching.

As shown in our quantitative evaluations, vertices which are wrongly assigned
to a cluster are located near articulations. Vertices in rigid regions are generally
correctly clustered.

7 Conclusion

We have presented a segmentation method which takes as input a mesh se-
quence, either reconstructed from multi-view videos or created using an anima-
tion software. It produces a global segmentation or a time-varying segmentation
into rigid components and handles topological changes. The method is fast and
yields visually consistent results. It uses a few parameters which can be easily
set. We have also proposed a framework for quantitative evaluations of rigid
segmentation methods, and we have shown that our method behaves favorably
with respect to existing approaches. Future works include the use of a bayesian
framework to track and predict clusters. We also plan to improve the vertex
assignments around articulations to clusters and optimize our implementation.

8 Acknowledgements

The Dancer sequence is courtesy of University of Surrey [SH07]. The Balloon
sequence is courtesy of Inria Grenoble [Bal11]. The Cat sequence is courtesy of
Inria Grenoble [AHLD07].

Inria

Temporally coherent mesh sequence segmentations 15

References

[AHLD07] Aujay G., Hétroy F., Lazarus F., Depraz C.: Harmonic
skeleton for realistic character animation. In Symposium on Com-
puter Animation, SCA 07, August, 2007 (2007), Eurographics,
pp. 151�160.

[AKH∗10] Arcila R., Kartik B., Hétroy F., Denis F., Dupont F.:
A framework for motion-based mesh sequence segmentation. In
WSCG (2010).

[Bal11] Balloon sequence, Retrieved april 2011. http://4drepository.

inrialpes.fr/.

[ble] Blender. http://www.blender.org/.

[BM10] Brox T., Malik J.: Object segmentation by long term analysis
of point trajectories. In ECCV (2010).

[BVLD09] Benhabiles H., Vandeborre J.-P., Lavoué G., Daoudi M.:
A framework for the objective evaluation of segmentation algo-
rithms using a ground-truth of human segmented 3D-models. In
SMI (2009).

[CBI10] Cagniart C., Boyer E., Ilic S.: Iterative deformable surface
tracking in multi-view setups. In 3DPVT (2010).

[CMK∗08] Cuzzolin F., Mateus D., Knossow D., Boyer E., Horaud

R.: Coherent laplacian 3-d protrusion segmentation. In CVPR
(2008).

[dATTS08] de Aguiar E., Theobalt C., Thrun S., Seidel H.: Auto-
matic conversion of mesh animations into skeleton-based anima-
tions. Computer Graphics Forum (Eurographics Proceedings) 27, 2
(2008).

[FB11] Franco J.-S., Boyer E.: Learning Temporally Consistent
Rigidities. In IEEE CVPR (2011), pp. 1241�1248.

[KSMH09] Knossow D., Sharma A., Mateus D., Horaud R.: Inexact
matching of large and sparse graphs using laplacian eigenvectors.
In 7th Workshop on Graph-based Representations in Pattern Recog-
nition (2009).

[LTA08] Lee N., T.Yamasaki, Aizawa K.: Hierarchical mesh decom-
position and motion tracking for time-varying-meshes. In ICME
(2008).

[LWC06] Lee T.-Y., Wang Y.-S., Chen T.-G.: Segmenting a deform-
ing mesh into near-rigid components. The Visual Computer 22, 9
(2006).

[MSZ94] Murray R. M., Sastry S. S., Zexiang L.: A Mathematical
Introduction to Robotic Manipulation. CRC Press, Inc., 1994.

RR n° 7856

http://4drepository.inrialpes.fr/
http://4drepository.inrialpes.fr/
http://www.blender.org/

16 Arcila et al.

[SAL∗08] Sharf A., Alcantara D., Lewiner T., Greif C., Sheffer

A., Amenta N., Cohen-Or D.: Space-time surface reconstruc-
tion using incompressible �ow. ACM Transactions on Graphics
(SIGGRAPH Asia Proceedings) 27, 5 (2008).

[SH07] Starck J., Hilton A.: Surface capture for performance based
animation. IEEE Computer Graphics and Applications (2007).

[Sha08] Shamir A.: A survey on mesh segmentation techniques. Computer
Graphics Forum 27, 6 (2008).

[SM00] Shi J., Malik J.: Normalized cuts and image segmentation. PAMI
22, 8 (2000).

[VBMP08] Vlasic D., Baran I., Matusik W., Popovi¢ J.: Articulated
mesh animation from multi-view silhouettes. ACM Transactions
on Graphics (SIGGRAPH Proceedings) (2008).

Inria

Temporally coherent mesh sequence segmentations 17

Contents

1 Introduction 3

2 Related Work 4

3 Method Outline 5

4 Vertex Matching 6

4.1 Mesh Registration . 6
4.2 Mapping and Displacement Vectors Extraction 6

5 Motion-based Segmentation 7

5.1 Spectral Clustering . 8
5.1.1 Graph Construction . 8
5.1.2 Laplacian Matrix and Clustering 9

5.2 Merging . 9
5.3 Mapping onto the next frame . 9
5.4 Global Segmentation . 9

6 Experiments and Discussion 10

6.1 Results and Comparisons with Previous Works 10
6.1.1 Vertex Matching . 10
6.1.2 Segmentation of Dynamic Meshes 10
6.1.3 Global Segmentation of Unconstrained Mesh Sequences . 11
6.1.4 Time-Varying vs. Global Segmentations 11

6.2 Quantitative Evaluation . 11
6.2.1 Optimal Segmentation . 12
6.2.2 Error Criteria . 12
6.2.3 Results . 12

6.3 Discussion . 13
6.3.1 User De�ned Parameters 13
6.3.2 Distance Function . 13
6.3.3 Current Limitations . 14

7 Conclusion 14

8 Acknowledgements 14

RR n° 7856

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Method Outline
	Vertex Matching
	Mesh Registration
	Mapping and Displacement Vectors Extraction

	Motion-based Segmentation
	Spectral Clustering
	Graph Construction
	Laplacian Matrix and Clustering

	Merging
	Mapping onto the next frame
	Global Segmentation

	Experiments and Discussion
	Results and Comparisons with Previous Works
	Vertex Matching
	Segmentation of Dynamic Meshes
	Global Segmentation of Unconstrained Mesh Sequences
	Time-Varying vs. Global Segmentations

	Quantitative Evaluation
	Optimal Segmentation
	Error Criteria
	Results

	Discussion
	User Defined Parameters
	Distance Function
	Current Limitations

	Conclusion
	Acknowledgements

